
Power GUI Prograniniing W'ith

VisualAge™ for C++
t ,. ..

HIROSHI TSUJI, BOB LOVE , WILLIAM LAW,

AND BRUCE OLSON

•wfi£EE

•gREE E)ELro®

EEfiF®sifeEi Hsunjfi

B®fiie EL®v8

T{r7REfiarm ELaq/v

BfffljiS© ®flsSm

©

-ff®-ff.g##

r-

P

To the women in my life: Allison, Whitney, and especially Malinda.
- W. I.

To my wife and good friend, Sue, my daughter, Libbi, and my mother, Helen.
-8. L.

To my wife, Diane, my sons, John and Cory, and my parents, Gene and Myra.
-8. R. 0.

To Teresa, Katie, and Jackson, with love.
-H. T.

Acknowledgments

We Would like to extend thanks to those folks that helped us get this book written:

Kevin Leong, who was the driving force behind not only the first book, which he helped write,
but also the set of C++ classes that became Open Class Library.

Our managers-Don Ingerslew, AI Groelle, Peter Spung, and Robert Leblanc-for supporting
uS.

All the readers and reviewers of our first book who gave us enough positive comments (and
lists of corrections, in some cases) to encourage us to work on this revision.

All the developers that contributed to the success of VisualAge for C++. If you ever take a
look at the module definition file for Open Class Library, or examine the link map for an
application after statically linking with Open Class Library, you will find an assortment of
rather strange segment names. The choice of these segment names attest to the hard work,
camaraderie, and fun that the developers had while building Open Class Library. Many of
these folks also helped review the book and its examples. Over the years, the segment names
and the people who inspired them have included the following (there are still others waiting
for the addition of more segments to Open Class Library):

12001AMarksodyssey
IJennspen
IonAnotherBenge
IABernieweekend
IBoezephoneHome
IBonnanoRepublic
IBrightBeak
IMountainsofBusch
IISHaggarHorrible
IHamiltonianQuill
ICLHarpersBizarre
ICLwannaHolliday
IHolmesBuilder
IAbstractArt
ICLHello6Dave

Mark Anderson
Jennifer 8 ecker-Fernald
Mark Benge
David Bernath
John Boezeman
Jim Bonanno
Pete Brightbill
Ed Busch
Peter Haggar
Delores Hamilton
Steve Harper
Jon Holliday
Paul Holmes
Art Jolin
Dave Lavin

ICLAboveTheLaw
ICLLeongGone
IAnotherLoveTune
IMillerTime
IJudyJudyJudy
IBruceKnee
TheRightprice
IshakAttack
IstangerHook
IGRedpepperstich
IproudMary
ITsujiNightLive
IweswantsMore
IYoungBloods

Bill Law
Kevin Leong
Bob Love
Mike Miller
Judy Oakley
Bruce Olson
Brian Price
Keith Shakib
Robert Stanger
Marty Stich
Mary Streble
Hiroshi Tsuji
Wes Wilson
Michelle Young

Finally, we would like to thank all of the users of Open Class Library. You gave us a reason to
write our first book, and through your questions and problems, you continue to point out topics
for us to discuss.

Contents

Preface
Road Map
Chapter 1 Getting Started

What to Expect from This Chapter
Displaying a Simple Window
Adding Event Handling
Programming without Open Class Library

Chapter 2 Object-Oriented User Interface Fundamentals
General Interface Guidelines
Look and Feel of the Desktop

Chapter 3 Tour of Open Class Library
About the Example
Initial Tasks
Modeling the Objects
Choosing Object Views
Building Windows
Building the Primary Window
Building the Secondary Window
Processing User Actions and System Events
Application Framework Obj ects
Programming Obj ects
Open Class Library's Obsolete Strategy
Example Program Make Files

Chapter 4 Windows, Handlers, and Events
Window Basics
The Event-Handling Framework
Window Handlers
Iwindow

Chapter 5 Frame Window Basics
Overview
Constructing Frame Windows
Showing Frame Windows and Dialogs
Closing Frame Windows
Filling Your Frame Window

Chapter 6 Menus and Keyboard Accelerators
About Menus
The Menu Classes
Loading Menus from a Resource File
Creating Menus Programmatically
Defining Keyboard Accelerators
Accessing Title Bar Menus
Manipulating Menu Items

V

vi Power GUI programming with visualAge for c++

Responding to Menu Events
Drawing a Custom Menu Item

Chapter 7 Controls
Constructors
Copying Controls
Colors and Fonts
Tabbing and Cursor Movement

Chapter 8 Static Controls
Static Text
Bitmap and Icon Controls
Group Box and Outline Box

Chapter 9 Edit Controls
The Edit Classes
Common Text Operations
Selected Text Operations
Clipboard Operations
Additional Common Interfaces
The Entry Field Control
Entry Field Styles
The Multiline Edit Control
Simple Text Editor
Event Handlers

Chapter 10 Button Controls
Common Button Behavior
Push Buttons
Setting Buttons

Chapter 11 List Controls
The List Box
The Combination Box
List Box and Combination Box Items
Custom List Box Example
The Spin Button
Spin Button Items
Master and Servant Date Control Example

Chapter 12 Slider Controls
Progress Indicator
Linear Slider
Circular Slider
Monitoring Value Changes
Custom Painting

Chapter 13 Container Control
The Container Model
Constructing Containers
Text View
Name View
Icon View
Tree View
Details View

138
141

145
148
157
157
160

163
164
172
175

179
179
181

181

181

182
182
182
183
184
185

187
187
188

193

199
199
202
204
205
206
208
210

211
213
219
222
225
226
227
228
228
237
238
238
241
242

Contents vii

Moving and Copying Objects in the Container
Managing the Lifetime of Container Objects
Locating Container Objects and Columns
Applying Behavior to Objects
Sorting Objects in the Container
Hiding or Filtering Container Objects
Editing Container Text
Container Obj ect Attributes
Advanced Features
Under the Covers
Catching Container Exceptions
Tips and Techniques

Chapter 14 Notebook Control
Using Notebooks and Tab Controls
Constructing a Notebook
Changing the Notebook's Style
Adding Pages in a Notebook
Adding Windows to a Page
Finding Pages Using the Notebook Cursor
Requesting and Updating Page Information
Removing Pages
Handling Notebook Events
Changing Notebook Colors
Displaying Notebook Help
Smart Guides

Chapter 15 Canvases
Why Use Them?
Class Comparisons
The Icanvas Canvas
The Isetcanvas Class
The IMulticellcanvas Class
The ISplitcanvas Class
The Iviewport Class
Canvas Class Combinations
Behind the Scenes

Chapter 16 Tool Bars, Fly-Over Help, and Custom Buttons
Tool a ar
Fly-Over Help
Custom Buttons
Animated Buttons
Location of Example Code for Figures

Chapter 17 Reusable Handlers
Command Handler
Keyboard Handler
Mouse Handler
Window Paint Handler
Window Resize Handler

Chapter 18 Fonts and Views
What is a Font?

viii Power GUI programming with visualAge for c++

What is a View?
• Constructing Font objects

Modifying Font Objects
Geometry Accessors
Advanced Font Topics
Font Selection
File Selection

Chapter 19 Advanced Frame Window Topics
Frame Window Constructor Arguments
Frame Window Constructors
Frame Extensions
Implementation Details of IFramewindow
Frame Windows in Your Application
The Multiple Document Interface Application

Chapter 20 Applications and Threads
Processes and Threads
Applications
IThread Class
The Current Thread of Execution
Starting Threads
Controlling Thread Execution
Controlling Window Event Processing
Synchronizing Multiple Threads
S ervice Threads
Timers
Conclusion

Chapter 21 Direct Manipulation
Do It Directly
Enabling Drag and Drop
Direct-Manipulation Items
Providing Items to Be Dragged and Dropped
To Drop or Not to Drop
Move, Copy, Link, or Get Out of The Way!
Drawing Target Emphasis
"Under the Covers"

Conclusion

Chapter 22 Dynamic Data Exchange
DDE Overview
The DDE Framework Design
The Generic DDE Event Classes
DDE Clients
Dynamic Data Exchange Servers

Chapter 23 Using Help
Help Fundamentals
Enabling a User to Request Help
Creating Help Information
Basic Contextual and General Help
Other Kinds of Help
Special-Case Contextual and General Help

408
408
410
413
413
417
420
425
425
432
438
441
452
466

477
477
480
483
484
485
494
499
502
508
515
517

519
519
520
523
532
540
543
544
548
557

559
559
562
564
567
578

587
587
588
590
593
600
602

Contents Lx

Chapter 24 Using Resources
Resource File Fundamentals
Open Class Library Support for Resources
IB itmapHandle and IPointerHandle
IsystemBitmapHandle and IsystempointerHandle
Dynamic Binding and IprocedureAddress
DLL Reference Counting

Chapter 25 Storing Data in a Profile
Overview
Using the Profile-A Simple Example
Behind the Scenes
Constructing Profile Objects
Working with Application Names
Reading and Writing Data
Sample Programs

Chapter 26 Data Types
Using Data Type Objects
Ordered Pairs
IRectangle Class
Character Strings
Handles
Date and Time
Bit Masks
Colors
Reference-Counting

Chapter 27 Error HandlingAnd Reporting
Operating System Exception Handling & C Signals
Exception Handling in C++
Benefits of Using C++ Exceptions
Open Class Library' s Error-Handling Strategy
The Root of All Exceptions
The Open Class Library Exception Classes
Catching Exceptions
Errors Allocating Dynamic Memory
Throwing Exceptions
Custom Error Messages
Using a Message Box to Display an Exception
Exception Information Logging
Exception-Handling S ample

Chapter 28 Problem Determination
An Ounce of Prevention . . .
VisualAge for C++ Diagnostics Aids
Some Common Problems

Chapter 29 Packaging and Performance Tuning
Building the Final Application
Dynamic Linking and Using DLLRNAME
Tuning Your Application

Index

609
610
612
617
618
618
620
621
621
621
622
624
626
627
631

633
633
635
639
644
677
680
684
691
692

697
697
698
699
700
701
705
708
710
711
718
719
721
723

727
727
729
741

751
751
753
756

771

Proface

Welcome
Computer programming is rapidly changing. Each year seems to bring a new technology that
must be mastered. Although your applications are more complex, and you want to deliver
them on multiple platforms that are also getting more complex, your users are demanding
easy-to-use applications. To help battle this strain, class libraries of I.eusable code and tools to
generate code have now emerged. .

You can use IBM VisualAge for C++ to make your programming life easier and to deliver the
easy-to-use applications that your users demand. VisualAge for C++ is IBM's C++ devel-
opment environment for the Windows and OS/2 operating systems. It includes a compiler,
debugger, visual application builder, and a suite of other tools. When you use VisualAge for
C++, you are likely also using or contemplating using IBM Open Class Library.

Open Class Library is particularly useful for creating a graphical user interface (GUI) with the
look and feel of the native operating environment. Using these classes, you can produce better
applications more quickly and more easily and use fewer lines of code than you could if you
programmed directly to the operating system or presentation system. For example, you can
write a simple "Hello World" program that runs on the OS/2, Windows NT, and Windows 95
platforms using the following lines of code:

#include <iframe.hpp>
void main ()
(

IFramewindow frame("Hello World") ;
frame . sbowModally () ;

)
This book is a guide to using this C++ class library. The primary audience for this book is
current and future users of Open Class Library. For current users, we offer information and
advice that you can immediately apply to get more out of Open Class Library and to improve
the code you write. For new and future users, including those needing a cross-platform devel-
opment tool or users of the Visual Builder who need to extend its generated code, we explain
basics and give you the encouragement and confidence you need to leap into productive
programming with Open Class Library. Whatever your background, if you are interested in
Open Class Library, we welcome you as a reader.

We do not assume that you previously developed an application with a graphical user inter-
face. Nor do we require that you are familiar with either the Windows or OS/2 operating
systems. However, we do assume that you have reading knowledge of the C++ programming
language.

xi

xii Power GUI programming with visualAge for c++

About This Book `
This book describes a significant part of Open Class Library. Because we have been part of the
Open Class Library development team since its inception, we are in a unique position to write
about it. This perspective allows us to provide practical and detailed usage information
(including "under the covers" information), to warn against potential pitfalls we have seen
others encounter, an.d to give insight into the design of Open Class Library, including ways you
can extend it and improve the portability of your code. We provide the kind of information
that you might only discover after extensive use of Open Class Library.

We primarily focus on the user-interface classes. In addition to the user-interface classes, we
also describe classes not directly related to user interfaces, but ones that you need in order to
use the user-interface classes. We cover the level of these classes included in IBM VisualAge
for C++ for OS/2, Version 3.0 and IBM VisualAge for C++ for Windows, Version 3.5. We show
how you can use these C++ classes to simplify the development of applications that are
portable between the OS/2 and 32-bit Windows environments.

However, this book does not describe all of the Open Class Library. Specifically, we do not
cover the complex mathematics,I/0 stream, collection, database, 2-D graphics, multimedia, or
Compound Document Framework classes. We also did not write this book as a reference
manual to describe every function of the classes or as a guide for other tools of VisualAge for
C++, such as the Visual Builder. The documentation included with VisualAge for C++
provides this type of information. In addition, if you intend to use the Visual Builder to
construct Open Class Library applications, we recommend that you also read Vz.Sz4¢JAge /or
C+ + Vz.Sz4czJ P7iogrcz77e7„z.#g H¢7®dbook, by Dale Nilsson and Peter Jakab.

Although VisualAge for C++ for Windows supports building Win32s applications, we do not
discuss Win32s issues in this book and have not tested the example programs we provide with
Win32s. Likewise, we do not address the AIX platform, although a subset of the functions
available in VisualAge for C++ are available in the related product, IBM C Set ++ for AIX.

This bock ±s a. rrLaior rev±s±on o£ OS/2 C++ Class Library.. Power GUI Programming with
C Sef + + . We wrote that book with Kevin Leong; Van Nostrand Reinhold originally published
it. We have updated and broadened the scope of this book to include both VisualAge for C++
for OS/2 and VisualAge for C++ for Windows.

Conventions
Terms we define or emphasize appear in z.fcIJz.cS. Code, names of C++ classes and members,
file names, programming key words and C++ reserved words appears in a fixed-space font.
Command names and names of choices on a user interface appear in bold.

We use "you" to refer to you, the reader. We refer to a general user of a computer, or the
person you are writing code for, as a "user."

Some class libraries use "container" to denote classes that hold things, such as lists, sets,
stacks, and queues. Following the convention for VisualAge for C++, we use "collection" for
this purpose and "container" to denote a specialized type of user-interface control. Finally, we

Pro/"ce xiii

use "operating system" or "presentation system" generically to refer to either the Windows or
OS/2 operating system.

Throughout the book, we also sprinkle in secondary topics that you do not need in order to use
the classes but which complement an understanding of Open Class Library. The discussions of
secondary topics appear in side bars. An example of a side bar follows.

Side Bar Topics

Side bars such as this one contain discussions off the beaten path. For example, a side bar
might focus on one of the following topics:

• Useful tips for Gul programming
• Designrationales behind open class Library
• C++ features utilized in open class Library
• Information about windows or os/2 programming to better use open class Library
• Tips for designing an object-oriented c++ class library

The Accompanying Disk
This book includes a CD-ROM that contains an extra chapter, example programs, and a trial
copy of VisualAge for C++ for Windows, Version 3 .5.

We include a Postscript file named extlib.ps for the chapter, "Custom Controls and
Handlers." It is in the powergui directory of the CD-ROM. We published this chapter in the
preceding version of this book; due to space and time constraints we include it on the disk,
basically unaltered from how it originally appeared. We also provide the unaltered example
code for this chapter on the CD-ROM. This chapter describes how you can create your own
window, event, and event handler classes to extend Open Class Library. Although the
discussion is in the context of using C Set ++ for OS/2 (the processor product to VisualAge for
C++), the concepts that it presents are still relevant.

We provide 150 example programs, which appear in or are referenced by the text of this book.
These coding examples range from simple to complex. We include them to help you under-
stand the capabilities of the Open Class Library and to provide working code that you can use
to speed development of your applications. You cannot sell the examples as your own and
cannot add any of the classes we provide to a class library that you sell (see the file
powergui\copyrght for licensing information). Other than those restrictions, we encourage
you to reuse the code in the examples. The file powergui\read.me contains instructions for
running and rebuilding the example programs, as well as a table for locating specific
examples.

All but a few of the examples run on all of the following platforms: OS/2 Warp 3.0, Windows
95, Windows NT 4.0, and Windows NT 3.51. We tested these samples as best we could on these
operating systems.

xiv Power GUI programming with visualAge for c++

To run the example programs on the OS/2 operating system, we require you to install IBM
VisualAge for C++ for OS/2, Version 3.0. Similarly, to run the examples on the Windows
operating system, you must install IBM VisualAge for C++ for Windows, Version 3.5.

For those without the Windows version of the product, we include a trial, or "Try and Buy,"
copy. The trial copy and its associated files are.located in the trialva directory. See
readme. txt for installation instructions and license.agr for licensing information. Run
setup . exe in either the Windows 95 or Windows NT operating system to install the trial copy.
You can use the trial copy for 60 days after you install it.

Parts of this book assume you have applied a Fixpak with corrective fixes for VisualAge for
C++. For example, for some of the example programs to run properly, you must apply the
latest Fixpak for Open Class Library. Additionally, we discuss some features that were added
to VisualAge for C++ for OS/2 in a Fixpak, such as Iviewport : : expandableviewwindow and
Iwindow: :disableMinimumsizecaching. The IBM Corporation makes available fixes for
VisualAge for C++ in a variety of ways.

You can find information for obtaining Fixpaks on the VisualAge ,for C++ home page on the
World wide web: www.software.ibm.com/adv/visualage_c++.

At the time of this writing, some features added to VisualAge for C++ for Windows do not yet
exist in VisualAge for C++ for OS/2. These features include the ICommandconnectionTo
template class, Iwindow: : setHelpld function, and IAcceleratorTable class. Examples that
use these features will not build on the OS/2 operating system until that support is added to
VisualAge for C++ for OS/2. Examples that use other features new to VisualAge for C++, such
as the pmcompatible styles, IC_ID_CLOSE macro, and IBaseErrorlnfo class can be simplified
once those features are added to VisualAge for C++ for OS/2. IBM may add these features in a
Fixpak for VisualAge for C++ for OS/2, which would make writing portable code easier.

One final note: we wrote most of these examples to get a point across as simply as possible.
One simplification is that many of the examples construct windows using temporary, or
"stack," storage in the main routine. Although there is nothing wrong with this technique from

a coding correctness point of view, the code itself is not reusable. We encourage you to design
your own applications with reuse in mind.

About the Authors
Hiroshi Tsuji

Hiroshi works for IBM as part of the Open Class Library development
team in Research Triangle Park. He tries to frequent Yellowstone and
Grand Teton National Parks but finds this is difficult to do from North
Carolina. He enjoys playing volleyball (and probably would enjoy it even
more if he were taller). He hopes to start dabbling with watercolors
whenever work slows down.

Pr efac e xy

Bob Love

Bob works for IBM as part of the Open Class Library development team in
Research Triangle Park, North Carolina. He particularly enjoys his yearly
trip to the high country to ski (it's actually closer to tumbling) black
diamond runs with reckless abandon. That is Bob's daughter Libbi with
him in the picture. As the stepfather of Open Class Library, he relies on
his diverse background in parasitology, auto repair, and large-system
computer repair for designing C++ classes and molding the future of Open
Class Library.

William Law

Bill used to work at IBM developing C++ classes, including some that are
now part of the Open Class Library. He is now the owner and operator of
Solution Frameworks, a software consulting company in Silicon Valley.
Bill continues to search for the right set of C++ and Java objects to make
his job (and yours) easier.

Bruce Olson

Bruce works for IBM as part of the Open Class Library development team
in Research Triangle Park, North Carolina. He is a native of Chicago
where he began his career with IBM. His special interests include
Artificial Intelligence and object-oriented software design. Bruce enjoys
playing softball, reading, and coaching his two sons in various sports.

Although only the preceding names appear on the cover of this book, other members of the
Open Class Library team also helped write this book. We are especially grateful to all the time
and energy they gave. In particular, Jennifer, David, and Michael helped us write, revise, and
review multiple chapters. Without the help of all the following authors, this book would have
taken months longer to finish, assuming that we would have been able to finish it at all.

Jennifer Becker-Fernald

Jennifer works for IBM as part of the Open Class Library development
team in Research Triangle Park. She enjoys fine wines, hiking with her
dogs (Duke and Dutchess), travel, and skiing. Most of all, she likes to
ride and show her horses. Jennifer is currently in search of a cheaper
hobby.

E=

xvi Power GUI programming with visualAge for c++

We would also like

David Bernath

David works for IBM as part of the Open Class Library development team
in Research Triangle Park. After serving a stint as the manager of the
class library team for the initial C Set ++ release, he regained his senses
(with the help of his wife and two kids) and returned to programming.
David enjoys skiing, golf, and soccer. .

Michael Miller

Mike works for IBM as part of the Open Class Library development team
in Research Triangle Park. He is the proud father of two, and he enjoys
golf, ACC basketball, and good novels. When time permits, he likes to get
away to the North Carolina beaches or the Virginia mountains.

Mark Benge

Mark works for Tivoli, an IBM Company, in Research Triangle Park. He
used to be a member of the Open Class Library development team before
his defection. Mark is a regular contributor to various OS/2 publications.
He also gives presentations at conferences and customer sites, as long as
an interpreter is present to translate his Southern colloquialisms.

Judy Oakley

Judy works for IBM as part of the Open Class Library development team
in Research Triangle Park. She spends most of her free time pursuing a
very mobile two-year old named Benjamin. When he's asleep, she
manages to read, write, work out, play the church organ, and maintain a
60-acre farm populated by five dogs, one cat, and uncounted numbers of
wild creatures.

to thank our copy editor (and rewrite artist), who often tried in vain to
teach us the finer (or in some cases, the fundamental) points of the English language.

Delores Hamilton

Delores works for IBM in Research Triangle Park. Until recently she was
the editor for the Open Class Library and Visual Builder development
teams. She temporarily gave up her quilting hobby to spend her free time
reining in our "cowboy" style of writing. Delores can be bribed with
chocolate.

Road Map

We do not intend for you to read each chapter of this book in sequence like a novel. In many
respects, this book is a hybrid of a reference manual and a user's guide with additional infor-
mation such as design motivations. Because most of the classes that we describe in this book
encapsulate the underlying presentation system, we provide introductory material that new
users need to know about GUI programming to facilitate their understanding and use of Open
Class Library. Conversely, experienced Windows or OS/2 programmers might want to relate a
part of Open Class Library back to their understanding of the presentation system. We provide
this information in the book where appropriate.

This mix of information can make it difficult to decide how to use this book. We provide this
road-map information so that you can find information quickly when you are using the book as
a reference. You can also use it to guide you through a more casual reading of the book.

The Structure of This Book
Some of the beginning chapters provide a foundation for the material in the remainder of the
book. Other chapters you can read independently because they are mostly self-contained.
This is especially true for the chapters that describe the various control classes of Open Class
Library.

The following sections categorize the chapters of the book at a high level.

Introductory Chapters
The first three chapters contain introductory material. These chapters describe the flavor of
programming using Open Class Library, graphical user interfaces, and presentation system
concepts used by Open Class Library. You can skip some or all of this material depending on
your background and interests. .

General-Interest Chapters
Some chapters are of general interest to most readers of the book.

• Chapter 4 is highly recommended reading for everyone because it describes the event-
handling architecture of Open Class Library. It also describes the common
characteristics and behavior of all window classes in Open Class Library.

• Chapter 7, which describes the common characteristics and behavior of all control
classes, builds on Chapter 4 because controls are specialized windows.

xvii

xviii Power GUI programming with visualAge for c++

• Chapter 17 describes the event handler classes that you can use with most windows.
This chapter is logically related to Chapter 4, which describes the concept of event
handlers and their key role in Open Class Library.

• Chapter 26 describes the fundamental data types that open class Library provides, most
notably the Istring class. Open Class Library uses these data-type classes in the inter-
faces of many of its other classes, so you should become familiar with them.

Window Class Chapters
Chapters 5, 6, and 8-16 describe window classes or categories of classes such as edit controls.
These chapters are mostly self-contained and can be read independently. You might want to
read some or all of Chapters 1-4 and Chapter 7 before jumping into any of these chapters
depending on your background and current needs. Chapters 13-16 are notable because they
describe the classes that provide much of the value-add to using Open Class Library.

Non-Window Chapters
Cbapters 18, 20-25, and 27 describe classes and components that are not windows. These
classes are also self-contained and can be read independently. However, as is the case with the
window class chapters, you might want to read portions of Chapters 1-4 before reading these
chapters.

Advanced Topic Chapters
Chapters 19, 28, and 29 describe advanced topics that generally are independent of other
chapters. The exception is Chapter 19 which covers advanced topics on frame windows not
covered in Chapter 5. The other chapters cover topics such as performance and, therefore,
only cover Open Class Library classes as they relate to these topics.

Chapter Details
Each chapter begins with road-map information for that chapter. This information describes
how the chapter relates to the other chapters in the book. This section contains the following
information:

• Asummaryofitscontents
• The open class Library classes thatit describes
• Reasons thatyou mightwantto skip the chapter
• Chapters you should read before reading the chapter
• Chapters that contain related information

Use this information to help you navigate through the book to best suit your needs and inter-
ests.

Chapter 1

Getting Started

• Introduces open class Library using two example programs
• Introduces basic window concepts used by open class Library
• Compares programming with open class Library to using windows and os/2 Apls
• You may want to skip this chapter if you are already familiar with open class

Library.

Adding a graphical user interface (GUI) to a program is not a trivial undertaking. For even the
simplest Windows application, you must deal with message queues, message dispatch loops,
and window procedures. For an OS/2 application, you similarly face anchor blocks, message
queues, message dispatch loops, and window procedures when programming to the Presen-
tation Manager presentation system. To develop an application for both platforms, you must
learn where overlap between their Apls exist and how to simulate overlap (if possible) where
they do not. The Apls consist of functions, messages, and window classes.

An alternative to programming directly to system Apls is to use the User Interface Class
Library, which is a part of Open Class Library. Ope# CJczSS fz.brclry is a set of C++ class
libraries shipped with IBM VisualAge for C++. Its user interface classes simplify the
construction of a GUI by organizing presentation system concepts and by hiding complexity
and programming pitfalls. This book tells you how to use this set of C++ classes.

What to Expect from This Chapter
This chapter is for readers new to Open Class Library, and introduces it using a couple of
simple example programs. If you are already familiar with it, proceed to Chapter 3, 4, or to a
later chapter describing a specific topic of interest to you.

For those of you continuing with this chapter, we spend some time relating use of the user
interface classes to programming directly to Windows and OS/2 Apls. For readers with little
or no experience with Windows or OS/2 programming, we weave in some basic presentation
system concepts that Open Class Library uses. For those already well-versed in GUI
programming, we compare programming with Open Class Library to programming directly
with these Apls at the end of this chapter. Now,1et's look at our first example program.

1

2 Power GUI programming with visualAge for c++

Displaying a Simple Window
Virtually everything you see on the screen is a wz.Jcdow, a rectangular area with well-defined
behavior. The Iwindow class of Open Class Library represents windows in general.

Open Class Library provides several classes derived from Iwindow to represent the predefined
window types provided by the Windows and OS/2 operating systems, such as buttons, entry
fields, and list boxes. These window types are commonly known as coJ®froJS. Open Class
Library directly supports these and many other built-in window types. Additionally, you can
extend the Iwindow class hierarchy to support controls of your own.

The Program
The following example illustrates a basic text editor using the IFramewindow and
IMultiLineEdit classes. This example consists of a handful of code, which is displayed in the
window. Figure 1-1 shows the example running with VisualAge for C++ for Windows. The
complete code also appears below.

Simple Example Program - getstart\startl\startl.cpp
#include <iapp.hpp>
#include <iframe.hpp>
#include <imle.hpp>
#include <icconst.h>
void main ()
(

// Create a primary window that contains a read-only MLE.
IFranewindow

primary("Getting Started -Version 1") ;IMultiLineEdit
mle (IC_FRAME_CLIENT_ID, &primary, &primary,

IRectangle () ,
(IMultiLineEdit: : classDefaultstyle

I IMultiLineEdit: :horizontalscroll)
& ~IMultiLineEdit: :wordwrap) ;

primary.setclient(&mle) ;
// Read this source file into the MLE, and position the
// cursor at the top of the file.
mle.importFromFile(_FILE_) ;
mle.setcursorLineposition(0) ;

// Set the input focus, and show the window.
primary . setFocus () ;
primary . show () ;

// Start event processing.
IApplication : : current () . run () ;

)

Because this is a simple example (the editor does not save any changes you make), we place all
of the code in a single routine, main. main is the entry point of the program; it is the function
called by the start-up code that the compiler adds. Although simple, this example still shows
the basic structure needed in an application built with Open Class Library. The example
constructs a primary (or main) window, gives it the input focus, shows it, and processes events
until the user ends the application by closing the primary window.

Cfeapfer I Getting started 3

#include <iaF]

Frane window .
- system menu
- title bar
- in_i_nimize and
maxinrize buttons

- sizing border

Multiline edit
client window

<imle.hpp>
#include <iccon

JJ Create a primary window that contains an MLE.
IFramewindow

primary["GEtting Started -Version 1"];
IMultiLineEdit

mle(lc_FFRAME_CLIENT_lD, EF)rimary, &primary,
IHectanglEfl,
I IMultiLineEdit::cla§§Default§tyle

IMultiLineEdit::horizontal§croll]
& ~IMultiLineEdit::wordwrap);

primary.setclient(&mle I;

Jt Flead this source file into the MLE, and position the
Jt cursor at the top of the file.
mle.imF)ortFromFile(_FILE_];
mle.§etcursorLinepo§ition[0 I;

Jt Set ttie input focus, and show the window.
primary.sBtFocu§0;
f]rimary.§tiowD;

Jr Start event plot:e§§ing.
Idpplication::currento.run|];

Figure 1-1. Sinple Example, Version 1.

The primary window for the application actually consists of several windows, including a
frczrme wz.J®dow and a multiline edit (MLE) control. We use the IFramewindow class to create
and represent the frame window. You can think of a frame window as the frame of a picture,
since a frame window visually surrounds and provides some ornamentation for its client
window. The client window in our example is the MLE. You can also think of a frame window
as the frame of a building, in that it provides the basic structure and support for the rest of the
elements of the window, such as the client window, and the following optional standard
components:

• Systemmenu
• Title bar
• Buttons to minimize and maximize the size of the window
• Sizingborder

4 Power GUI programming with visualAge for c++

The simple way we construct our IFramewindow object, named primary, causes it to use all of
the above default components. These frame components are labeled in Figure 1-1. For the text
of its title bar, the frame uses the Getting Started - Version 1 string that we pass to the
IFramewindow constructor.

The MLE control with its scroll bars occupies the remainder of the frame's interior. It does
this by being used as the frame's client window. The call to the setclient function of
IFramewindow establishes this relationship. Because a frame window routes many messages to
its client window, you can locate most of the application-specific behavior for the entire
window either with the frame window or its client window. Calling the importFromFile
member function of the IMultiLineEdit object, mle, assigns it the source file of the program
for its text. The compiler provides the name of the source file by expanding the _FILE_
macro. When you run this example, ensure the source file can be found in the current direc-
tory.

This is all you have to do to assemble the primary window. However, you still have to make it
visible. To put it on the screen, call the show member function of the primary object.
However, just before you do that, call its setFocus function so that your window has the input
focus when the user sees it. All keystrokes go to the window with the input focus.

Finally, call IApplication: : current () . run () to cause events to be processed by your appli-
cation. This call does not return until the display of the primary window ends, which, for
example, occurs after the user closes the window by selecting Close from the system menu. At
this point, the program has run to completion. We discuss event processing in more detail
shortly.

The Make File
The next example shows the make file. You can build the example program by issuing the
command nmake to build a Windows application or nmake IC_PM=1 to build an OS/2 appli-
cation.

Simple Example Make File - getstart\startl\makefile
CFLAGS = /Ft- /Gd+ /Ge+ /Gin+ /Wall+gnr-ppc-ppt-uni-vf t-
LFLAGS = /PM:PM

!ifdef IC_PM
ODIR= . \os2
! else
ODIR- . \win
endif

ALL : CREATEDIR S (ODIR) \startl.exe

S(ODIR) \startl.exe : S(ODIR)\startl.obj
icc S(CFLAGS) /B`'S(LFLAGS) " /Fes(ODIR)\startl.exe \

S (ODIR) \startl . obj

Cfo¢pfer I Getting started 5

S (ODIR) \startl.obj : startl.cpp
icc S(CFLAGS) /C+ /Fog(ODIR) \startl.obj startl.cpp
copy startl.cpp S (ODIR)

CREATEDIR:
@if not exist S(ODIR)* md S(ODIR)

In the OS/2 operating system, you can add the following line to your CONFIG . SYS file so you do
not need to define IC_PM when you run nmake:

SET IC_PM=1

The prior make file, and all make files on the example disk, create a different directory for
output when you run them in the OS/2 operating system than they do in the Windows operating
system. You must run an example program in its output directory. For example, to run the
"Getting Started" program on the Windows operating system, type startl in the

GETSTART\START1\WIN directory; to run it on the OS/2 operating system, type startl in the
GETSTART\START1\OS2 directory. See the topic "Example Program Make Files" in Chapter 3,
"Tour of Open Class Library," for details on the make file options.

Adding Event Handling
While a user may only see a window in terms of its visual appearance, the implementation of a
window consists of message-processing code. A window paints itself and acts on keystrokes
and mouse input in response to the messages it receives. For example, when a frame window
receives a message that the mouse pointer is over its sizing border, it changes the mouse
pointer to a double arrow. Because a window is defined by the messages it receives and how it
processes them, you can customize a window by changing how it handles specific messages.

The key role of messages stems from the fact that the presentation systems for both the
Windows and OS/2 operating systems are message-driven. All windows communicate through
messages with specific meanings and protocols, including a large set defined by the system.
Some messages are requests for action, and some are notifications that a significant action has
occurred. In both Windows and OS/2 programming, you place the message processing code for
a window in a window procedure. You assign window procedures when registering a window
class or subclassing individual windows.

Open Class Library represents messages as event objects. You process events routed to a
window using event handler objects rather than window procedures. Thus, you can provide
specialized behavior for a window by attaching a specialized event handler to it. Using event
handlers, you can provide specialized processing for the selection of a push button, the
selection of a menu item, or the character data typed by the user. A handler can be attached
to-and thus service-a single window or many windows. You can attach any number of
handlers to a window. Open Class Library provides a variety of handler classes for processing
common events. Chapter 4, "Windows, Handlers, and Events," provides more details on
events and handlers.

6 Power GUI programming with visualAge for c++

The previous example does not provide any special processing in response to user actions. It
calls IApplication: : current () . run () , but this gives neither the frame window nor the MLE
any customized behavior. As we hinted earlier, this function routes messages, which you can
think of as. event objects, to the message processing code of the appropriate window.

If you do not supply specialized event processing, keystrokes and mouse manipulations are
handled in some default manner by the window. In our example, this means the user is limited
to the default actions supported by the underlying operating system frame window (such as
moving, sizing, and closing the window) and edit control (such as scrolling and selecting text).
Next you can see how you can al.low the user to do more by adding an event handler.

Creating a New Window Class
Before we describe the event handler we use, we will first isolate our existing windows into a
C++ class. A class allows us to encapsulate our assemblage of windows into a single object.
One benefit from this is that you create a reusable object. Then, if you need to display the
same set of windows again, you only need to create a new object of this window class; you do
not have to duplicate the code to construct and set up the individual windows. Another benefit
is that you have the ability to control how a programmer using the class can manipulate the
windows by controlling what functions appear in the public interface of the class. You can also
build application-specific behavior into a window class by adding application-specific event
handlers as part of the class.

Following is the class declaration and code for our window class, Codewindow. The main
differences from the previous example are the addition of a menu bar; the addition of functions
to allow cutting, copying, and pasting of tbe MLE's text to and from the system clipboard; and
the addition of a command handler of the class CutcopypasteHandler.

We add a menu bar to the frame window via the style IFramewindow: :menuBar in the
Codewindow constructor. This style causes the frame window to create the menu bar by loading
its definition from a resource file. The next topic in this chapter contains the definition of the
menu. Next, we demonstrate how to use a command handler to tie together the menu bar and
the functions we added to Codewindow for cutting, copying, and pasting text.

Simple Code Window Interface - getstart\start2\start2w.hpp
#include <iframe.hpp>
#include <imle.hpp>
#include `'start2ch.hpp" // For CutcopypasteHandler.
class Codewindow : public IFramewindow {
public:

Codewindow (const char* title) ;
virtual Boolean

cut
Copy
paste

private :
// Disallow copy and assignment.

Codewindow (const Codewindow&) ;
Codewindow

&operator= (const Codewindow&) ;

Cfe¢pfer I Getting started 7

IMultiLineEdi t .
mle;

CutcopypasteHandler
cmdHandl er ;

}; // Codewindow

Simple Code Window Implementation - getstart\start2\start2w.cpp
#include <icconst.h>
#include "start2w.hpp"
#include `'start2.h"
Codewindow: :Codewindow (const char* title)

: IFramewindow (title,
ID_CODEWINDOW,
IFramewindow : : classDefaultstyle

I IFramewindow: :menuBar) ,
mle (IC_FRAME_CLIENT_ID, this, this,

IRectangle () ,
(IMultiLineEdit: : classDefaultstyle

I IMultiLineEdit: :horizontalscroll)
& ~IMultiLineEdit: :wordwrap) ,

cmdHandler ()
(

// Make the ELE the client window.
this->setclient(&mle) ;

// Read this source file into the ELE, and position the
// cursor at the top of the file.
mle. importFromFile(_FILE_) ;
mle.setcursorLineposition(0) ;

// Attach the command handler that will process
// selections from the menu bar,
cmdllandler.handleEventsFor (this) ;

)

IBase: :Boolean Codewindow: :cut ()
(

Boolean didcut = false;
if (mle.hasselectedText())
{ // Cut selected text from the ELE to the

// system clipboard.
mle . cut () ;
didcut = true;

)return didcut;
)

IBase: :Boolean Codewindow: :copy ()
(

Boolean didcopy = false;
if (mle.hasselectedText())
{ // Copy selected text from the ELE to the

// system clipboard.
mle . copy () ;
didcopy = true;

)
return didcopy;

)

8 Power GUI programming with visualAge for c++

IBase: :Boolean Codewindow: :paste ()
(

Boolean didpaste = false;
if (mle.clipboardHasTextFormat())
{ // Paste text from the clipboard to the ELE.

mle .paste () ;
didpaste = true;

)
return didpaste;

)

Here is how main looks now:

Version 2 Main Routine - getstart\start2\start2.cpp
#include <iapp.hpp>
#include `'start2w.hpp"
void main ()
(

// Create a primary window that contains an ELE.
Codewindow

primary("Getting Started -Version 2") ;
// Set the input focus, and show the window.
primary

. setFocus ()

. show () ;

// Start event processing.
IApplication : : current () . run () ;

)

The Menu Bar
We define the menu bar in a resource file that is separate from our program code. Our menu
bar consists of a File choice that displays a pull-down menu with a Close choice, and an Edit
choice that displays a pull-down menu with choices for Cut, Copy, and Paste. Figure 1-2
shows the window running with VisualAge for C++ for OS/2. The user has selected part of the
text and displayed the Edit pull-down menu.

If the user selects Close from the File menu, tbe menu choice runs a command to end the
display of the window, just as if the user pressed Alt+F4 or selected Close from the system
menu. We rely on the processing provided by Open Class Library and the operating system for
handling this command. If the user selects Cut, Copy, or Paste, the selected menu item
generates a command event our program must handle. We will. have these menu items run the
cut, copy, and paste member functions we added to our Codewindow class. We cover the
details of doing this in the next topic.

The resource file containing the menu bar definition follows, along with the include file that
defines the constants shared between the resource file and our code. Note that the resource file
defines the menu in the different formats required by the resource compilers used in the
Windows and OS/2 environments.

Cfeapfe7. I Getting started 9

Figure 1-2. Simple Example, Version 2.

Resource Definitions - getstart\start2\start2.rc
#include "start2.h"
#ifdef IC_PM /* OS/2 resources */

#define INCL_WINFRAIffiMGR // For SC_CLOSE.
#define INCL_WINIffiNUS / / For MIS_SYScorm¢AND.
#include <os2.h>

10 Power GUI programming with visualAge for c++

MENU ID_CODEWINDOW
BEGIN

SUBnmNU `'~File" ,
BEGIN

MENUITEM "Close" ,
Ere

SUBMENU `'~Edit" ,
BEGIN

MENUITEM `'Cu~t" ,
MENUITEM "~Copy" ,
MENUITEM "~Paste" ,

END
END

#else /* Windows resources */
ID_CODEWINDOW MENUEX

BEGIN
POPUP „&File„,

BEGIN
MENUITEM "Close" ,

END
POPUP „&Edit„'

BEGIN
MENUITEM `'Cu&t'' ,
MENUITEM "&Copy" ,
MENUITEM "&Paste" ,

END
END

#endif

ID_FILE

sc_cLosE , Mls_syscoDn¢AND

ID_EDIT

CMD_CUT
CMD_COPY
CMD_PASTE

ID_FILE

SC_CLOSE

ID_EDIT

cro_CUT
CMD_COPY
CMD_PASTE

Resource Constants - getstart\start2\start2.h
// Window identifiers.
#define ID_CODEWINDOW 1000

// Command identifiers.
#define Crm_CUT 2001
#define CMD_COPY 2002
#define CMD_PASTE 2003

// Other menu-bar related identifiers.
#define ID_FILE 1001
#define ID_EDIT 1002

Creating a Command Handler
Command events are standard events that you need to process in your application. Typically, a
user generates a command event by selecting a menu item or push button. When programming
with Open Class Library, you place your processing of command events in command handlers,
classes you derive from the ICommandHandler class.

In our example, we process command events that result from the user selecting the Cut, Copy,
or Paste menu choices. We write our command handler in such a way that it calls the cut,
copy, and paste functions we added to the Codewindow class.

The CutcopypasteHandler class is our command handler. To process application-specific
commands (as opposed to system commands, such as the one the Close choice runs), the only
virtual function we must override is ICommandHandler: : command. This is shown in the class
declaration that follows.

Cfeapfer I Getting started 11

Command Handler Interface - getstart\start2\start2ch.hpp
#include <icmdhdr. hpp>

class CutcopypasteHandler : public ICommandHandler {
protected:virtual Boolean

command (ICommandEvent& event) ;
} ; // CutcopypasteHandler

Open Class Library calls our command virtual function to process all command events that
reach the frame window that the command handler is attached to. The
IEvent: :dispatchingwindow member function returns this window. We use the
ICommandEvent : : commandld function to identify the command we are currently processing.

Command Handler Implementation - getstart\start2\start2ch.cpp
#include "start2ch.hpp"
#include `'start2w.hpp"
#include `'start2.h"
IBase : : Boolean

CutcopypasteHandler: : command (IColrmandEvent& event)
(

Boolean stopprocessingEvent = false;
Codewindow* codewindow =

(Codewindow*) event . dispatchingwindow () ;
switch (event.commandld())
(

case CMD_CUT:
codewindow->cut () ;
stopprocessingEvent = true;
break;

case CMD_COPY:
codewindow->copy () ;
stopprocessingEvent = true;
breakj

case CID_PASTE :
codewindow->paste () ;
stopprocessingEvent = true;
break;

default:
break;

)
return stopprocessingEvent;

)

Open Class Library also provides event handler classes that let you process events other than
command events. As a result, you can make the Codewindow class sensitive to the size of the
frame window, to specific keystrokes or mouse clicks, or to changes to the text of the MLE.
We discuss these other event handler classes (IResizeHandler, IKeyboardHandler,
IMouseHandler, IEditHandler, and others) in later chapters.

The Make File
The following is the make file we use to build this example. It is like the make file for the first
example, but it compiles and links three source files instead of one and builds the resource file
containing the menu bar into the program. Because the procedure for building Windows and

12 Power GUI programming with visualAge for c++

OS/2 resource files differs, the make file contains platform-specific rules. To build the
program, you again issue the command nmake or nmake IC_PM=1.

Version 2 Make File - getstart\start2\makefile
CFLAGS = /Ft- /Gd+ /Ge+ /Gin+ /Wall+gnr-ppc-ppt-uni-vf t-
LFLAGS = /PM:PM

!ifdef IC_PM
ODIR= . \os2
0RES=S (ODIR) \start2 . res
RC=rc. exe -DIG_PM
! else
ODIR= . \win
ORES=
RC=irc . exe -Fog (ODIR) \start2 . res
! endi f

ALL : CREATEDIR S (ODIR) \start2.exe

S(ODIR)\start2.exe : S(ODIR)\start2.obj S(ODIR)\start2w.obj \
S (ODIR) \start2ch.obj S (ODIR) \start2 .res

!ifdef IC_PM
icc S(CFLAGS) /B"S(LFLAGS)" /Fes(ODIR)\start2.exe \

S (ODIR) \start2.obj S (ODIR) \start2w.obj \
S (ODIR) \start2ch. obj

S(RC) S(ODIR)\start2.res S(ODIR)\start2.exe

icc S(CFLAGS) /B''S(LFLAGS) " /Fes(ODIR)\start2.exe \
S(ODIR)\start2.obj S(ODIR) \start2w.obj \
S (ODIR) \start2ch.obj S (ODIR) \start2 .res

! endi f

S (ODIR) \start2.obj : start2.cpp start2w.hpp
icc S(CFLAGS) /C+ /Fog(ODIR) \start2.obj start2.cpp

S (ODIR) \start2ch.obj : start2ch.cpp start2w.hpp start2.h
icc S (CFLAGS) /C+ /Fog (ODIR) \start2ch.ob]. start2ch.cpp

S (ODIR) \start2w.obj : start2w.cpp start2w.hpp start2ch.hpp \start2 . h
icc S(CFLAGS) /C+ /FoS(ODIR) \start2w.obj start2w.cpp
copy start2w.cpp S (ODIR)

S(ODIR) \start2.res: start2.rc start2.h
S(RC) -r start2.rc S(ORES)

CREATEDIR:
@if not exist S(ODIR)* md S(ODIR)

Programming without Open Class Library
Now, we need to take a step back and analyze our examples from the perspective of
programming directly to Windows and OS/2 Apls. If you have programmed with either, you
probably have noticed a large stylistic difference between the programs you have been writing
and our example programs. For example, our code does not include WINDOWS.H, which is
needed by traditional Windows programs. Likewise, our code (with the exception of the
resource file) does not include OS2 .H, OS2DEF.H, PMWIN.H, or any other files from the Devel-
oper's Toolkit for OS/2. We can avoid including these files because our examples do not call
any Windows or OS/2 Apls.

Cfe¢pfer I Getting started 13

So, where are the calls to the basic Windows Apls such as GetMessage,
TranslateAccelerator, TranslateMessage, DispatchMessage, and CreatewindowEx? And,
where are the calls to the corresponding set of OS/2 Apls (Winlnitialize,
WincreateMsgQueue, WinGetMsg, WinDispatchMsg, Wincreatewindow, WinDestroyMsgQueue,
and WinTerminate)? The answer is that Open Class Library calls these functions for you. Only
the message dispatch loop (GetMessage/DispatchMessage and WinGetMsg/WinDispatchMsg)
remotely surfaces in the form of a call to IApplication: :current() .run(). As for the
WinMain function that Windows programmers are accustomed to, VisualAge for C++ uses main
instead.

In case you have been wondering, essentially no difference exists between a standard control,
such as an MLE created with CreatewindowEx or Wincreatewindow, and one created by an
IMultiLineEdit object. Both are windows of the same operating system window class (Edit
or WC_MLE, depending on the underlying platform) that supports the same basic set of messages.

While the windows on the screen are the same, Open Class Library simplifies the way you code
to those windows by giving you a C++ interface. For example, you can call the sizeTo
function of an IMultiLineEdit object to change the size of the MLE (rather than calling the
Windows Setwindowpos API without the SWP_NOMOVE flag, or the OS/2 Winsetwindowpos API
with the SWP_SIZE flag set in an SWP structure). Also, you can call the iswritable function of
the IMultiLineEdit object to find whether the control allows user input (rather than checking
if it has the Windows MLS_READONLY style or sending it the OS/2 ELM_QUERYREADONLY message).
Best of all, you can modify the message processing of a window simply by using event
handlers and their related event classes. You do this instead of providing an application-
specific window procedure to the Windows Apls SetwindowLong and Registerclass or to the
OS/2 Apls Winsubclasswindow and WinRegisterclass. Often these window procedures
degenerate into overly long switch statements.

Notice that the ICommandEvent object we process in our command function hides the actual
operating system message we are processing, in this case, WM_COMMAND. The ICommandEvent
class provides member functions that allow you to access information from the WM_COMMAND
message without having to be aware of its underlying structure.

One last note: if you are a programmer who is used to the flexibility that the Windows or OS/2
Apls give, Open Class Library allows you full accessibility to the underlying system infor-
mation that you are accustomed to working with. For example, you can access the HWND for a
window from the Iwindow: :handle function and message identifiers and parameters through
the e.ventld, parameterl, and parameter2 member functions of IEvent. If you are an OS/2
programmer, you can even get a IIAB from the ICurrentThread member function anchorBlock.
As a result, you can mix code that uses system Apls with code that uses Open Class Library.

However, once you begin accessing the underlying system information, your code is no longer
portable. To help you in this case, Open Class Library provides macros that allow you to
conditionally compile platform-specific code. For example, it defines the macro IC_WIN or
IC_PM, depending on whether you are compiling a Windows or OS/2 application. As a result,
you can write code that looks like the following and still run it on both operating systems.

14 Power GUI programming with visualAge for c++

Using Platform-Specific Code - getstart\nonport\nonport.cpp
#include <ibase.hpp> // For IC_WIN or IC_PM.

#ifdef IC_PM
#def ine INCL_WINDIALOGS
#include <os2.h>
#else
#include <windows.h>
#endif
#include <imsgbox.hpp>
#include <istring.hpp>
#include <iwindow.hpp>

void main ()
(

// Call a platform-specific API and display a
// platform-specific message.

#ifdef IC_PM
WinAlarm(Iwindow: :desktopwindow() ->handle () , WA_NOTE) ;
Istring

msg("This is an OS/2 application.");
#else

Beep(100' 100);
Istring

msg("This is a Windows application.") ;
#endif

IMessageBox
msgBOx(0);

msgBOx
.setTitle("Which Platform?")
.show(msg,

IMessageBox : : informationlcon
I IMessageBox: :okButton
I IMessageBox: :moveable) ;

}

Chapter 2

Obj ect-Oriented User Interface
Fundamentals

• Explains the importance of graphical user interfaces to applications
• Presents the key user interface elements used by operating systems
• Introduces terminology used throughout the book
• Skip this chapter if you are familiar with graphical user interfaces.

An object-oriented, graphical user interface (GUI) is a visual metaphor of a real-world
scenario, often a desktop. Within that scene are icons, representing actual objects, that you
can access and manipulate with a pointing device. Both the Microsoft and IBM Corporations
use this desktop analogy in their operating systems to provide ease-of-use and some consis-
tency among applications. You expect to see consistency between applications and, thus, look
for these common desktop elements. Both companies also publish guidelines to define and
drive the standards for developing Guls in today's applications. Whereas the Windows and
OS/2 operating systems have different presentation layers and desktops, they share some
common elements that applications also use. Because your users typically interact with the
user interface first when they use your applications, you want to carefully design and
implement it. A modern interface that offers tool bars, fly-over help, graphics, and advanced
controls that appear on the desktop gains a competitive advantage over otherwise equivalent
applications.

General Interface Guidelines
The des'kfap is the graphical user interface for both the Windows and OS/2 operating systems.
As an object-oriented user interface, it displays objects-primarily data objects-on the
screen. You perform actions on those objects, and the desktop can hide the fact that an action
may result in the running of an application.

Both operating systems base their desktops on their guidelines for user interface design. The
guidelines focus on the following key objectives:

• Focusonobjects.
• Exploit knowledge transference.
• Leavetheuserincontrol.

15

16 Power GUI programming with visualAge for c++

These three objectives prevent your users from being impeded as they use your application's
user interface.

Focusing on Objects
Objects are represented graphically (pictorially) as icons to assist you in associating a screen
object with a corresponding real-world object. These icons let you manipulate objects on the
screen, much as you would manipulate real-world objects. For instance, you can use a pointing
device, usually a mouse, to touch and "feel" objects. This ability makes the objects more
concrete.

Figure 2-1 shows the icon representation of several objects on the OS/2 desktop. The most
fundamental object is the desktop window, which represents the entire screen and holds all
other objects. At the most basic level, these other objects are co7®fc}z.7}er oby.ecfS, dcz£¢ oky.ec fs,
a;nd device objects.

Container objects hold other objects that typically are related to one another. Examples of
containers are folders and the desktop window.

Data objects, such as files, documents, and charts, are the objects that users create and work
with.

Folder Speciafized folders Folders
\ I I \ / I

\ffi if `RE i
TEmplHtes T inkpEitlFeature§ lnfermE±` n ENltrco§+Z

E E¥ RE
Vi€uEllAEEC++ L0tusApplicatiqn§ higtwt]rk

HRE ffi E ffi rfu
S[hemEtalettE iD¥:,rp IBthqo={plu5;vgL §hrE/dder

\ , \ ,, /
Data obj ects Devices Desktop window

Figure 2-1. Icon Representation of Desktop Objects.

Cfeapfer 2 Object-Oriented user Interface Fundamentals 17

Device objects usually correspond to peripberal devices attached to your computer such as a
printer or a disk drive. Logical devices, such as the OS/2 shredder, Windows recycling bin,
sound mixer, or CD player, work without a corresponding physical object connected to your
computer.

Using this model, you can concentrate on objects and the actions that apply to them. These
actions include opening a document, selecting a choice for an object, or dragging and dropping
an object. When interacting with objects, you end up running applications but your focus is on
objects, not on applications and tools.

Figure 2-2 shows the objects on the Windows desktop. In addition, the open folders demon-
strate different container views.

Jane Edit idiew Help

E ffl§ EH
Browser Comma.. Data

Session Access

ffi RE Bffier
Perfom... Program Read..
Anatryer Editor

EEEg
Debugger Guldeto

Samples

EH ffl
Resource Vlsual
Workshop Builder

ffl RE
ln§tallat]... Online

Ublides lnformat)...

ffi E@
Welcome Worfd:r..

to IDE
V'.sua'A...
for C++

Figure 2-2. Icon Representation of Windows Objects.

Applying Learned Knowledge
A well-designed user interface minimizes the amount of information new users must learn to
be productive. One way you can minimize users' learning and memory loads is to take
advantage of information they already know. This is the principle of k#owJedge frcz#S/e7ie7cce.

18 Power GUI programming with visualAge for c++

You and your users benefit if they can quickly become productive, simply by applying their
learned knowledge to the way they use your application.

You can leverage knowledge transference by basing your user interface on mental models that
the user is already familiar with. There are two ways to do this; apply real-world knowledge
and be consistent.

First,let the user apply real-world knowledge to objects on the screen. You can encourage this
by building your user interface around a familiar analogy, modeling application objects after
tangible objects the user already knows. Users are less likely to be intimidated by or to forget
familiar objects.

The analogy (or metaphor) for both the Windows and OS/2 desktops is a traditional business
office. The screen represents a desktop where you can find folders, printers, a shredder or
recycling bin, documents, and other data objects. You can act on these objects in much the
same way you would work with the corresponding real-world objects. For example, you can
print a document by dragging it to a printer icon.

Second, use knowledge transference by designing consistent interfaces in your applications.
By using a recognized interface standard, such as the Common User Access (CUA) guidelines
or the Windows Guidelines for Designing Interfaces, you reduce the amount of application-
specific behavior your users encounter and have to remember. For your applications, you need
to provide common navigation behavior for moving between windows or controls and common
printing and deleting behaviors (drag and drop). These common behaviors, which are outlined
by interface guidelines, are easier to learn and to remember because every conforming appli-
cation reinforces the behavior. The desktop models a basic look and feel users expect in all
applications. A single user interface also avoids the inevitable productivity loss when you
have to stop to remember or recover from behaviors specific to a single application.

Leaving the User in Control
As a user, you want to be able to control the computer instead of being controlled by it.
Specifically, you want to be free to complete tasks in the order you want, control the size and
position of all windows, and change the font and color used by a window. You rightfully
expect an application to show the status of lengthy operations, provide you the option of
cancelling these operations, and allow you to correct errors.

This principle of leaving the user in control is important because few application developers
can anticipate all of the ways that users might want to use an application or the restrictions that
their customers may be working under.

Look and Feel of the Desktop
The following topics introduce the key user interface elements of the user interface. Included
are the most important visual components (the container and notebook controls) and inter-
action techniques (pop-up menus and direct manipulation). In Chapter 3, "Tour of Open Class
Library," you learn how to use the library to write an application with this look and feel.

Cfoapfer 2 Object-Oriented user Interface Fundamentals 19

Windows and Views
To allow users to interact with an object, your application must display a window. For
example, you might use a window to describe an object more fully than you can with an icon.
An application can build complex windows by populating them with visible building blocks,
called co#£roJs. These may be entry fields, simple text, or buttons.

For objects with default actions, the user double-clicks the object to execute that action. If the
default action is to open the object, for example, the resulting window displays details of the
object, which are called a 1;I.ew of the object.

A view is an object's user interface. It allows the user to see and change information or
properties of the object. If an object has several ways to depict information about itself, then
that object can support more than one kind of view.

Windows and OS/2 desktop folders support icon, tree, and details views. See the "Containers"
topic in this chapter for more information. Most objects on the desktop window also allow you
to open a properties, or settings, view. See the "Notebooks" topic in this chapter for more
information.

Figure 2-3. Example Windows.

20 Power GUI programming with visualAge for c++

A window can also display information other than an object view. For example, use windows
to display messages and help information and to collect parameters for starting an action, as
shown in Figure 2-3 .

Not to be confused with the use of a window is the concept of wz.#dow reJczfz.o7®sifez.pS. You can
define a window independent of another window, such as a prz.7#c!ry wz.73dow, or in relationship
to another window, such as a Seco7®dczry wz.7idow. Which windows you choose to make primary
and which to make secondary depends on the context of the window-whether it is related to
an existing window. Designers must be concerned about this concept more than users of those
interfaces.

Use a primary window to display information that is independent of the information contained
in other windows. For example, if your user opens an icon on the desktop, show a primary
window. What a user does with those other windows does not affect the primary window.

Use a secondary window to further expand on information contained in a primary window. For
example, you can show a secondary window when users open objects contained by a primary
window, or you can prompt them for information about the objects. A secondary window
cannot exist without its primary window, and it always appears on top of the primary window.

Some windows, like those displaying an object view, can be either a primary or secondary
window. Others,like windows showing action choices, are always secondary windows.

Ei[g Eriit #igur Help
EEL EE RE A fiiE riiiE!

Eilg ftlit #igvy HElp
ffi lBM Vi5ualAge for

1* fibj#gt

htlSdifie#
In§tallati on uti liti . . .

Online lnformati ...
Performance A...
Program Editor
Fteadme
FIe§ource work. . .
Visual Builder
Welcome [o Vi5...

1KB Shcir[cut
lKB §hor[cut
lKB Shortcut
lKB Shortcut
lKB Shor[cu[
1KB Shortcut
lKB Shortcut
lKB Shortcut

6/20/96 9:28
6/14/96 8:55
6/20/96 9:28
6/14/96 8:55
6/14/96 8:55
6/14/96 8:55
6/20/96 a:29
6/20/96 a:30

4.9Zt(a

Figure 2-4. Opened Folders.

Cfea!pfer 2 Object-Oriented user Interface Fundamentals 21

Containers
Figure 2-4 shows the windows that result from opening the VisualAge for C++ product folder.
Both windows show different views of the same folder: icon and details.

A container holds objects and can display its objects in different views. An OS/2 container
supports the following views: tree, icon, text, name, and details. The Windows container is
composed of the list view and tree view control, which are native to the Windows environment.

Use the container control to implement a folder. Because the desktop prominently displays
folders and other container objects, applications that want the same look and feel as the
operating system use the container control frequently. Figure 2-5 shows the OS/2 System
folder in a details, icon, and tree view.

Details view Icon view Tree view

Multimedia FF§T/2 0S/2Warp connect Games §tartup Productivity Svstem set

F\eal name

DOS Programs

OS/2 Programs

Windows Programs

WIN-0§/2 Grc]ups

Multimedia

FF§T/2
0S/2 Warp Connect
Install/Remove
System Setup
Games

DOS_PFloG

OS!2_PFio

WINDOW§_

WIN-0§12

MULTIMED

FF§T!2

0§12_WAFi

§Y§TEM_§
GAMES

p §hredde

|v|inimized
Window V

Drives

Command

Figure 2-5. Container Views.

Notebooks
Figure 2-6 shows a primary window, containing the settings or properties view for a VisualAge
for C++ WorkFrame Project object. Use a settings view to display the properties of a data or
device object for users to modify. The Windows and OS/2 desktops use settings views to
display configuration information for all of their objects.

22 Power GUI programming with visualAge for c++

Sour¢edirecforiesforproieStfjte§:
I:`lBMCPPW`Work,pring\UICLPRJ, ,_ dr¥

Wqckingwtlirectorys
I `lBMCppthwork ng`U I CLPRJ ffl

-

Figure 2-6. Settings View.

Typically, a notebook is used to display a settings view. The 7®ofebook co7®froJ organizes a
large amount of information by displaying windows as pages of information, which users can
page through much like a real-world notebook. The settings view (and consequently the
notebook control) is another key element of an application that copies the look and feel of the
desktop.

Other Components of a Window
Windows can be composed of controls other than containers and notebooks. Figure 2-7 shows
both a primary and secondary window provided by the VisualAge for C++ Debugger. Both
windows include some of the standard components of a frame window, such as a system menu,
window title (title bar), and sizing border. The primary window of this application uses a
container control. The secondary window is composed of several controls, including an entry
field, push buttons, and field prompts.

This application also addsJzy-over (or fool;er) help, an information area, and multiple tool bars.
These additional features are common in current Guls and are beyond what is normally found
on the desktop. Fly-over help displays short help windows that identify the object that the
mouse pointer is positioned over. As users move their mouse pointers over various objects,
different help windows are displayed. You can also display descriptive text for the object in a
text control, such as the information area at the bottom of the window. A tool bar is a window
with buttons that represent tools or menu items and actions. You can position the tool bar
along the top, bottom, or sides of a frame window, or you can float it, positioning it anywhere
on your desktop. You can also have multiple tool bars with a variety of tool bar buttons using
text, bitmaps, or both. Look back at F.igure 2-4 and notice that the details view container
utilizes a tool bar with fly-over help for the tool bar. The tool bar is located beneath the menu.

Cfe¢pfe7. 2 Object-Oriented user Interface Fundamentals 23

Figure 2-7. Components of a Window.

The fly-over help text, "Go to a different folder," is displayed when the mouse pointer is
positioned over the drop-down combination box on the tool bar.

Interacting with the Desktop
Just as you can build a window in a variety of ways, you can also use several interaction
techniques to control how users perform various actions. For the Windows and OS/2 desktops,
users apply direct actions on objects by using drag and drop and pop-up menus.

24 Power GUI programming with visualAge for c++

Drag and drop is an example of a direct manipulation technique in which users use a mouse to
directly alter an object. A pop-up menu offers a lesser degree of direct manipulation, but still
more than a menu bar or push button that is physically separated from the object.

Drag and Drop
As with other direct manipulation techniques, drag and drop enables you to interact with
objects on the desktop as touchable, real-world objects. It also lets you bypass intermediate
steps and windows that would otherwise be necessary to perform an action.

A common use for drag and drop is to transfer data from an object (the source object) by
selecting it, dragging it to another object (the target object), and releasing it there. You can
also use drag and drop to move an object from one folder to another. Devices also respond to
drag and drop; so, you can print a document by dropping it on a printer object or delete it by
dropping it on a shredder object. To achieve the look and feel of the desktop, support drag and
drop within your application.

Pop-Up Menus
Each object maintained by the Windows and OS/2 desktop provides a pop-up menu with
actions that the object supports. A pop-up menu is not displayed until a user requests it by
pressing mouse button 2 while the pointer is over that object. When displayed, the pop-up
menu appears near the object and only contains choices valid for the object in its current
context.

To achieve the same look and feel in your applications, provide a pop-up menu for each object
in your user interface. Users can then apply an action to any object without having to access a
menu bar. Figure 2-8 shows an example of a pop-up menu.

±e lp ffi
Create a±qther RE
fopB'.'
fi#¥e-I
#reate §hact¢H*„A
±eLetff.1.
Pj¢kup
Find„.
-- -I '

Share
__-:

¥istlalAge C++

Figure 2-8. Pop-up Menu.

Chapter 3

Tour of Open Class Library

Uses an example to show you how to build a graphical user interface using many of
the components of Open Class Library
Introduces other components of Open Class Library not used in the example
Read Chapter 1 first if you are new to Open Class Library.
Read Chapter 2 first if you are unfamiliar with graphical user interfaces.
Skip this chapter if you have previously written code utilizing a wide range of the
classes that Open Class Library provides.

This chapter' s example application introduces the major components of Open Class Library. It
uses many of the user-interface elements described in Chapter 2, "Object-Oriented User
Interface Fundamentals," to show how different pieces of Open Class Library factor into
different stages of application development.

First, we describe the application data objects that we need in our example. We then define
views for those objects and build the code to display those views. In the process of doing this,
we translate the major user window elements that the Windows and OS/2 desktops use into
their corresponding components in Open Class Library. Next, we include the event handling
code needed to process user actions. Then, we describe the user-interface classes not used in
the example. Finally, we describe the classes in Open Class Library that address application
issues beyond the user interface.

After you read this chapter, you will have a feel for the functionality that Open Class Library
provides and for its programming style. You will also have learned that Open Class Library is
comprised of a set of/rczfflewo7.ks, which can save you significant time and effort in developing
applications with robust, object-oriented, graphical user interfaces. A framework is a group of
interrelated classes that are designed to solve a set of related problems. Frameworks reduce
the amount of design and code you need to create and they allow you to focus on the unique
aspects of your applications.

About the Example
The example in this chapter helps to describe Open Class Library and it provides a context for
its use. But first, a disclaimer: our intent is not to use the example to teach either application
design or class design.

25

26 Power GUI programming with visualAge for c++

For the example, we use a shopping list program which lets you create a list of things to buy.
By keeping this example simple, we can focus on the basic concepts behind using the library.
In some cases, we omit nonuser-interface code that would be essential for a real application.
The code for the example, written as C++ classes, builds around the classes in Open Class
Library. Portions of the code are shown throughout this chapter. You can find the complete
example on the example program disk. Table 3-1 shows where you can find this example after
you install the disk.

Table 3-1. Example Program Components

Component Example Location
Main routine 1atour\shopping\shopping.cpp

Purchaseltem class declaration latour\shopping\puritem.hpp

Purchaseltem class implementation 1atour\shopping\puritem.cpp

Purchaseltemview and nested class declarations latour\shopping\puritemv.hpp

Purchaseltemview and nested class implementations latour\shopping\puritemv.cpp

Resource file latour\shopping\shopping.rc

Window and resource identifiers latour\shopping\shopping.h

Make file 1atour\shopping\makefile

Initial Tasks
Before you can start developing a user interface, you need to define the task. This means
understanding the requirements of your customers so that you can design a user interface to
help them perform their jobs.

This chapter presents developing code as a process of continual refinement. This process
includes the design of user-interface objects and classes. A critical piece in developing the
right solution is validating it with your customers, which we omitted because we have only
hypothetical customers here.

Understanding the Problem
Suppose, in a series of lengthy conversations, you learn that your customers are experiencing
many shopping-related woes as follows:

• Required items are not being purchased.
• Expenses are excessive because of unnecessary purchases.
• Items that need to be purchased are not documented, causing a loss of time, both in not

buying them at the stores while there and in having to make extra trips back to those
stores.

Cfo¢pfer 3 Tour of open class Library 27

The customers are looking for an easy way to generate a shopping list. While they like the
concept of a traditional hand-generated list, they insist that it does not do the job. It is difficult
to maintain, does not encourage the proper amount of detail, and relies on an archaic
technology. When pressed, the customers admit that others find their handwriting illegible.
As a result, they are not satisfied with hand-generated shopping lists. They want a
computer-age solution, one they can use on their personal computers at home. They also want
the application to include typical items that they want to purchase. And, most importantly, the
application must be easy enough for their young children to use it.

Defining the Objects
Once you understand the customers' problems and requirements, restate them in terms of
objects. The first task is to identify the real-world objects with which the users work. If you
cannot find reasonable objects, find real-world analogies for the tasks the users perform. The
second task is to create corresponding objects in your user interface for these real-world
Objects.

The objects you choose are critical to the effectiveness of your user interface. To ensure that
the objects work, your users must be able to easily correlate their mental models (of the
problem domain) to your objects. For multiple users, you must select objects that all users can
relate to, not always an easy task. Additionally, your choice of objects influences the actions
you make available to your users, and it ultimately dictates how your users go about
performing tasks. Thus, your ability to identify and depict readily identifiable objects is
critical to your user interface.

Because, in this case, your customers are comfortable with a traditional shopping list, you can
base your user-interface objects on that real-world object. So, design a shopping list object
containing items your users want to purchase. Treat the items contained in the shopping list as
objects, too. Each item to be purchased must have two attributes, a name and a quantity.
Additionally, each one could have a preferred manufacturer, estimated price, and other
relevant information. Each detail is an attribute, or data member, of an item to be bought.
These attributes need not be treated as user-interface objects.

Defining the Actions
Next, you define the actions that each object supports. To do that, decide how the users
interact with the objects and how the objects work together. This task focuses on answering
questions such as the following ones:

• Whathappens whenusers open the object?
• How dousers changethe object?
• What other actions can users perform on the object?

In our example, opening a shopping list reveals a collection of items that need to be purchased.
Users must be able to sort, save, print, and delete the shopping list. In turn, opening an item
displays a window showing details about the item. In this window users can view and change
attributes of the item. Users also must be able to create and delete items.

28 Power GUI programming with visualAge for c++

Consider various types of shopping lists, too. For example, one characteristic of grocery
shopping is that people often need to buy the same things weekly. To make such a list easy to
create, users need the application to keep a set of items that they can easily add to their grocery
shopping lists when needed. In our example, we add a second list to hold these items. Because
this list is not needed for every shopping list, we call it a "not-needed" list. Users will then be
able to add these items to their shopping lists by moving them from `the not-needed list to the
shopping list, and they will be able to delete them again by moving the second list back into
the not-needed list. Users can transfer items by using the tool bar, or by dragging and dropping
the icons that represent the items between the two lists. When you select representational
icons, your user interface also enables the customers' young children to use the application.

Although the shopping list and not-needed list are two separate objects in your user interface,
they do not differ in terms of their fundamental data or behavior.

Modeling the Objects
Now, you begin transforming the user interface into code. At this point you can begin using
the classes that Open Class Library provides.

A good place to start is by representing the nonvisual aspects of the application in terms of
C++ classes. We define two data classes for our example, PurchaseList and Purchaseltem.
The PurchaseList class represents a list containing items to buy. The shopping list and
not-needed list are objects of this class. A Purchaseltem object represents an item to buy and
is an entry held by a PurchaseList object.

You build data classes by assembling other data types. Represent data members, or attributes,
with built-in C/C++ data types and with data type and collection classes that the library
provides. The PurchaseList class is essentially a collection of Purchaseltem objects. The
Purchaseltem class requires character string data for names and manufacturers, and it requires
numeric data for prices. The example also stores the quantity and other miscellaneous infor-
mation as character strings. By using character strings instead of numeric data, the application
can store the unit of measure as part of the quantity, thus keeping the application simple.

Using the Data Classes of Open Class Library
Open Class Library provides a set of data type classes for you to use as well as for it to use
when it implements its own classes. Istring, IDate, ITime, IPoint, and Isize are some of the
more commonly used data type classes.

Open Class Library provides a robust string class, Istring, to handle character data. Thus, we
use the Istring class to represent all of the character-string data members of the
Purchaseltem class. Figure 3-1 shows the data type classes that Open Class Library provides.
All these classes derive from IBase, the base class of Open Class Library. Chapter 26, "Data
Types," describes these data type classes in detail.

Cfeapfe7. 3 Tour of open class Library 29

Figure 3-1. Hierachy of Data Type Classes.

Here is the first pass at declaring the Purchaseltem class. We later update this class decla-
ration as we proceed through the chapter. In the class declaration, you find a constructor,
functions to change each of the properties of a Purchaseltem object after you or the users
create it, functions to query each of these values, and the object's private data members or
attributes.

// An item you can add to a shopping list.
class Purchaseltem {
public :

Purchaseltem (const Istring& nalne,
const Istring& quantity = `'1",
const Istring& manufacturer = Istring() ,
double price = 0,
const Istring& notes = Istring());

Purchaseltem
&setName
&setQuantity
&setManufacturer
&setprice
&setNotes
&addNotes

Istring
name
quantitymanufacturer
notes

double
price

(const Istring& name) ,
(const Istring& quantity) ,
(const Istring& manufacturer) ,
(double price) ,
(const Istring& notes) ,
(const Istring& moreNotes) ;

() constj

30 Power GUI programming with visualAge for c++

private :Istring
f Name ,
fQuantity,
fManufacturer,
fNotes ;

double
fpricej

);

Using the Collection Classes
Typically, an application needs to maintain collections of objects, such as a collection of
invoices. Your first inclination may be to create a linked list for the list of items and then write
an assortment of functions to add or remove items and to otherwise maintain the list. If you
take advantage of the collection classes, however, this work becomes unnecessary.

The collection classes offer efficient implementations for a variety of classic data structures.
These structures include sequences, queues, stacks, maps, and trees. By using these classes,
you can create a complex list structure without having to write the code to build or maintain it.

You can easily implement the PurchaseList class using the collection classes. But first, let's
look at the visual aspects of these objects.

Choosing Object Views
Once you identify your user-interface objects, you need to create 1;I.ews, or user interfaces, for
those objects. First concentrate on defining the look of your views. Implementation comes
later.

In the example, both the shopping list and not-needed list are containers of objects. Both
containers display their objects as icons. Because the use of these two lists is so intercon-
nected-a purchase item can appear in only one list at any time-we combine them into a
single primary window. The purchase items are data objects. The main view for a purchase
item is a settings view. We design this view using the basic controls provided by the presen-
tation system, such as prompt text and entry fields. We organize the information comprising
this view into pages of a notebook control that Open Class Library provides.

Figure 3-2 shows a drawing of the example program with these views.

Building Windows
Next, we start writing code to display these views. Open Class Library makes this task easier
because it provides C++ classes for many of the window elements you typically need.

A logical place to start when you assemble your user-interface components is the
IFramewindow class. Use this class to create and manage both primary and secondary
windows.

Cfeapfe]. 3 Tour of open class Library 31

Now on sale!

Figure 3-2. Views for the Example Application.

The IFramewindow class supports two ways of building these desktop windows. The first is
from a traditional Windows or OS/2 dz.cIJog bo:I:. A dial'og box contains a definition of a frame
window and the controls it contains. You can create dialog boxes using a dialog editor, such as
the one that VisualAge for C++ provides.

The second way to build a window is to explicitly assemble the frame window and its compo-
nents entirely within your program. This method enables you to build more complex and
flexible windows than you can create by using a dialog editor.

Chapter 5, "Frame Window Basics," describes the role of the IFramewindow class in building
the basic parts of a window. Chapter 19, "Advanced Frame Window Topics," presents more
detail and advanced topics related to frame windows.

Building the Primary Window
The primary window in the example displays the two PurchaseList objects. Displaying the
primary window is quite simple. You need only the following code:

void main ()
(

// Create the primary window for the two container views.
IFramewindow primary("Shopping List", ID_SHOPPINGLIST) ;

// Give the frame the input focus, and show it.
primary

. setFocus ()

. show () j

// Start event processing.
IApplication : : current (.) . run () ;

)

32 Power GUI programming with visualAge for c++

We create the frame window on the stack; that is, we do not use operator new. As a result,
both the window and the IFramewindow object are cleaned up by the time the main function
returns. When the user closes the primary window, Open Class Library causes the call to
IApplication: : current () . run () to return, causing main to end. The IFramewindow object is
deleted when it goes out of scope as defined by C++. We discuss the role of the
IApplication : : current () . run () call later in this chapter and in Chapter 5, "Frame Window
Basics.,,

We do not use a dialog box for the primary window, although the code at this point gives little
indication of our intent. This code gives us an empty window with a title bar, system menu,
and some standard behavior. We fill the window by assembling and adding its object view.

Building a View
You can assemble a view out of the controls that the presentation system provides. These
controls include buttons, prompts, entry fields, containers, and notebooks. Open Class Library
supplies classes for the controls available in the presentation system. The classes in the
IControl class hierarchy represent these controls plus others that Open Class Library
provides.

Figure 3-3 shows Iwindow at the base of the window class hierarchy and the major division of
the IFramewindow and IControl classes below it. Figure 3-4 shows the IControl class
hierarchy. See Table 7-1 for a mapping between Open Class Library classes and presentation
system controls.

You can add a view into a frame window in two ways. The first is to place the controls
comprising the view directly on the frame window, as is typical of a dialog box. The second is
to build a separate window, which you can drop into the frame window to fill its cJz.c73f czrecL.

The client area is the open area of a frame window. It is the area, or space, not occupied by the
following frame-related components :

• Border
• Titlebar
• Systemmenu
• Minimize, maximize, hide, and restore

buttons
• Menubar
• Application-defined frame extensions

Chapter 19, "Advanced Frame Window
Topics," describes frame extensions.

Open Class Library calls the window that
occupies the client area the cJz.e#f wz.7cdow of
the frame. Frame windows have built-in
support for client windows so you can localize
the visual characteristics of a window or Figure 3-3. Base Window class Hierarchy.

Cfe¢pfe]. 3 Tour of.Open class Library 33

Figure 3-4. IHerarchy of the Control classes.

34 Po.wer GUI programming with visualAge for c++

specialized event processing for the entire window in the client window.

The primary window of the example uses its client window to display its object view. The
view consists of the two PurchaseList containers. This combination of containers in the same
primary window presents a problem because a frame window can have only one client window.
Had we not combined the containers, we would have created two frame windows, each with a
container window as its client window.

Using an ISplitcanvas object for the client window works well here. The ISplitcanvas class
is a type of c¢#i;CZS, or advanced layout control, that Open Class Library provides. The
Windows and OS/2 operating systems do not have any controls that provide the functionality
of the canvas classes. We discuss canvases more in the topic, "Simplifying the Layout of
Controls," later in this chapter and in detail in Chapter 15, "Canvases."

ISplitcanvas gives you two benefits. It manages the size and position of the two container
views for you, and it provides a split bar between the two containers which the user can drag
with the mouse. Mo.ving the split bar causes ISplitcanvas to resize the two containers.

The first benefit is important because the user can readily change the size of the client window
by changing the size of the frame window. You do not need to write code to properly size child
windows whenever the size of the frame changes. Instead, you can rely on the support that
Open Class Library provides to do this for you. . The second benefit enables your users to
directly manipulate the divider between the container views. This gives them the freedom to
tailor how the client area is divided between the two containers.

The following code identifies the client window:
void main ()
(

// Create the primary window and its client window
// for the two container views.
IFramewindow primary("Shopping List" , ID_SHOPPINGLIST) ;
ISplitcanvas splitwindow(ID_LISTCLIENT, &primary, &primary) ;
splitwindow. setorientation (ISplitcanvas : :horizontalsplit) ;
// Use the split canvas as the client window.
primary. setclient (&splitwindow) ;
// Give the frame the input focus, and show it.
primary

. setFocus ()
• show () ;

// Start event processing.
IApplication : : current () . run () ;
).

We now need to add the two containers to the ISplitcanvas. We do this by making the
containers child windows of the split canvas. No other calls are necessary.

Containers
Open Class Library provides the IContainercontrol class for implementing container views
and folders like the ones used by the desktop. The IContainercontrol class displays a list of
items in a details vieIV, tree view, icon view, name view, or text view.

Cfeapfe7. 3 Tour of open class Library 35

The examples implement the views for the two PurchaseList objects using the
IContainercontrol class. We use the icon view to show Purchaseltem objects as icons that
users can manipulate.

In the example, we also use the IContainercontrol class to implement the nonvisual aspects
of the PurchaseList objects instead of using one of the collection classes. Had our example
been more complex, we may have considered otherwise. (To simplify the example, we omit
reading or storing the shopping list from or to a database or a file, and we assume the shopping
list holds only a limited amount of data.)

Because IContainercontrol can only contain objects derived from IContainerob].ect, we
ghange Purchaseltem to derive from IContainerobj ect, as follows:

// An item you can add to a shopping list.
class Purchaseltem : public IContainerobject {
public : .
®®®');

®

One benefit of using IContainerobj ect is that it manages the name that the object displays in
the container's icon view. We can use this functionality by removing the fNalne data member
from the Purchaseltem class and implementing the name and setNane functions to call the
IContainercontrol : : iconName and IContainercontrol : : setlconName functions, respec-
tively.

Here is how main looks now. It includes the code to create and ;et up the containers.

void main ()
(

// Create the primary window and its client window
// for the two container views.
IFramewindow primary("Shopping List", ID_SHOPPINGLIST) ;
ISplitcanvas splitwindow(ID_LISTCLIENT, &primary, &primary) ;
splitwindow. setorientation (ISplitcanvas : :horizontalsplit) ;
// .Use the split canvas as the client window.
primary.setclient(&splitwindow) ;

t // Create the buy list and not-needed list containers.
IContainercontrol

buyList (ID_BUYLIST, &splitwindow, &splitwindow) ,
dontBuyList (ID_DONTBUYLIST, &splitwindow, &splitwindow) ;

// Set up the two containers.
buyList

.seETitle(''Items to buy") .

. showTitle ()

. showll`itleseparator ()

. showlconview ()

. arrangelconview ()

. setDeleteobj ectsonclose ()

. enableTabstop () ;

dontBuyList
. setTitle ("Unneeded items")
.` showli tie ()
. showTitleseparator () .
. showlconview ()
. arrangelconview ()
. setDeleteobj ectsonclose ()
. enableTabstop ;

36 Power GUI programming with visualAge for c++

// Give the buy list the input focus and show the window.
buyList . setFocus () ;
primary . show () ;

// Start event processing.
IApplication : : current () . run () ;

)

Next, we create and add objects to the containers. The code, which initializes the
Purchaseltem objects, substitutes for code in a real application that would read the initial
values from a database or other file. The Purchaseltem class supplies all these initialization
functions except setlcon, which IContainerobject provides. setlcon changes the icon that
the container displays for an item.

// Create some purchase items.
Purchaseltem* pl = new Purchaseltem("Apple juice") ;
pl->setNotes("Kids won't drink anything else.") ;
Purchaseltem* p2 = new Purchaseltem("Diskettes") ;
(*p2) ,
.setQuantity(`'1 box of 10 diskettes")
.addNotes("3.5 inch, double-sided, high-density.")
.addNotes("Prefer preformatted. ") ;

Chaining Functions
Perhaps you are wondering about the syntax we used to set up the two containers. We
chained functions together by using the object returned by the previous call. With Open
Class Library, you can chain most functions that set an attribute of an object. Because it
throws exceptions to report errors, Open Class Library does not need to return an error code
as the return value of these assignment functions. Instead, it returns a reference to the
object being called.

Alternatively, we could have initialized the buyList object using individual statements:
buyList.setTitle(`'Items to buy") ;
buyList . showTitle () ;
buyList . showTitleseparator () ;
buyList . showlconview () ;
buyList . arrangelconview () ;
buyList . setDeleteob]. ectsonclose () ;

The difference is one of coding style. Use chaining functions to emphasize that multiple
functions are being called on the same object. However, this technique does have some
disadvantages. For example, in the debugger, you cannot currently step over individual
calls because the chained functions are a single C++ statement. Also the order of the
chained functions is important because member functions of a class cannot return a
reference to an object of a derived class, and you cannot call derived class functions on a
base class object. For example, you can use the following code:

IEntryField state (1, &frame, &frame) ;
state

. setText ("North Carolina")

. enableTabstop () ;
But, you cannot rise this code:

IEntryField state (1, &frame, &frame) ;
state

. enableTabstop ()

. setText ("North Carolina") ;
enableTabstop returns an IControl&, and setText requires an ITextcontrol object.

Cfeapfer 3 Tour of open class Library 37

Purchaseltem* p3 =
new Purchaseltem(`'Milk", "2 gallons", "Any", 3.75,„Skim");

Purchaseltem* p4 = new Purchaseltem(`'Fruit snacks") ;
p4->setNotes(`'These are for the kids.") ;
Purchaseltem* p5 =

new Purchaseltem("Eggs", ''1 dozen", 0, 1.50,`'Extra large size.") ;
p5->addNotes(`'Be sure none are cracked.") ;
Purchaseltem* p6 =

new Purchaseltem(`'Power GUI Programming with VisualAge for
C++", "10", "John Wiley and Sons, Inc.'',
49.95, "Updated for Windows release.") ;

(*p6)
.addNotes(`'Love the book!")
. setlcon(ID_THEBOOKICON) ;

// Fill the split windows.
dontBuyList

. addobj ec t

. addobj ect

. addobj ec t
addobject(p4
addobject (p5

buyLi s t . addobj ec t

We add the above code to the main routine to finish setting up the containers. Figure 3-5 shows
the resulting primary window and its two containers.

Chapter 13, "Container Control," describes the container control classes of Open Class Library
in greater detail. I

Figure 3-5. Prinary Window of the Example.

38 Power GUI programming with visualAge for c++

Building the Secondary Window
We display a secondary window when users open a Purchaseltem object. To create a
secondary window, we must provide it with an owner window (the owner is typically a primary
window). By contrast, a primary window has no owner window. The following code shows
what is required to display our secondary window:

// User has opened a Purchaseltem object.
// Create a secondary window with a settings view.
IFramewindow* secondary =

new IFramewindow(ID_PURCHASEITEMVIEW, 0, &primary) ;
secondary->setAutoDeleteobj ect () ;
(* s econdary)

.setFocus () .

. show () ;

We create the secondary window using operator new, instead of creating the object on the
stack. Because we display it as a modeless window, we cannot predict how long the window
exists or how long we need the IFralnewindow object. This prevents us from creating the
secondary window on the stack. We let Open Class Library automatically delete the
IFramewindow object when users close the window by calling
Iwindow: : setAutoDeleteobj ect. .

Building the View
We now build the view that the secondary window displays. To do this, we use a notebook to
display a properties or settings view for the Purchaseltem object. Because this can be
complicated, we first create another class to represent the frame window and the setting.s view.

We call this the Purchaseltemview class, and make it responsible for displaying the frame
window containing the notebook and its two page windows. The constructor requires a
Purchaseltem object, whose view we display. This class provides an updateDataobject
function, which updates the Purchaseltem object with any changes users make to the settings
values.

// Settings view for a Purchaseltem objec.t.
class Purchaseltemview : public IFramewindow { .
public :

Purchaseltemview (Purchaseltem& purchaseltem,
unsigned long windowld,
Iwindow* owner = 0) ;

Purchaseltemview
&updateDataobject () ;

protected:Purchaseltemview
&initializepagel (),
&initializepage2 ();

private :Purchaseltem
&fpur.chaseltem;

// The notebook and its windows are filled in later. .
)j

Cfeapfer 3 Tour of open class Library 39

Next, we construct the Purchaseltemview .obj ect as a secondary window.
// User has opened.a Purchaseltem object.
// Create a secondary window with a settings view.
Purchaseltemview* secondary =

new Purchaseltemview (purchaseltem,
ID_PURCHASEITEMVIEW,
&primary) ;

secondary->setAutoDeleteobj ect () ;

Notebooks
Open Class Library provides the INotebook class for implementing notebooks, like those the
desktop uses to display settings views. INotebook provides functions that you can use for
these tasks:

• Manage the general lookofthe notebook
• Addandremovepages
• Access information about individual pages

We create two pages for the settings notebook in our example. Each page holds a pclge
wz.73dow, which is analogous to the client window of a frame. You can use any presentation
system window as a page window. The first notebook page looks as depicted in Figure 3-2.
The second page shows a bitmap of the first edition of this book. We add it to provide multiple
pages for the notebook. (If the noteb6ok had only one page then we wouldn't need the
notebook!)

Following are the private data members we are adding to the Purchaseltemview class:
INotebook

fNotebook;
IMulticellcanvas

f pa9el ,
f page2 ;

We discuss the class selected for the page windows shortly. But first, look at the
Purchaseltemview constructor where we create the frame window and notebook. The code
constructs the INotebook, con figures it, and adds its pages. This is enough to give a
functioning notebook control, although we still have to define its page windows.

Purchaseltemview : : Purchaseltemview
(Purchaseltem& purchaseltem,

unsigned long windowld,
Iwindow* owner)

: IFramewindow(windowld, 0, owner, IRectangle() ,
IFramewindow : : defaultstyle ()

I IFramewindow: :dialogBackground) ,
fpurchaseltem(purchaseltem) ,
fNotebook(ID_PURCIIASEITEMBOOK, this, this) ,
fpagel (ID_PURCHASEITEMPAGE1, &fNotebook, &fNotebook) ,I fpage2 (ID_PURCHASEITEMPAGE2, &fNotebook, &fNotebook)

i
ITitle title(this, fpurcha.seltem.name() ,"Shopping List Settings View") ;
this->setclient (&fNotebook) ;
fNotebook

.setMinorTabsize(Isize(0, 0))

.setBinding(INotebook: :spiral) ;

// Set up the first page of the notebook.
this->initializepagel () ;

40 Power GUI programming with visualAge for c++

// Set up the second page of the notebook.
this->initializepage2 () ;
// Add the pages to the notebook.
INotebook: : Pagesettings

pagelnfo("1st", 0,
INotebook: : Pagesettings : : autopagesize

I INotebook: :Pagesettings: :ma].orTab) ;
fNotebook.addFirstpage (pagelnfo, &fpagel) ;
pagelnfo.setTabText("2nd") ;
fNotebook.addLastpage(pagelnfo, &fpage2) ;

// Size the fralne window.
IRectangle rectFrame =

this->frameRectFor(IRectangle(IPoint(0, 0) ,
fNotebook.minimumsize())) ;

this->sizeTo(rectFrame.size()) ;
)

Chapter 14, "Notebook Control," further describes the notebook classes of the library.

Simplifying the Layout of controls .
The canvas classes supply a variety of functions. You saw some of them in the user-movable
split bar supported by the ISplitcanvas class. Other canvas classes provide the ability to
automatically size and position .their child windows, based on their text and current font. Still
another canvas class provides the ability to scroll any window.

The example has another place where it can exploit a canvas class. You can use the
IMulticellcanvas class to create the notebook page windows. This part of a settings view has
the look of a traditional presentation system dialog box. It contains prompt text, entry fields,
and a multiline entry field. The IMulticellcanvas class allows these controls to automati-
cally grow and shrink in size to fit the size of the notebook while remaining aligned. A dialog
box does not give you this behavior.

First, we add the child controls of the first notebook page as private data members of the
Purchaseltemviewclass:

IMulticellcanvas
f pagel ;

IstaticText .
fNaneprompt,
fQuantityprompt,
fManufacturerprompt,
fpriceprompt , .
fNotesprompt;

IEntryField
fName ' .
fQuantity,
fManuf ac turer ,
fprice;

IMul tiLineEdi t
fNotes ;

To add child controls to the IMulticellcanvas, we call its addTocell function. We provide
relative positioning information for these child controls in terms of columns and rows.
Figure 3-6 shows the look we want and the rows and columns we use for the
IMulticellcanvas.

Cfeapfer 3 Tour of open class Library 41

24

--
2 RIamE F]I]wEr ELJI F]rl]EramminE with Ui=ualhEE fur I++

i++++ nd-
4 ftuBritity Inn

- . . - . , I .` . `

6 tulanL]f@ctirmer LJDhn urilEy E EDn=. InE.
'

8i Prat:E
_iE.EE

1:.^^^^i.-iJ--A+ -.-^J^ L^.^ ^|^i-^^e=:>^oZ^-A---ii--+-- r ` `

10-11

H`E_fa_± . LJF)dEtEI] fur WindDw5 TEIEE=E. ife
LnTE the hnnk! xp

Figure 3-6. First Settings Page Composition.

The resulting changes to the Purchaseltemview constructor and the code to build the first
notebook page follows:

. Purchaseltemview : : Purchaseltemview .
(Purchaseltem& purchaseltem,

unsigned long windowld,
Iwindow* owner)

: IFramewindow (windowld, 0, owner, IRectangle() ,
IFramewindow: : defaultstyle ()

I IFramewindow: :dialogBackground) ,
fpurchaseltem(purchaseltem) ,
fNotebook(ID_PURCIIASEITEMBOOK, this, this) ,
fpagel (ID_PURCHASEITEMPAGE1, &fNotebook, &fNotebook) ,
fNameprompt(ID_NZREPROMPT, &fpagel, &fpagel) ,
fName(ID_NAME, &fpagel, &fpagel) ,
fQuantityprompt (ID_QUANTITYPROMPT, &fpagel, &fpagel) ,
fQuantity(ID_QUANTITY, &fpagel, &fpagel) ,
fManufacturerprompt (ID_MANUFACTtJRERPROMPT ,

&fpagel, &fpagel) ,
fManufacturer(ID_MANUFACTURER, &fpagel, &fpagel) ,
fpriceprompt(ID_PRICEPROMPT, &fpagel, &fpagel) ,
fprice(ID_PRICE, &fpagel, &fpagel) ,
fNotesprompt(ID_NOTESPROMPT, &fpagel, &fpagel) ,
fNotes(ID_NOTES, &fpagel, &fpagel, IRectangle() ,

IMultiLineEdit : : classDefaultstyle
I IMultiLine'Edit: :ignoreTab)

(

// Set up the first page of the notebook.
this->initializepagel () ;

)

42 Power GUI programming with visualAge for c++

Purchaseltemview& Purchaseltemview : : initializepagel ()
(

// Locate controls on the multicell canvas.
fpagel

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (

&fNameprompt,
&fNane,
&fQuantityprompt,
&fQuantity,
&fManufacturerprompt
&fManufacturer,
&fpriceprompt,
&fprice,
&fNotesprompt,
&fNotes , 2);

// Allow MLE control to expand vertically with the window.
fpagel.setRowHeight(11, 0, true);

// Allow MLE and entry fields to expand horizontally.
fpagel.setcolumnwidth(4, 0, true) ;

// Create bottom and right margins.
Isize defaultcell = IMulticellcanvas: :defaultcell () ;
fpa9el• .setRowHeight(12, defaultcell.height())

.setcolumnwidth(5, defaultcell.width()) ;

// Set up the. child controls.
®

return *this;
)

Although we omitted detailed description of. the code, notice the following points. First, we
did not specify any size and positioning information beyond columns and rows. These coarse
units free us from over-exacting details such as the size of the current font or sizes of the
currently displayed characters. Second, little code is required to create a window whose
controls resize with the parent window. Figure 3-7 shows how the preceding code behaves in
two differently sized notebooks.

Basic Controls
Open Class Library supplies classes for the basic controls provided by the Windows and OS/2
presentation systems. These include static controls, buttons, and controls that present the user
with a list of items.

Examples of static controls include static text such as field prompts and instruction text, icons,
bitn}aps, and a boxed line with or without heading text. The library represents these static
controls with the IstaticText, IIconcontrol, IBitmapcontrol, IGroupBox, and IOutlineBox
classes. Chapter 8, "Static Controls," describes this group of control classes in greater detail.

Edit controls, such as an entry field for single line input, receive character input from the user.
Open Class Library represents these controls with the IEntryField and IMultiLineEdit
classes. Chapter 9, "Edit Controls," describes these classes.

Cfeapfer 3 Tour of open class Library 43

RIalnE

#H#mity

F]owEr ELJI F]rogramminE with Vi5ualAge for I:++

HamE

filfantity

m3nufariursr

Price

ltutfg
*

l]DilrEr GLJ[PrDgram[Tlinq lirith Vi=ualh!

LJDhn urilE:y E =Dn§. Int=.

LJpdatEd fqT.WindDw5 TEIEa§E.
LI]+E the bol]k!

Figure 3-7. Sizing and Positioning Done by an IMulticellcanvas.

The first notebook page of the example uses both IEntryField and IMultiLineEdit objects to
collect information from the user. The following example shows how you can create and
initialize these edit controls:

// Create a single-line entry field.
IEntryField fName(ID_NZRE, &fpagel, &fpagel) ;
fName

. setLimit (60)

.setText(fpurchaseltem.name(.)) `

. enableTabstop ()

. enableGroup () ;

// Create a multiline edit field.
IMultiLineEdit fNotes (ID_NOTES, &fpagel, &fpagel,

IRectangle () ,
IMultiLineEdit : : classDefaultstyle

I IMultiLineEdit: :ignoreTab) ;
fNotes

.s.etText(fpurchaseltem.notes ())

. enableTabsto.p ()

. enableGroup () ;
Buttons allow a user to select a choice, whether it is a single choice from a group of radio
buttons, 0 or more choices from a group of check boxes, or an 'action to run from a group of
push buttons or tool bar buttons. Open Class Library represents these controls with a set of

44 Power GUI programming with visualAge for c++

button classes. The IRadioButton class repre'sents a radio button; the IcheckBox and
13StatecheckBox classes represent check boxes; the IPushButton and IGraphicpushButton
classes represent push buttons. With the ICustomButton and ICustomButtonDrawHandler
classes, you can customize button drawing. IToolBarButton is a custom button specialized for
use in a tool bar. It can display text, a bitmap, or both. IAnimatedButton is another custom
button, which manages a set of bitmaps for animation. The example uses a push button on the
second notebook page. Chapter 10, "Button Controls," describes this group of control classes.

You can display a list of items in a window other than a container. These list controls include
the list box, combination box (which combines an entry field and list box), and spin button
(which acts like a list box with only a single visible item). Open Class Library provides
control classes for these types of list controls including IListBox, IComboBox, and
ITextspinButton. `

The file dialog displayed when the push button is pressed shows some of these controls,
including a list box and a combination box. However, the example does not create C++ objects
to manage these controls. Chapter 11, "List Controls," describes this group of control classes
in greater detail.

Slider Controls
Open Class Library supports three similar controls, the progress indicator, linear slider, and
circular slider. Use the progress indicator, a read-only control, to show a value within a range
such as the temperature on a mercury thermometer. It is a key component in building a
progress indicator window that shows the status of a time-consuming task. The
Iprogresslndicator class represents a progress indicator control.

Use a slider or circular slider control to allow users to specify a value within a range such as a
thermostat that they can control the temperature with. Use a circular slider to emulate dials
such as stereo or video dials. The Islider class represents a slider control and the
Icircularslider class represents a circular slider control. Chapter 12, "Slider Controls,"
describes these control classes in greater detail.

Menus
Menus list actions a user can run. These actions can apply to the application as a whole, such
as an Exit choice, to a window or view, or even to a single control, such as Cut, Copy, or Paste.
Menus are particularly useful for offering multiple action choices because you can group
common menu choices together. You can organize menu items hierarchically, or you can
simply separate them by dividers.

Open Class Library provides classes to represent different kinds of menus with a wide range of
uses. For example, you can build menu bars and pop-up menus from resource files. You can
dynamically create a menu bar or pop-up menu and dynamically change a menu bar, pop-up
menu, or system menu. You can also use the ISubMenu class to temporarily change a menu
until the user dismisses it. Once the user dismisses the menu, ISubMenu restores the menu to its

CfoapfeJ. 3 Tour of open class Library 45

original state. Chapter 6, "Menus and Keyboard Accelerators," describes these classes in
greater detail.

Tool Bars
Use tool bars as an alternative to menus. Tool bars offer flexibility, a modern look, and a
number of actions that are simultaneously visible to the user. You can easily add fly-over help
or drag-and-drop support to a tool bar using classes that Open Class Library provides. Using
direct manipulation, users can rearrange the tool bar buttons o.r add new buttons by dragging
them from a menu. You can attach a tool bar to the top, bottom, or either side of a frame
window, or you can allow it to float so users can place it anywhere on the desktop. Users can
move a floating tool bar independently Of the frame window, or they can "pin" it to the frame
window so that it moves with the fraine window.

The example program creates a tool bar that contains several buttons and is enabled for
fly-over help. When you press one of these buttons, you see an informational message box that
informs you that these buttons are not implemented in the example. Following is the code
from the example that creates the tool bar:

Tool Bar usage -latour\shopping\shopping.cpp .

// Add a tool bar to the primary window.
IToolBar toolBar(ID_TOOLBAR, &primary) ;
IToolBarButton

openButton(IC_ID_OPEN, &toolBar, &toolBar) ,
saveButton(IC_ID_SAVE, &toolBar, &toolBar) ,
cutButton(IC_ID_CUT, &toolBar, &toolBar) ,
copyButton(IC_ID_COPY, &toolBar, &toolBar) ,
pasteButton(IC_ID_PASTE, &toolBar, &toolBar) ;toolBar

.addASLast(&openButton, true)

.addASLast (&saveButton)

.addASLast(&cutButton, true)

.addASLast(©Button)

.addLASLast (&pasteButton)

.disableDragDrop() ;
Open Class Library provides the text and bitmaps for actions frequently found on a tool bar.
These help you provide a common look and feel across applications and products. Tool bars
typically contain button;, although they can contain other controls provided by Open Class
Library. Chapter 16, "Tool Bars, Fly-Over Help, and Custom Buttons," describes tool bars in
greater detail.

Standard Dialogs
Open Class Library supports two special types of windows that most applications tend to need.
These windows allow users to view and select a font or to select the name of one or more files.
The presentation system terms for these windows are/oJ®£ dz.czJog and/z.Je dz.czJog. Open Class
Library represents these dialogs with the IFontDialog and IFileDialog classes.

46 Power GUI programming with visualAge for c++

The example displays an IFileDialog object when the user presses the push button at the
bottom of the second notebook page. This dialog allows users to pick a bitmap file from the
list to replace the bitmap on the notebook page. Following is the handler that processes the
push button event and creates the file dialog:

File Dialog Usage - latour\shopping\puritemv.cpp
IBase: :Boolean Purchaseltemview: :Ondllandler : : command

(ICommandEvent& event)
(`

Boolean stopprocessing = false;
if (event.commandld() == ID_ICONBUTTON)

(
// set up the file dialog as a child of the desktop.
IFileDialog: : Settings settings;
settings.setFileName(`'*.bmp") ;

IFileDialog fileDlg(0, fpurchaseltemview, settings) ;
if (fileDlg.pressedoK())
(,

fpurchaseltemview->updateBitmap (fileDlg . f ileName ()) ;
)
stopprocessing = true;

)

return stopprocessing;
)

The Windows and OS/2 operating systems provide a default definition for the font and file
dialogs. Figure 3-8 shows the file dialog. Chapter 18, "Fonts and Views," describes
IFontDialog an.d IFileDialog. q

Figure 3-8. File Dialog.

Cfe¢pfer 3 Tour of open class Library 47

Help and Messages
Open Class Library provides the IHelpwindow class for displaying help windows. Typically,
these help windows are displayed as a result of the user pressing a help button or selecting help
from a menu or tool bar.

Open Class Library also supports fly-over help for displaying short help messages for the
window that the mouse pointer is .positioned over. Typically, you use fly=over help for the
buttons in a tool bar. Use the. IFlyText and IFlyHelpHandler classes to add fly-over help to
your application. Following is the code from the example for iinplementing fly-over help:

Fly-Over Help Usage - latour\shopping\shopping.cpp
// Add fly-over help to the tool bar.
IFlyText flyText (ID_FLYTEXT, &primary) ;
IFlyoverHelpHandler flyHandler (&flyText) ;
flyHandler

.setDefaultText("\0")

.setResourceLibrary(0)

.handleEventsFor (&toolBar) ;
Open Class Library provides the IMessageBox class for displaying message windows. If the
user fails to specify a name for a Purchaseltem object in its settings view, the example
displays a message window containing an error message. Here is the code for displaying the
message:

Message Box Usage I latour\shopping\puritemv.cpp
IMessageBox msg(this) ;
msg.show(`'You must specify a name.",

IMessageBox : : okButton
I IMessageBox: :errorlcon
I IMessageBox: :moveable) ;

Figure 3-9 shows the resulting message window. Open Class Library error messages are
normally loaded from a file to facilitate national language translation. Chapter 27, "Error
Handling and Reporting," describes IMessageBox. Chapter 16, "Tool Bars, Fly-Over Help, and
Custom Buttons," describes fly-over help. Chapter 23, "Using Help," describes how you can
add other kinds of help to your application.

Direct Manipulation
The desktop uses an assortment of direct manipulation techniques. These techniques present
different degrees of difficulty for you to implement support in your applications.

Some types of direct manipulation are built into the Windows and OS/2 operating systems, and
they require no code to support them. For example, a user can move any frame window by
dragging its title bar. With the OS/2 operating system, a user can also change the color of a
wiridow by dragging a color onto it from a color palette window.

Other types of direct manipulation are only partially built into the operating systems and
require application code for you to fully support them. For example, you can create a.frame
window that users can size by dragging the borders. In the OS/2 operating system, users can
change the size of the window's text by dragging a font from a font palette window. However,

48 Power GUI programming with visualAge for c++

Figure 3-9. Message Window.

in both cases, you are responsible for redistributing the' contents of the window. The canvas
classes, such as IMulticellcanvas and Iviewport, provide support for these situations.

You also have drag and drop. While support for drag and drop is built iito both operating
systems, few applications support this direct manipulation technique because of its
cothplexity. The Windows and OS/2 desktops, however, exploit this interaction technique-so
much so that drag and drop is an important feature of both.desktops. For your application to
have the look and feel of the desktop, support the dragging and dropping. of objects.

To illustrate the complexity involved, consider the code you must ordinarily provide for users
to drag objects from a container. First, you must define what users can drag. Then, you must
define what kinds of items the target window accepts from a drop. Finally, the source and
target windows must send, receive and process a number of messages to excha.nge the dragged
data.

Although it's tempting, omitting support for drag and drop in your application is not the right
answer. Drag and drop can make some tasks easier and more intuitive for your users. In the
example, by using drag and drop to move Purchaseltem objects between lists, users avoid the
indirect step of accessing a menu or displaying a dialog to move an item.

With Open Class Library, you no longer have to get involved in complex drag-and-drop code.
It provides a set of classes that you can use to easily support drag and drop in your application.
These classes can even make a drag-and-drop interface easier to support than a menu-based
One.

Cfe¢pfer 3 Tour of open class Library 49

To support drag and drop in the example, we need to include the following code:

Main Partial Implementation - latour\shopping\shopping.cpp
// Support drag and drop of purchase items.
IDMIIandler : : enableDragDropFor.(&buyList) ;
IDMlandler: : enableDragDropFor (&cfontBuyList) ;

We also need to implement a copy constructor and the objectcopy function (which calls the
copy constructor) for the Purchaseltem class. After we implement obj ectcopy, users can copy
container objects using direct manipulation.

Chapter 21, "Direct Manipulation," describes the drag-and-drop classes in greater detail.

Graphics Framework .
Open Class Library provides classes for displaying two-dimensional (2D) graphics in your
applications. These classe's include a rich set of graphic primitives for 2D drawing, including
lines, text, curves, boxes, and bitmaps. You can associate attributes with each primitive class
to define its appearance, for example, its color and width. With these classes, you can draw an
entire window or customize a window in your application. The graphics framework also
provides a class that contains a list of graphics primitives for building complex graphics.

Multimedia Framework
\

Open Class Library provides classes to represent a wide spectrum of multimedia devices and
capabilities. Examples of these devices include audio amplifier-mixers, CD audio players,
digital video players, MIDI sequencers, and wave form audio.players. Use this framework to
implement` an interface. that looks and. works like the controls of real electronic devices, such
as stereos and video cassette recorders. Also, use this framework to enhance the interface of
your application by adding audio, video, images, and animation.

Processing user Actions and system Events ,
Now that we have views and windows in place, our next step is to enable users to interact with
these windows. In your applications, you do not have to provide all of the behavior for all of
your windows, but you do have to provide application-specific behavior. Much of the standard
behavior that an application needs is already built into the controls. What you need to provide
are the interactions between windows and responses to user actions.

Event-Handling Framework
Open Class Library provides event and event-handler classes so that you can connect your
window classes into the operating system's messaging model. Both are described in Chapter 4,
"Windows, Handlers, and Events." With handlers, you can extend Open Class Library to

provide application-specific logic to supplement or replace the default behavior that the

50 Power GUI programming with visualAge for c++

Figure 3-10. Hierarchy of Handler and Event Classes.

Cfe¢pfer 3 Tour of open class Library 51

operating system or Open Class Library provides. Figure 3-10 shows the class hierarchy of the
event-handling framework that Open Class Library provides.

For our example,1et's take a look at the two kinds of event processing we need t.o provide. The
first is to respond to a user's opening of a settings view for a Purchaseltem object by pressing
the Enter key or double-clicking the mouse. The second is to update a Purchaseltem object
with any changes that a user makes to the settings view window.

We showed the processing needed to open a Purchaseltemview a few pages ago. We only have
to place it into a handler that detects an open event for a container object. The IcnrHandler
class does just this. In this case, we can use the default processing of the handler class, which
is to call the handleopen function of the IContainerobject being opened. As a result, we can
provide our application-specific code in a Purchaseltem: :handleopen function.
In the following code, we attach an IcnrHandler object to both container controls using the
handleEventsFor function. As a result, this handler checks all events directed to the
containers and processes the appropriate events.

Adding a Container Handler - latour\shopping\shopping.cpp
// Get default processing for an "open" event. .
IcnrHandler cnrHandler;
cnrHandler

. handleEventsFor (&buyList) .

. handleEventsFor (&dontBuyList) ;

Below, we show the handleopen function that is called when a Purchaseltem is opened:

Purchaseltem: :handleopen -Iatour\shopping\puritem.cpp
void

Purchaseltem : : handleopen (IContainercontrol* container)
(

// User has open`ed a Purchaseltem object.
// Create a secondary window with a settings view.
Purchaseltemview* secondary =

new Purchaseltemview(*this,
ID_PURCIIASEITEMVIEW,
container->parent ()) ;

secondary->setAutoDeleteobj ect () ;
(* s econdary)
. setFocus ()
' show () ;

this->IContainerobject : :handleopen (container .) ;
)

Here, again, is what we did to enable drag and drop for our container controls:

Enabling Direct Manipulation - latour\shopping\shopping.cpp
// Support drag and drop of purchase items.
IDRElandler: : enableDragDropFor (&buyList) ;
IDRElandler: : enableDragDropFor (&dontBuyList) ;

Although we did not say so earlier, this is another case of "smart" default behavior provided by
an event-handler class. This default processing does not require czny other application-specific
code.

52 Power GUI programming with visualAge for c++

The CmdHandler class updates the Purchaseltem with any updates that users make to the
settings view, but only after they dismiss the view. The CmdHandler class also handles the
events generated by clicking on the tool bar buttons. Following is the declaration of the
CmdHandler class:

Purchaseltemview: : CmdHandler Declaration - latour\shopping\puritemv.hpp
// Process command actions for a Purchaseltem.
class CmdHandler : public ICommandllandler {
publ i c :

CmdHandler (Purchaseltemview* frame,
Purchaseltem& purchaseltem) ;

protected:virtual Boolean
command (ICommandEvent& event) ,
systemcommand (ICommandEvent& event) ;

private :
Purchaseltem

&fpurchaseltem;
Purchaseltemview* fpurchasel temview; .
}; // class Purchaseltemview: :Cmdllandler

CmdHandler: : systemcommand -latour\shopping\puritemv.cpp
IBase: :Boolean Purchaseltemview: :Cmdllandler : : systemcommand

(ICommandEvent& event)
(

Boolean stopprocessing = false;
if (event.commandld() == IsystemMenu: :idclose)
{ // View is being closed.

if (fpurchaseltemview->validated())
(// Save any changes.

fpurchaseltemview->updateDataobj ect () ;
)
else
(// Er.ror, don't close the window.

stopprocessing = true;
)

)

return stopprocessing;
)

I

We describe specific event-handler classes in different chapters. For example, Chapter 17,
"Reusable Handlers," describes the event-handler classes that you can use to extend the

behavior of any window. The chapters that describe specific control classes also describe
event handlers that are designed specifically for those controls.

Application Framework Obj ects
Application development involves more than creating objects to model the user's problem
domain. You must also work with and be sensitive to the effects of operating system features
in your applications because your application is still running in an operating system. A
complex application needs to exploit the system' s features.

Cfeapfe7. 3 Tour of open class Library 53

For example, to take advantage of the multitasking power of the Windows and OS/2 operating
systems, you must divide yorir application into multiple threads of execution and coordinate
the processing done in those threads. Open Class Library provides classes to hide the
complexity of doing this, as well as providing access to a system' s information.

Applications
With the IApplication class, you can model attributes of your app.1ication. Use this class to
store prpgram arguments and to identify the location of your resource library. We provide an
overview of resource libraries and their.support in Open Class Library later in this chapter.
You can also use IApplication to access information that the operating system maintains
about'your running application, or process..

The related Iprofile class provides you with the fun'ctions to read and write application-
specific data to the registry in the Windows operating system and to an initialization file in the
OS/2 operating system. In that way you can save and restore information between invocations
of your application.

You can accomplish much using Open Class Library without getting into the details of the
application framework. All applications that use the window classes must include one critical
line of code to enable this framework. This line starts the processing of operating sy.stem
messages:

IApplication : : current () . run () ;
The example calls this function at the end of the main function. Chapter 20, "Applications and
Threads," and Chapter 25, "Storing Data in a Profile," describe the classes mentioned here.

Threads
Mainta.ining a responsive user interface requires you to process events in a timely fashion.
Otherwise, the machine can "hang." Users do not get any response to keyboard or mouse
input. Thus, perform any event processing that takes appreciable time in a thread other than
the message-processing thread of the application.

The Windows and OS/2 operating systems define two units of program execution, £fereczds and
p7iocesSes'. A process is essentially an application; it can be composed of many threads.
Threads can run independently of one another, or they can be coordinated with semaphores.
Open Class Library supports semaphores through the classes derived from IResource and
IResourceLock.

By adding threads to your application, you allow users to continue interacting with the user
interface, even while a time-consuming task runs on another thread. Open Class Library is
designed with explicit support for multithreaded programs. Use the flexible IThread class to
create threads. Unlike the C library function, _beginthread, the IThread class enables you to
run C++ member functions in a separate thread. Chapter 20, "Applications and Threads,"
describes the thread and semaphore classes that Open Class Library provides.

54 Power GUI programming with visualAge for c++

Resources
You can build several types of resources, such as dialog boxes, bitmaps, and translatable text,
into your application. You define these resources in a resource script file, process the file with
a resource compiler, and bind the resulting resource file to a resource library. The resource
library can be your executable (. EXE) file or a dynamic link library (. DLL) file.

Open Class Library provides classes to read resources out of either type of resource library. It
also provides overloaded versions of functions in the Iwindow class hierarchy that accept
either the address of a character string or an entry in a string table resource. You can set the
default resource file that your application uses by calling the setuserResourceLibrary
function in the ICurrentApplication class.

The example uses some resources but binds them to its executable file. The executable file is
the default user resource library that the IApplication class uses. Chapter 24, "Using
Resources," describes the classes supporting application resources.

Dynamic Data Exchange Framework
Dy72czfflz.c Dczfcz Excfecz7®ge (DDE) is a protocol that enables your applications to communicate
and exchange data with other applications in a client-server model. These other applications,
such as Excel or Lotus 1-2-3, can be running in the OS/2 or Windows operating system..

Open Class Library provides event and event-handler classes to make it easy for your applica-
tions to use DDE in the role of either a client or server application. With these classes, you can
create "hot" links to mirror data maintained by one application in another application.
Changes to the data can be seen immediately in the second application.

Programming Objects
Open Class Library also provides classes to help you develop an application. Your users will
likely never see evidence of these classes. However, without the help they can provide you,
your users would likely have to wait longer to see your finished application.

Exceptions
The VisualAge for C++ compiler supports the ANSI C++ exception model. This error-
handling model enables error-detecting code to throw an exception object, while a calling
routine can catch the exception object to process the error.

Open Class Library throws exception objects to report error conditions. Open Class Library
constructs these exception objects from exception classes that share a common hierarchy. The
exception objects contain error data that identifies the function that throws the exception and
the error's characteristics. Applications can catch these exceptions and also throw their own
exception objects. You can use the exception classes that Open Class Library provides, or you

Cfeapfer 3 Tour of open class Library 55

can build your own based on these classes. Chapter 27, "Error Handling and Reporting,"
describes the C++ exception-handling support that Open Class Library provides.

Thacin8
Open Class Library provides tracing support to help you gather run-time information about
your program. Do not confuse this support with the Performance Analyzer tool that VisualAge
for C++ provides. The analyzer enables you to view a log of all calls made by your running
application. You can use it to identify performance bottlenecks and to observe the interactionsa

between multiple threads. .

Open Class Library provides the ITrace class and related macros so you can log application-
specific string data from your program. You can find details in Chapter 28, "Problem
Determination."

Notification Framework
Open Class Library provides a set of classes for implementing event- and attribute-change
notification in your application. These notification classes include notifiers, observers, and
notification events. The notification framework is different from the event-handling
framework in one important way: whereas a handler can stop the dispatching of an event to the
remaining handlers in the list, an observer cannot stop a notification from being sent to all
observers registered for the notification. The notification framework is also designed to work
with objects other than windows.

Streaming Framework .
Open Class Library provides classes and global functions for streaming to and from memory or
files. The global-streaming functions support the native C++ data types, the Istring class,
and the collection classes. Open Class Library also supplies functions for flattening and
resurrecting these classes so that type information is not lost. Use the streaming framework to
provide persistence for your model' s data and objects.

Open Class Library's Obsolete Strategy
As Open Class Library has evolved, it has obsoleted classes and functions to improve consis-
tency and design. Open Class Library provides a set of macros in IBASE.HPP that you can use
to identify obsolete code and remove it from your application. The following macros are from
IBASE . HPP:

#define IC_OBSOLETE_1 310
#define IC_OBSOLETE_2 40 0

#ifndef IC_OBSOLETE
#ifdef IC_WIN

#define IC_OBSOLETE 320
#endif

56 Power GUI programming with visualAge for c++

#ifdef IC_PM
#define IC_OBSOLETE 320

#endif
#ifdef IC_MOTIF .

#define IC_OBSOLETE 310
#endif
#ifdef IC_400

#define IC_OBSOLETE 310
#endif `
#ifdef IC_rvs

#define IC_OBSOLETE 310
#endif

#endif

Open Class Library defines a macro in the form IC_OBSOLETE_X for every version in which it
obsoletes something. IC_OBSOLETE represents the obsolete level defined for each of the
platforms. Open Class Library wrappers obsolete classes and functions in macros so you can
remove them when you compile. The compiler then flags any usage of obsolete code in your
application. For example, the first release in. which Open Class Library obsoleted functions
was represented by IC_OBSOLETE_1, and these functions appear in the class declarations as
follows: ,

#if (IC_OBSOLETE <= IC_OBSOLETE_1)
// Obsolete function here

#endif // IC_OBSOLETE

In the next. major release, Open Class Library removed IC_OBSOLETE_1 functions (wrapp`ed
with IC_OBSOLETE=1 as in our example) from the headers, and did not ship their implementa-
tions with the product. Open Class Library only removes obsolete levels in major versions so
that you have sufficient time to migrate your applications to replacement classes and
functions. Notice that IC_OBSOLETE is conditionall.y defined so that you can define it to
identify any obsolete functions in your code. For example, you could compile your application
as follows:

icc -DIC_OBSOLETE 500 yourapp.cpp

In this example, you would receive error messages for any use of obsolete functions or classes.
Because Open Class Library increments the release values with' each release, you can easily
identify functions obsoleted at a specific release level. For example, to identify only functions
•obsoleted with IC_OBSOLETE_1, compile your application with IC_OBSOLETE defined to 400.

Note that you cannot run an application compiled with IC_OBSOLETE defined, even if you have
no compile errors, because the class declarations do not match those that the product was built
with.

To discourage their use, Open Class Library does not document its obsolete classes or
functions in its product documentation. Likewise, we do not include obsolete classes or
functions in this book or the accompanying example code.

Example Program Make Files
The make files for our example programs contain six items worthy of note: .

• The compiler warning flags /Wall+gnr-ppc-ppt-uni-vft- maximize the number of
warnings the compiler gives you for your own code; they minimize the warnings
generated by using open class Library's header files. .

Cfeapfe7. 3 Tour of open class Library 57

• The compiler option /Gin+ causes the examples to be built as multithreaded programs, a
requirement for applications built with Open Class Library. If you do not include this
flag, an error occurs during the compile. If you do not use the /Ft- option, use /Gin+
when linking because template files processed at link time also need to be processed
with/Gin+.

The compiler option /Gd+ causes the example to load VisualAge for C++ code at run
time. This causes the example to require dynamic-link libraries (DLLs) for Open Class
Library and the C/C++ run time. To eliminate the need for the DLLs, use /Gd- to stati-
cally link the VisualAge for C++ code into the executable files of the examples.

We use the compiler-ICC . EXE-not only to compile the examples, but also to link them.

We use the /Ft- option to correctly resolve C++ template functions. Although using this
option results in larger object files, it does not affect the size of the executable file, and
it eliminates linker errors that are typically difficult to resolve.

We do not specify any static or import libraries when linking; instead, we rely on the
library names to be resolved .at link time from the names stored by the compiler in the
object (.OBJ) files. The compiler stores library names based on the s.ettings of the /Gd
and /Gin options used at compile time, as well as any #pragma library statements it
finds in header and include files that it reads at compile time. Note that the compiler
does not generate references to import libraries for resolving calls to Windows Apls.
Because the DLLs of Open Class Library load many of these system DLLs, usually you
do not have to specify these import libraries when building with /Gd+. However, this is
not the case when building without using /Gd+. In that case, you must include these
import libraries to link without error in the Windows version of Open Class Library.

Chapter 4

Windows, Handlers, and Events

• Describes important window concepts and terminology, including differences
between the Windows and OS/2 operating systems

• Describes the Iwindow class, whichis the base class for all window classes
• Describes the IEvent class, whichis the base class for all event classes
• Describes the IHandler class, which is the base class for all event handler classes
• Discusses how Iwindow, IHandler, and IEvent objects interact to implement the

event-handling framework `
• This chapter is highly recommended reading for all Open class Library users.
• Read chapter 3 before reading this chapter if you have not previously written code

using the wide range of classes that Open Class Library provides.

Chapter 2, "Object-Oriented User Interface Fundamentals," describes how you compose the
user interface 6f an application using a series of object views, action windows, and message
windows. Chapter 3, "Tour of Open Class Library," shows how you build these views and
windows using the classes derived from Iwindow. In this chapter, we discuss the features that
these window classes have in common.

1

As you build your application windows, you need to process data that your users update in
these views and respond to user actions and system events. You accomplish these tasks using a
series of event-handler classes derived from IHandler and event-data classes derived from
IEvent. You learn to build these handlers and use them to process events.

You initiate and receive all communications from the underlying presentation system using
these Iwindow, IHandler, and IEvent derived objects. As you see in Figure 4-1, Open Class
Library separates the processing of your requests fo the presentation system from those you
receive/7io77c it. You make requests to the presentation system by calling member functions of
Iwindow and its derived classes. You use these classes to create and destroy windows. You
also use these classes to modify windows, including moving, sizing, hiding, and updating their
contents.

Your application receives all messages from the presentation system via IHandler and its
derived classes. For example, you can be notified when your user changes the contents of an
entry field or selects a push button. These window and handler objects work together to
provide you with a framework to control the behavior of your views.

59

60 P'ower GUI programming with visualAge for c++

Application Program

Windows Handlers I

/I
`

•L Open Class Library

Iwindow HerarchyI
IEvent-HandlingFrameworkI

\ T
i./
1/

Presentation System

Figure 4-1. Separation of Messages to and from the Presentation System.

Open Class Library provides a wide range of handler classes. Some handlers are generic, in
that you can use them with many different window classes. For example, IMouseHandler
works with all window classes. Other handlers are specific to one window class. For example,
you can only use IFramewindowHandler for IFramewindow and its derived classes. Handlers
have corresponding event classes that identify the data specific to the events that the handlers
process. Typically, the names of the handler. and their event classes reflect their close associa-
tion. For example, you use the IMouseEvent, IMouseclickEvent, and IMousepointerEvent
classes with the IMouseHandler class. To help you choose the handlers and events you need to
build your views, you find an overview of the event and event-handler classes' hierarchies
later in this chapter. For more details on the generic handlers, see Chapter 17, "Reusable
Handlers." For more details on specific handlers, see the chapters that describe the window
classes that use each handler.

The event-handling framework connects your application to the presentation system's
message-driven window model. If you need to work directly with the presentation system to
accomplish tasks not supported by Open Class Library, read our discussion about the presen-
tation system's message-driven model and the connection between it and the event-handling
framework.

CfeapfeJ. 4 Windows, Handlers, and Even,ts 61

Window .Basics
Visually, a presentation system window is a rectangular area on the display. In both the
Windows and OS/2 operating systems, one or more pieces of code called i4;I.7cdoi4; procedz{7ieS
control this visual element. These window procedures, or windows, handle events in the
system such as mouse and keyboard input and painting the contents of the displayed window.
When the presentation system captures keyboard and mouse input, it converts the input into
specific messages with additional data unique to the message and then calls the window
procedure. Each window in the presentation system has its own particular behavior, which is
dictated by the way it handles messages. Whereas the presentation system requires all
windows to exhibit a uniform behavior when responding to certain messages, other messages
trigger a different window response. Each window can also send its own unique messages
independent of the presentation system.

Parent-Child Relationships and Window Positioning
The pclre7®£-cfez.Jd 7ieJdfz.o7®Sfez.p of windows refers to the visual relationship between windows in
the presentation system. Child windows are always drawn on top of their parent window but
cannot extend beyond it. If a child window does extend beyond its parent, the presentation
system clips it to the boundary of the parent window. Figure 4-2 shows a parent window with a
single child window that is not contained virithin its parent window. As this figure shows, you
can only view the portion of the child window within the boundaries of the parent window.

The Windows and OS/2 operating systems use different coordinate systems to identify the
position of windows on the display. In the Windows operating system, you specify all
positioning information for a window relative to the z4pper-Je/£ corner of its parent window.
Therefore, the position of a window in Windows is the offset of its upper-left corner from the
upper-left corner of its parent. In the OS/2 operating system, you specify all positioning
information for a window relative to the Jower-Je/f corner of its parent window. Therefore, the
position of a window in the OS/2 operating system is the offset of its lower-left corner from the
lower-left corner of its parent.

You specify the position and size of windows in terms of pz.cfz47ie eze77}e7®£s ®eJsi). Figure 4-2
shows the relationship between a child window and its parent window. The child window is at
horizontal offset "x" and vertical offset "y" from its parent's origin. In the Windows operating
system, the child's "y" value is negative because it starts before or above its parent. In the
OS/2 operating system, the child's "y" value is positive because it starts after or above its
Parent. `

You can readily see that this difference in coordinate systems makes building portable appli-
cations difficult because you must calculate the position of all windows differently in each
operating system. Fortunately, with Open Class Library you can pick a coordinate system and
specify the.location of all windows in that coordinate system. Open Class Library handles any
difference to the native coordinate system for you. You learn more abo.ut this topic later in this
chapter.

62 Power GUI programming with visualAge for c++

windows origins (x,y)

Ch
lows -y (vis:,C(non

igins (x,y),

to

i»`r `+&ir^*.fi id.F

2y \
OWJ¥

\Parentwind

hild window
ible portion)

hiid window
nvisible p ortion)

Figure 4-2. Parent-Child Clipping and Window Positioning.

Because you can only view a child window within the bounds of its parent, you shouldn't be
surprised to learn that the parent also controls whether the child window is visible. If the
parent window is not visible, neither is the child. When you destroy a parent window, you
automatically destroy all of its child windows, also.

Sibling Windows
Sibling windows have the same parent. Sz.bJz.Jog o7ider refers to the sequence in which sibling
windows appear when they are painted on the display or when the user moves the cursor with
the Tab key. Because sibling windows can o`verlap each other, the presentation system paints
them in order from the bottom sibling to the top sibling. When sibling windows overlap,
sibling order also determines which window receives mouse events that occur in the area
where the siblings overlap. Be aware that the Iwindow: :clipsiblings style can cause the
window that is actually underneath to appear to be on top. It is not, however, the one that
receives mouse events.

In those parent windows that support tabbing, using the Tab key moves the cursor to the next
sibling-proceeding from the top sibling to the bottom sibling. Using Shift+Tab moves the
cursor from the bottom sibling to the top sibling.

By default, Open Class Library creates new windows at the bottom of the sibling order.
Therefore, unless you specifically take steps to change it, sibling order is directly related to
the order in which you create the windows. If two sibling windows overlap on the display, the
window you create first covers a portion of the second window.

Cfoapfcr 4 Windows, Handlers, and Events 63

Frame windows are unique because when a user activates them, they dynamically change their
sibling order to make themselves the topmost window. All topmost frame windows are
siblings of each other; their parent is the desktop window.

The sibling order is not related to the location of windows on the display unless you take steps
to position the windows in their sibling order. If you want the Tab key to move from the top of
a list of entry fields to the bottom, explicitly create them in this order. You can adjust the order
later, if needed.

Window Ownership
Whereas the choice of parent window establishes a visual relationship between windows, the
ow#er wz.7®dow defines a path for message processing within the presentation system. Most
windows on the Windows and OS/2 operating systems send a message to their respective owner
windows to notify them of significant events in the windows. For example, they notify their
owners when their contents change. The presentation system also routes some messages not
processed by a window to its owner for processing.

A window always appears on top of its owner window and is hidden when its owner is
minimized. This behavior is one thing that distinguishes a primary frame window from a
secondary frame window. A Seco7®dczry /r¢77!e wz.7edow has another frame window as its owner,
and is always displayed on top of this window. A p7.I.7"clry /rcz77®e wz.7®dow does not have an
owner and is independent of other frame windows in the same application.

With the OS/2 operating system, you can specify the owner when you create the window; the
Windows operating system assigns the owner for you. If the parent window you specify when
you create the window is not a top-level window, the Windows operating system identifies the
top-level window of the parent and makes it the owner. If the parent window is a top-level
window wben you create it, Windows assigns this window as the owner. Further, with the OS/2
operating system, you can dynamically change the owner of a window; with the Windows
operating system, you cannot.

Generally, you can use the parent window as the owner window for controls. See Chapter 7,
"Controls," for considerations specific to controls.

The ownership of frame windows defines whether a window is a primary, secondary, or child
window. Ownership of frame windows also becomes a factor during activation (when a frame
window is closed, its owner gets activated) and clean up (when a frame window is destroyed,
the frame windows that it owns are also destroyed). See Chapter 5, "Frame Window Basics,"
for further information.

Finally, here are two warnings relating to owner windows:

1. Always create a window on the same thread as its owner window. This is a restriction
imposed by the OS/2 operating system, and we highly recommend it for the Windows
operating system.

2. Ensure that you do not create a circular owner chain because an event can create an
endless loop as it gets passed around the chain.

64 Power GUI programming with visualAge for c++

Window Input Focus
All presentation system windows share the same keyboard and mouse. Because these windows
share those common resources, the presentation system requires a way to identify which
window the keyboard or mouse input is sent to.

Windows receive keyboard input based on a window property called z.xpw£/ocz4s'. The window
with input focus receives all keyboard input. Only one window at a time can have input focus,
and only one window receives each keystroke. In the Windows operating system, if the focus
window does not process the keystroke, the window dispatcher passes it up the window's
owner chain until it is processed, effectively simulating how the OS/2 operating system routes
these messages up the owner chain.

Each window that can receive input focus must provide a visual cue to the user. For example, a
frame window' s cue is to change the background color of the title bar; an entry field' s cue is to
display a text cursor.

Window Mouse Input
The presentation system does not use input focus to identify where to send mouse input.
Instead, it checks the topmost window underneath the mouse to determine if it can accept the
mouse message. If the window is registered to accept "hit test" messages, the presentation
system sends it a hit test message (WM_NCHITTEST in the Windows operating system and
WM_HITTEST in the OS/2 operating system) to determine whether the window processes mouse
messages. Most windows pass this message on to the default window procedure. It returns a
value based on whether the window is enabled (accepts the mouse input) or disabled (rejects
the mouse input).

Some windows, like the static controls, appear transparent by responding to a hit test message
with a return code that indicates that the window is transparent (HTTRANSPARENT in the
Windows operating system and HT_TRANSPARENT in the OS/2 operating system). When this
happens, the presentation system sends the same hit test message to the underlying window
(usually the parent) to check whether it can receive the mouse message.

In the Windows operating system, the hit test message is always sent. In the OS/2 operating
system, the message is not sent unless the window has the style CS_HITTEST. If a window does
not have this style, the OS/2 operating system operates as if the window accepts mouse
messages when it is enabled and rejects them when it is disabled.

The Desktop Window
The topmost window in the Windows and OS/2 operating systems is the desktop window. The
primary function of the desktop window is to display a view of the objects located on the
desktop. All of your application's visible top-level windows are child windows of the desktop
window.

Cfe¢pfer 4 Windows, Handlers, and Events 65

The EventlHandling Framework
To recap, a presentation system window contains a piece of code called a window procedure.
All presentation-system-provided windows have their own window procedure. Through a
process called 14;I.J®dow sz4bcJczssz.#g, the presentation systems in the Windows and OS/2
operating systems allow you to extend the behavior of their windows. When you subclass a
window, you provide the presentation system with a window procedure for it to call instead of
the current window procedure. A typical subclass procedure only processes some events and
routes the remainder to the previous window procedure. If window subclassing occurs more
than once for a window, a window can have a chain of window procedures. Each window
procedure in the chain must either fully process a message or route the message to the next
window procedure in the chain.

You use the derived classes of IHandler to process events associated with a window just as you
would use a presentation system subclass procedure. Think of a handler as a way to add a
particular behavior or protocol to a window. When you build handlers that are targeted to a
specific behavior, you can easily reuse this behavior in a different window. You can also easily
combine handlers to add more than one protocol to a window.

Window and Handler Separation
The use of event handler objects to mimic the presentation system's subclass procedures
separates Open Class Library from other C++ libraries. Typically, other libraries capture
events in the system and call virtual functions in the window hierarchy. If you want to process
a particular event, you are forced to create a class, specify that it is derived from the window,
and override a specific virtual function. This design can be easy to use but is not very flexible.
In the next brief example, you see the difficulty in extending the behavior of a window
designed in this manner.

You want to create an entry field that converts all lowercase characters to uppercase before
displaying them in the entry field. To do this, you need to create a specific class of entry field.
You specify that this class, UppercaseEntryField, is derived from the library's existing entry
field class and that it overrides a function of the class used to process keystrokes. You now use
this function to convert characters to uppercase as the user enters lowercase characters.

Although you can build the UppercaseEntryField easily, you now have two problems: how do
you extend the behavior of this new class and how do you create an entry field that not only
converts characters to uppercase, but also limits the characters that the users type to alphabetic
characters? The answer is to create a new class, UppercaseAlphabeticEntryField, which is
derived from UppercaseEntryField. In this new class, you again override the function used to
process keystrokes to add the behavior to support alphabetic-only input. As a further refine-
ment, you want an entry field that supports the alphabetic-only behavior without converting
characters to uppercase. For this, you need to add yet another class to the hierarchy. As you
can see, this approach leads you to many classes with obscure combinations of properties.

66 Power GUI programming with visualAge for c++

Even more important, consider how you would add behavior that converts characters to
uppercase or how you would limit the users' input to alphabetic-only characters in a combi-
nation box or multiline edit control? Clearly, you cannot do this by deriving from either of the
entry field classes that you already created. As a result, you must derive new classes from the
library's combination box and multiline edit classes and add to them the same behaviors you
already added to your entry field classes. Now, you cannot readily reuse your existing code.

Open Class Library fixes these problems by separating the processing of events into event-
handler classes instead of including it with the window classes. Thus, you can build event-
processing objects that are highly flexible. For example, you can create one handler to convert
characters to uppercase and another handler to accept only alphabetic characters. You can then
attach these handlers to any window that accepts keyboard input to add either or both behav-
iors. You write the code only one time. Open Class Library even provides templates so you
can route handler callback functions to functions on your derived control classes. For more
information, see Chapter 17, "Reusable Handlers."

From a Presentation System Message to Your Handler
You have seen in a general way how the presentation system creates events and how Open
Class Library captures them and calls your handler objects for processing. You also have seen
how the processing in a handler object is similar to the processing in a presentation system
window subclass procedure. However, we left a gap between the presentation system sending
the message and it arriving in your handler. Now we shall provide the missing pieces by
describing how your handler receives a presentation system message. Figure 4-3 portrays this
sequence of events.

The user Interface subclass procedure .
An Open Class Library application is a presentation system application. Open Class Library
itself provides a single window procedure that operates for most windows represented by
Iwindow objects (we ignore the exceptions for now). Every time you create an object derived
from Iwindow, the object registers this window procedure as a subclass window procedure. As
a result, Open Class Library's window procedure gets the first chance to process all messages
that the presentation system sends to the window (see Figure 4-3, step 1).

Messages Missing from the Subclass Procedure
In a few situations, Open Class Library's subclass procedure does not receive a message
sent to one of the presentation system's window procedures. This occurs because the
presentation system sends some notification messages as you create a window. Because
Open Class Library does not subclass the window until after the window is created, its
window procedure does not receive these messages. As a result, a handler attached to the
window is not called to process these messages.

Cfeapfe7. 4 Windows, Handlers, and Events 67

Presentation
System

Message sent to
subclass procedure
of Open Class Library

Subclass Procedure

_pfnwplcwinproc

Dispatch the IEvent object to the
IHandler:..dispatchHandlerEventfunction
of each handler in the HandlerList,
until one returns true

Est
Iwindow

Dispatcher

dispatch

Call Iwindow::dispatch
on the located Iwindow
object, passing the
IEvent object

Convert the message
to an IEvent object,
and locate the
Iwindow object in the
WindowList

wEIst
HIf registered, callthe notification

handler

Notification Handler

dispatchHandlerEvent

IHandler

dispatchHandlerEvent

General-Purpose Handler

dispatchHandlerEvent

virtual event-handling functions

Call the event-handling function
of the application's handler object

Application Handler

virtual event-handling functions

lf all handlers return false, call
the previous subclass procedure

Previous Subclass
Procedure

Figure 4-3. Flow of an Event from the Window Dispatcher to an Event Handler.

The primary job of the window procedure is to convert the presentation system message into a
data package called an IEvent object (see Figure 4-3, step 2) and route the event to the correct
Iwindow object. It locates the window object in the current thread's collection of windows and
calls the function Iwindow: :dispatch (see Figure 4-3, step 3). The dispatch function calls
the handler and passes it the event.

The Collection of Windows
When the presentation system creates a window, it assigns the window a token called a wz.7®dow
fecz73dJe. The window handle is a unique value that the presentation system uses to identify the
window. An application must pass this window handle to the presentation system after any
request for services for a window. The presentation system also passes the window handle to a
window procedure when it sends the window a message.

68 Power GUI programming with visualAge for c++

To fulfill its primary function, the window procedure uses the window handle that the presen-
tation system provides to find the Iwindow pointer of the C++ object for the window. It can do
this because Open Class Library maintains keyed lists of all Iwindow objects. It maintains a
separate list for each thread. The window handle itself is the key used to retrieve the window
object from the collection. The window procedure calls Iwindow: :windowwithHandle to
retrieve the Iwindow pointer with the handle from the current thread' s collection of windows.

Once the window procedure finds the right window object, it calls the window object's
dispatcher function, Iwindow: : dispatch, and passes it the event.

The Collection of Handlers
The window dispatcher's primary job is to call any handlers that have requested the window
for a chance to process events. A handler registers this request by calling
Iwindow: : addHandler. When a handler calls addHandler, the window adds the new handler to
the top of its handler list. When the dispatcher calls the handlers in the list, it starts at the top
of the list. This means the dispatcher always calls the last handler added before calling previ-
ously added handlers. Because of this ordering, you can add a handler that can replace some or
all of the behavior of a handler already in the list.

To add a handler, call IHandler: :handleEventsFor and pass it the Iwindow object. This
function calls Iwindow: : addHandler, which puts the handler in the window list.

Open Class Library adds this extra step in registering handlers to add a measure of type safety.
Whereas Iwindow: :addHandler accepts any handler, some handlers only work with specific
windows. When a handler limits the windows it can support, it then needs to override
IHandler: :handleEventsFor with its own versions to identify the Iwindow derived classes it
supports. It also needs to hide the handleEventsFor function which accepts an Iwindow object
by declaring the access for this function private.

Calling All Handlers
Starting with the handler at the top of its list, the window dispatcher calls the virtual function
IHandler: :dispatchHandlerEvent (see Figure 4-3, step 4). Every handler that inherits
directly from IHandler must implement this function. The dotted lines in Figure 4-3 show that
while the window dispatcher calls the dispatchHandlerEvent function in IHandler, the C++
virtual function mechanism routes the call to a derived class.

The function dispatchHandlerEvent in the class derived from IHandler has several responsi-
bilities. It must return true to the dispatcher if the handler processed the event and does not
want any other handlers or the default window procedure to process the event. If the function
does return true, it also may be required to set an event result in the IEvent object received
from the dispatcher. This result is specific to the event and requires the handler to distinguish
details of specific Windows and OS/2 messages. The event result is not used in most events.

If a handler does not need to prevent dispatching of the event to other handlers and the default
window procedure, its dispatchHandlerEvent function must return false to the window
dispatcher.

Cfe¢pfe7. 4 Windows, Handlers, and Events 69

Another responsibility of the handler is to package the information in the presentation system
message into a form usable by the handler and to call a specific virtual function of the handler
(see Figure 4-3, step 5).

When the window dispatcher receives false from a handler, it finds the next handler in the list
and calls its dispatchHandlerEvent function. This process continues until a handler returns
true or the dispatcher has exhausted all the handlers in the list. If any handler returns true
(indicating that it processed the event), Open Class Library's subclass window procedure
returns the event result in the message to the presentation system. The message is not
processed by the presentation system's window procedure. If no handler returns true, then the
subclass procedure calls the next window procedure in the subclass chain by calling
Iwindow: : defaultprocedure (see Figure 4-3, step 6).

Modifying the Default Behavior of a Window
Every type of presentation system window belongs to a particular wz.73dow cJczss. Each class
has a cJczSs 7®cz7#e to identify the type of window, cJczss styJes' to define characteristics of its
windows, and a window procedure to process messages and draw the window. It is this window
procedure that Open Class Library's window procedure calls if a handler did not process the
event.

At times you need to extend the behavior of a class' window procedure for an event instead of
replacing it completely. For example, you might want to add custom drawing on top of a
window after any other handlers and after tbe window classes' window procedure has drawn
the window. You need the other handlers to process tbe event, and you need the presentation
system to provide its default processing before you perform your handler's action. You can do
this in your handler by calling Iwindow: : dispatchRemainingHandlers, adding the additional
processing, and returning true to the window dispatcher. The default behavior of this function
calls defaultprocedure after calling the remaining handlers' dispatchHandlerEvent
function.

At other times you might want the other handlers to process an event, but you want to do some
processing before defaultprocedure is called. You can do this in your handler by calling
Iwindow: :dispatchRemainingHandlers and specifying false for the optional argument
callDefproc. You can then add the additional processing, call defaultprocedure, and return
true to the window dispatcher.

Notifring Window Observers
After Iwindow: : dispatch calls all handlers in its list and calls the presentation system for the
default processing of the message through a call to Iwindow: : defaultprocedure, it checks to
see if any Iobserver objects have been registered for notification messages. Iobserver
objects are registered by calling the function addobserver in Iwindow' s base class, INotifier.
If Iobserver objects are registered, the dispatcher calls dispatchHandlerEvent on the
IwindowNotifyHandler derived class attached to the window to allow it to pass the notifi-
cation to its observers.

70 Power GUI programming with visualAge for c++

Window Handlers
Open Class Library ships a set of general-purpose handler classes that help to streamline
window-event processing. These classes interpret the event identifier and call more specific
event-handling functions. These event-handling functions are virtual functions that an appli-
cation overrides to process an event. In addition, the handler classes convert the event to a
specific event object that provides a detailed interpretation of the event parameters.
Figure 4-4 displays the handler classes of Open Class Library.

To help you understand the work of these handlers better, we have broken them down into
categories, which describe how you use them.

General Handlers

These handlers process common events applicable to many window classes. Thus, you
can attach these handlers to different types of windows to add the same protocol or
behavior to all of them. For example, you can add an IpaintHandler to both
IEntryField and IMultiLineEdit objects.

Frame Window Handlers

These handlers process events for frame windows, and typically the frame constructor
adds them automatically. This group includes handler objects for IFramewindow,
IFileDialog, and IFontDialog.

Control Handlers

These handlers work with specific controls in Open Class Library effectively extending
the behavior of specific controls. You can attach most of these handlers to the control
they extend or to the owner of the control. You can attach others only to the control
itself.

Help Handlers

These handlers include IHelpHandler and IFlyoverHelpHandler. Use IHelpHandler
objects to process events relating to help information. You can use this class only with
frame windows. Use IFlyoverHelpHandler to implement/ly-over (or feover) help for a
window. You can use this class with any window.

Menu Handlers

These handlers dispatch menu events, such as requests for a pop-up menu. Do not use
this class to process command events that occur because a user selects a menu item; use
the ICommandHandler class to do that.

Draw-Item Handlers

These handlers replace or extend the default drawing behavior provided by some
windows in Open Class Library.

Cfe¢pfe7. 4 Windows, Handlers, and Events 71

Figure 4-4. Open Class Library Handler Classes.

Notification Handlers

These handlers implement the INotifier protocol for Iwindow and its derived classes.
IwindowNotifyHandler provides notification for the INotificationlds identified in
Iwindow. Similarly, to implement additional notifications in the classes derived from

72 Power GUI programming with visualAge for c++

Iwindow, the Open Class Library provides handler classes derived from
IwindowNotifyHandler. These classes implement notification for messages from the
presentation system specific to the controls to which they are attached. Then, they call
the dispatchNotificationEvent function of their base class to ensure that all notifica-
tions occur for the window. Figure 4-5 shows the hierarchy of window notification
classes.

I IHandler III|windrfoprwNotifyHandler I,,,

I I. ' ` I ' -. I '' I I I I I I . ." "

rscrousarNotifyHandler muttoINotftyHandler

dies Ierl

I-
I+INotebookNotifyHandler

rsettin9ButtoINotftyHan

INunericspinButtoENbtifyHandler ThtryFictdNotifyHandler

I a |ComboBOINotifyHanm
ITextspinButtonNotifyHandler

ITramewindowhTotifyHandler "ultiLifieHditNotifyHandlerI-
* menuNotifyHandler ITitleltotifyHandler

Figure 4-5. Window Notification Handler Classes.

Besides these handler classes, Open Class Library also provides handler classes to interpret
direct manipulation (drag and drop) and dynamic data exchange (DDE) messages. See
Chapter 21, "Direct Manipulation," for further discussion.

Handler Virtual Functions
When the window dispatcher calls a handler's dispatchllandlerEvent function, it passes an
IEvent object. Based on information in the event object, the handler's dispatcher routes the
event to one of the handler's own virtual functions. To process these events, create a class
derived from the handler that overrides one or more of these fecz7edJe (or c¢Jzbc!ck) functions.
Each function represents a related but independent event that you can choose to process in
your derived class.

Cfeapfer 4 Windows, Handlers, and Events 73

Naming Handler Callback Functions
In general, callback functions in the Open Class Library are named beginning with the word
"handle." To shorten the names of the virtual callback functions in the IHandler hierarchy,

the word "handle" is dropped from the function name because most of these functions are
"handler" functions. It might help you, however, to read these virtual callback functions as

if they started with the word "handle." For example, the command handler dispatcher calls
IColnlnandHandler' s virtual member function, cormand, to tell the handler to "[handle the]
command."

Event Objects
The IEvent object sent to a handler's dispatcher function contains the same untyped data
received in the presentation system message. In this form it is not very useful or portable. It is
the job of the handler, in combination with classes that inberit from IEvent, to provide this
information in a form you can use. These inherited classes of IEvent contain functions you
use to extract the data from the event object. A handler's dispatcher function passes these
event objects to its callback functions and provides the additional data needed to process the
event correctly. For example, the command handler's dispatcher passes an ICommandEvent
when it calls the virtual command function. If the processing needs the identifier of the specific
command, call ICommandEvent: : commandld.

IEvent includes functions that extract the Iwindow pointer of various windows related to the
event. IEvent: :window returns the Iwindow pointer of the window contained in the event.
Because tbe Iwindow dispatcher routes owner-notification messages to the original source of
the message, IEvent: :window may not be the Iwindow object you need. For this reason,
IEvent provides two other functions. IEvent: :dispatchingwindow returns the Iwindow
pointer of the window whose dispatch function called the handler with the event.
IEvent: :controlwindow returns the Iwindow pointer of the window that originated the
owner-notification event.

For example, a control sends a WM_DRAWITEM message to its owner to allow it the opportunity to
take over drawing in the window. The window subclass procedure captures this message and
sends it to the dispatcher of the control that originated the message before sending it to the
dispatcher of the owner. (See "Rerouting Window Messages" for more information.) When a
handler attached to the control receives the draw-item event, IEvent : : dispatchingwindow is
the Iwindow of the control itself. When a handler attached to the owner of the control receives
the event (because it was not processed by a handler attached to the control),
IEvent : : dispatchingwindow is now the owner of the window.

IEvent also includes functions to extract the message identifier and two event parameters.
Open Class Library provides many event classes for you to use with the handler classes.

74 Power GUI programming with visualAge for c++

Event Parameters
To assist the classes that inherit from IEvent in translating message data so that it makes sense
in a handler, Open Class Library also provides the class IEventData. With this class, you can
create and render event parameters and event results from a variety of data formats. For
example, this class contains constructors to create IEventData objects from combinations of
numbers and characters. It also contains functions to extract these numbers and characters
from the event data. Whereas these functions do provide a measure of type safety, the caller
must read the real layout of the data. Usually, this work is done by Open Class Library's own
handler and event classes. They provide a layer of abstraction for IEventData. Notice that the
functions to retrieve the message parameters return IEventparameterl and IEventparameter2
objects and the functions to query the message result return an IEventResult object.
IEventparameterl, IEventparameter2, and IEventResult are synonyms (typedefs) for
IEventData.

Event Results
Many events received from the presentation system do not require a return value. To provide a
return value for those messages requiring a return value, a handler must call the function
IEvent: : setResult and pass it an IEventResult (IEventData) value. Throughout this book,
we identify the events where setting the result is appropriate. When a handler dispatcher
indicates it processed a message by returning true, the window dispatcher uses the
IEvent : : result function to retrieve the value and return it to the presentation system.

Rerouting Window Messages
In the discussion of window ownership, you saw how a presentation system window sends
notification messages to its owner window for processing. Each presentation system window
must determine what events need to be sent to its owner. Thus, the owner of a window can
extend the behavior of the owned window by processing these messages.

To enable you to create windows that extend the functions of the presentation-system-provided
windows, the window subclass procedure captures many owner notification messages and
routes them to the window dispatcher of the window sending the notification. If the window's
handlers do not process the message, the window subclass procedure sends the message on to
the window dispatcher of the owner window.

Because of this rerouting of owner notification events, you and the classes in Open Class
Library can create and add handlers directly to a control to extend the behavior of the control.

In the OS/2 operating system, the rerouted owner notification messages include all control
notification messages (WM_CONTROL), messages to allow application drawing in a window
(WM_DRAWITEM), messages to decide the size of an item in a window (WM_MEASUREITEM), and
messages to dictate the type of pointer to be used over the window (WM_CONTROLPOINTER).

Cfe¢pfer 4 Windows, Handlers, and Events 75

There are two additional owner notification messages, WM_COMMAND and WM_SYSCOMMAND, that
the window subclass procedure does not route back to the push buttons or menus that send
them. Whereas menus and push buttons do send these messages to their owners, tbey are not
useful for extending the behavior of these controls. For this reason Open Class Library does
not reroute these messages.

On the Windows platforms, most control notification messages are in the form of the
WM_COMMAND message. To determine which of these messages require rerouting, the window
subclass procedure inspects the second message parameter, or lparam, to see if it contains a
control handle. The window subclass procedure reroutes only the subset of WM_COMMAND
messages containing a control handle to the window dispatcher of the control that sent them.
In addition, the 32-bit Windows common controls send WM_NOTIFY messages to each parent to
notify it of events. The window subclass procedure also reroutes these messages to the
window dispatcher of the common controls that sent them.

Finally, the 32-bit Windows platforms also send a number of messages that allow the parent of
a control to change the text and background color of the control. The window subclass
procedure also reroutes these messages to the window dispatcher of the controls that sent
them. This includes WM_CTLCOLOREDIT, WM_CTLCOLORSTATIC, "_CTLCOLORLISTBOX,
WM_CTLCOLORSCROLLBAR, and WM_CTLCOLORBTN.

Iwindow
The following topics describe the behavior that is common to all windows. This includes
many public functions that you can use to change the characteristics of objects of classes
derived from Iwindow. For example, it includes functions to move and size a window, disable
and enable user interaction with a window, and show or hide a window.

Iwindow also has functions that affect the bebavior of windows as they relate to other compo-
nents and frameworks in Open Class Library. This behavior includes support for event
dispatching, direct manipulation, the canvas classes, exception handling, and auto-deletion.

Finally, the Iwindow interface includes protected functions, which derived classes use to
implement their functions.

Window Constructors
You rarely need to create an Iwindow object; usually, you create an object of a class that
inherits from Iwindow. However, you do have two constructors you can use to create a C++
"wrapper" object for an existing presentation system window. Use these constructors to attach

the functions of Open Class Library to a window created outside Open Class Library. Use
these constructors only when you do not know the type of the presentation system window.
Most classes that inherit from Iwindow have similar constructors that you need to use instead.

76 Power GUI programming with visualAge for c++

You might use these constructors if a portion of your application is a presentation system
window procedure not written in C++. Or you might provide your development users a set of
service routines in a dynamic link library (DLL). Then, you would associate Open Class
windows to windows provided by the users of your service routines.

The Iwindow constructors are:
Iwindow (const IwindowHandle& handle) ;
Iwindow (unsigned long identifier,

Iwindow* parent) ;
You can create one of these objects by providing the presentation system window handle or by
providing the numeric identifier of the window and the Iwindow pointer of its parent window.
Use the first constructor when you know the window's handle. Use the second constructor
when you do not know the window's handle but know its parent window (typically a dialog)
and its window identifier.

You must follow one rule: never create more then one C++ object for any one presentation
system window. If you do, Iwindow rejects the second request by throwing an
IInvalidRequest exception. You can easily determine if a C++ object exists for the window
by calling Iwindow::windowwithHandle if you know the handle of the window or
Iwindow: :windowwithparent if you know the identifier and the parent Iwindow. If these
functions return a nonzero value for the Iwindow pointer, the C++ object already exists for the
window.

Window Styles
Almost all nonabstract classes that inherit from Iwindow have a constructor that accepts a
series of style values. The only way to set some window characteristics is to pass the style
when you create the window. You can set other characteristics by using the style values or the
specific functions provided in Iwindow or its derived classes.

Iwindow supports the following styles when you create a window of a derived class:

Iwindow::nostyle

Use this style when you want to build a window without setting any style flags.

Iwindow::visible

Use this style to create a visible window. By default, all window classes that inherit
from Iwindow, except frame and object windows, create their presentation system
windows with this style. It allows you to create a frame with child windows and make
them all visible by calling the function show on the frame window. Once you create a
window, you can make the window visible using the function Iwindow: :show and
invisible using the function Iwindow: : hide.

Cfo¢pfe7. 4 Windows, Handlers, and Events 77

Iwindow::disabled

Use this style to create a window that ignores keyboard and mouse input. Once you
create a window, you can disable it using the function Iwindow: : disable and enable it
using the function Iwindow: : enable. Disabling a window also disables the children of
the window.

Iwindow::clipchildren

Use this style to create a window that does not draw in the area occupied by its children.
This is usually unnecessary. If you do use it, performance may decrease.

Iwindow::clipsiblings

Use this style to create a window that does not draw over its sibling windows. This is
only necessary for overlapping sibling windows when you cannot change their sibling
order to have them draw correctly.

Iwindow::clipToparent

Use this style to create a window that can paint outside its own boundary up to the
boundary of its parent. Without this style, a window can only paint within its own
boundary. This style is ignored on the Windows operating system.

Iwindow: : saveBits

Use this style to create a window that saves the screen area under the window as a
bitmap. The window then uses the bitmap to restore the underlying screen area when it
is closed. Do not use this style if the underlying screen area is likely to change. This
style is ignored on the Windows operating system.

Iwindow::synchpaint

Use this style to create a window that synchronously repaints itself instead of waiting for
other events to be processed first. This style is ignored on the Windows operating
System.

Whereas you cannot create an Iwindow using one of these styles (because it has no constructor
that accepts a style), you can use these styles to define the behavior of its derived classes. You
can combine these style values using the C++ bitwise OR operator (operator I) with the styles
defined for the particular class that inherits from Iwindow. Except for Iwindow: :visible, you
do not often need to use the Iwindow styles.

Because all presentation system windows belong to a class and that class provides a set of
predefined styles for the window, you cannot change these cJczSs StyJeS. Some have corre-
sponding window styles. Consequently, controls may exhibit behavior corresponding to these
window styles although you never explicitly set the style for the control.

78 Power GUI programming with visualAge for c++

Window Positioning, Painting, and Visibility
Iwindow provides functions that control the location, size, visibility, and usability of all Open
Class Library windows. With these functions, yQu can move, size, hide, show, and disable
windows. You can determine their position, size, visibility, and whether they respond to
keyboard and mouse input. Besides determining a window's visibility, you can also determine
if a visible window is the top window on tbe display. A visible window is not visible when
another window covers it. You accomplish these tasks with these functions: moveTo, sizeTo,
movesizeTo, position, size, rect, show, hide, isvisible, isshowing, disable, enable, and
isDisabled. The functions that set or return a window' s position do so relative to the parent of
the window.

You can also suspend the painting of a window, make changes to it, resume the painting, and
refresh the window. Use this technique to make several changes without reflecting them in the
window until they are all made. To do this, use the disableupdate, enableupdate, and
refresh functions.

Window Identifier
The presentation system uses the window identifier and its parent window to uniquely identify
one window from the other windows. Iwindow provides functions to change the window
identifier and to query the identifier of an existing window. You change the identifier of a
window using setld, and you retrieve the window identifier for a window by calling id.

Window Recoordination
Because the Windows and OS/2 coordinate systems have a different origin, Open Class Library
allows you to select one of these coordinate systems. It also provides a mapping layer to
translate the coordinates you specify to tbose required by the native operating system. By
default, functions in Open Class Library interpret the coordinates you specify in the coordi-
nates of the native operating system. For the Windows operating system, these functions base
the origin on the upper-left corner of the display. For the OS/2 operating system, they base the
origin on the lower-left corner of the display.

If you want to use the OS/2 coordinate system, perhaps because you have already written code
that uses Open Class Library on the OS/2 operating system, set the default coordinate system
by calling ICoordinatesystem::setApplicationorientation with a value of
ICoordinatesystem : : originLowerLeft.

To directly handle any messages from these operating systems that have point or rectangle
information (it arrives in native coordinates), use functions in ICoordinatesytem to map these
values so they can be ported. Use convertTOApplication to convert points and rectangles
from the operating system's coordinates system to the coordinate system you are currently
using in your application. The reverse process works, too. Use convertTONative to convert
points and rectangles from your application's coordinate system to the operating system's
coordinate system. Also, use IRectangle: :minx and IRectangle: :minY to refer to the origin
of a window regardless of the coordinate system.

Cfea!pfer 4 Windows, Handlers, and Events 79

Window Input Focus
The presentation system sends all keyboard input to the window with input focus. Iwindow
provides functions to change the window with input focus and to determine if a window
currently has input focus. To change the input focus to another window, use setFocus; to
determine if a window has input focus, call hasFocus.

C++ Object Lifetime Management
As you create and destroy your app|ication's views, you must manage the lifetime of the C++
objects you use to compose those views. You must also ensure you do not write code that
depends on the existence of either the C++ object or the presentation system window before
they are created or after they cease to exist.

The task of managing the lifetime of a window object can be difficult because the C++ object
and the presentation system window have independent lifetimes. You can create either of them
first and destroy either of them last. This independence has ramifications you must consider as
you write your code. For example, never write code in the destructor of a class derived from
Iwindow that depends on the existence of the presentation system window. Any function in
Open Class Library that requires a presentation system window throws an IInvalidRequest
exception if that window does not exist. Call Iwindow: : isvalid to determine if the presen-
tation system window still exists.

While you may want to take some action in a destructor while the presentation system window
is still around, you must instead create a handler that captures the notification the presentation
system sends before it destroys the window. The handler code to do this must process the
presentation syst`em message, WM_DESTROY, as in the following example:

//DestroyHandler interface
class DestroyHandler : public IHandler {
protected:virtual Boolean

dispatchHandlerEvent (IEvent& event) ,
destroy (IEvent& event) ;

);

/ /DestroyHandler implementation
IBase: :Boolean DestroyHandler: :dispatchHandlerEvent (IEvent& event)
(

Boolean stopDispatching = false;
switch (event.eventld())
(

case WM_DESTROY :
(

stopDispatching = this->destroy(event) ;
breakj

)
)return stopDispatching;

)

IBase: :Boolean DestroyHandler: :destroy (IEvent& event)
(

// Do your required processing here.
// Return false so we don't stop WM_DESTROY processing.return false;

)

80 Power GUI programming with visualAge for c++

Even this code has restrictions. If the WM_DESTROY message is received because the application
deleted the C++ object, all but the Iwindow portion of the object (and its .base classes) are
destructed when the dispatcher calls the destroy handler.

To help you manage the C++ objects that accompany your windows, Iwindow contains the
following object and window management functions:

Iwindow::setAutoDeleteobject

This function causes the window dispatcher to delete the C++ object for a presentation
system window when the presentation system destroys the window. By default, the
dispatcher does not delete the object because you might have created the object on the
stack or as instance data of another object. Do not use this function unless you create the
object using operator new and do not delete the object yourself.

If you use this function, the window dispatcher deletes the C++ object after ensuring
there are no events still being dispatched to handlers attached to the window. The
presentation system has already destroyed the window when the window dispatcher calls
the C++ object destructor. Therefore, do not write code in the destructor that depends on
a presentation system window being valid.

Iwindow::setAutoDestroywindow

The windows that inherit from Iwindow use this function to cause the Iwindow destructor
to destroy the presentation system window. By default, the Iwindow destructor destroys
the presentation system window if the window constructor created it.

If the window constructor is a wrapper for an existing window, the Iwindow destructor
does not destroy the window unless you call this function. If you extend the windows in
Open Class Library or create new ones of your own, you are responsible for correctly
setting this up. The constructor of any class that inherits from Iwindow and functions as
a C++ wrapper for an existing presentation system window, must call this function with
a value of false.

Sending and Posting Events
Earlier in this chapter, we described how a message leaves the presentation system and arrives
in your handler. To simplify that description, we omitted a significant detail: the difference
between sending and posting events.

The presentation system requires every program to provide a meSsczge gz4ez4e. A message queue
is a list the presentation system uses to store messages until the program is ready to process the
message. To process messages in the message queue, a program contains a small piece of code
called a 7„essczge Joap. The message loop takes the next message from the queue and routes it
to the correct window procedure to process the message. Figure 4-6 shows the interaction
between the presentation system, the message queue, and the message loop.

The Open Class Library's application framework shields you from the details of both the
creation of the message queue and the routing of messages in the queue. When code in Open
Class Library requires the existence of the presentation system and a message queue, the

Cfeapfe7. 4 Windows, Handlers, and Events 81

Key£:darpd6sTe°duse' in::sP:I::tL°unesue
Application message loop

es

messages

J\
Gefi#:s„seaugees]LD,.apafchesmessa

Message Window procedures
preprocessor puts messages on quetJe ®®®

Figure 4-6. The Presentation System Message Queue.

framework initializes the presentation system and creates the message queue. You call
typically IApplication: :current() .run to start processing messages in the queue. This
function calls IThread: : current () .processMsgs which contains the actual message loop.

The presentation system only adds posted messages into the message queue. Therefore,
posting a message is a way to add work to the end of the queue. The window procedure
receives the message after it processes the messages ahead of it in the message queue.

When you post a message, control returns to you after the system places the message in the
message queue. You do not know when the window procedure processes the message or if it
processed the message without errors. The presentation system supplies a return value when
you post a message. This return value only indicates whether the message made it to the
queue; it does not tell you if the window procedure processed the message successfully.

Posting a message fails if the message cannot be placed in the message queue. Usually this
occurs because a window procedure servicing the message queue is not processing messages in
a timely manner, thus allowing the queue to become filled. On the OS/2 operating system, you
may be able to remedy the problem by expanding the size of the message queue. You cannot
change the size of the message queue on the Windows operating system. For details, see
Chapter 20, "Applications and Threads."

If you send a message, the message is not put into the message queue. Instead, if the sender
and receiver window are in the same thread, the presentation system calls the window
procedure directly with the message. If the receiver is not in the same thread or the same
process as the sender, the presentation system switches to the thread of the receiver and calls
the appropriate window procedure directly. The sender is put on hold until the receiver
processes the message.

When you send a message, the receiver processes the message completely before control
returns to you. The return value, provided by the receiver of the message by calling
IEvent : : setResult, is usually an indication of its success or failure to process the message.

82 Power GUI programming with visualAge for c++

When you start building multi-threaded programs, the difference between sending and posting
messages becomes very important. You do little to improve performance by placing code into
a separate thread if it does nothing more then send messages to the primary thread. You only
add the complexity of a multi-threaded program with none of its advantages. The program
behaves as if it were a single-threaded program. The performance of the application may even
suffer due to excessive thread switching.

Iwindow, IwindowHandle, and IMessageQueueHandle all provide functions you can use to send
and post messages to other windows and message queues. Each of these classes provides you
with a different capability for sending and posting messages.

IwindowHandle provides the sendEvent and postEvent functions so you can send and post
messages to windows that do not have a C++ object supporting them. For example, you might
use these functions to send and post messages to windows created in another application. This
class also provides the sendEvents and postEvents functions that allow you to broadcast
messages to the children of a window. You can limit the broadcasting to frame windows or you
can include all descendants of a window.

Iwindow provides the sendEvent and postEvent functions so you can send and post specific
types of events to windows with a C++ object. You can use the enumeration
Iwindow: : EventType to send and post command, system command, help, and character events.

IMessageQueueHandle provides the postEvent and postEvents functions, so you can post (but
not send) messages to one or more message queues. While you may find this capability useful
for sending messages to the message queues of other applications, it has limited use in Open
Class Library. This is because Open Class Library does not yet let you attach a handler to a
message queue. If you posted a message to the message queue of Open Class Library, the
message would never appear in a window's subclass procedure because the presentation
system has no way to identify the correct window procedure. This means it also would not
appear in one of your handlers.

A final warning before we leave the discussion of the message queue. The OS/2 operating
system allows you to destroy the message queue. You should not use this brute force
mechanism to terminate an Open Class Library application because once the message queue is
destroyed, no further messages get distributed. This includes the WM_DESTROY messages that
Open Class Library uses to auto-delete objects.

Sibling Order
The Sz.bJz.Jog o7ider or z-order refers to the sequence that sibling windows should be visited when
painting the windows on the display or moving the cursor between them with the Tab key. By
default, Open Class Library creates all windows at the bottom of the sibling order. This causes
windows to appear on top of siblings created before them and to receive the input focus
resulting from the Tab key after them. You can change the sibling order after creation using
the following functions:

positionBehindsibling
Places the window behind the specified window in the sibling order.

Cfeapfer 4 Windows, Handlers, and Events 83

positionBehindsiblings
Places the window behind all of its siblings in the sibling order.

positiononsiblings
Places the window on top of all its siblings in the sibling order.

You can use the nested class Iwindow: : Childcursor to iterate all of a window's children. This
cursor class functions just like all the cursors in Open Class Library. It visits the child
windows in the sibling order, from the top sibling to the bottom sibling. You can use
Iwindow: : childAt to retrieve the window handle at any Childcursor cursor location. This
function returns a window handle instead of an Iwindow pointer because not all child windows
need to have a C++ object associated with them. For example, if you create a frame window
from a dialog template, you would typically only create C++ objects for the controls on the
dialog that require interaction.

The following code demonstrates how to hide all of a window' s children:
// Find the parent window from its handle.
Iwindow* parent = Iwindow: :windowwithHandle (handle) ;

// Build a child cursor.
Iwindow: : Childcursor cursor (*parent) ;

// Visit all the child windows.
for (cursor.setTOFirst() ; cursor.isvalid() ; cursor.setTONext()) {

IwindowHandle childHandle = parent->childAt (cursor) ;
Iwindow* child = Iwindow: :windowwithllandle (childHandle) ;
// The following code is only necessary if using some
// non-C++ windows.
// If the window has a C++ object, hide it.
if (child)

child->hide () ;
// Else create a temporary C++ window object and hide it.
else (

Iwindow (childllandle) .hide () ;
)

)

Exception Support
Chapter 27, "Error Handling and Reporting," describes the strategy and implementation of
exceptions in Open Class Library. The basic strategy in Open Class Library is that excepfz.o#
fecz7cdJz.#g I.s error fecz73dJz.7®g. You should not see exceptions thrown by Open Class Library once
you have removed your program errors and completed your application. If you wish to ignore
things Open Class Library co~nsiders an error, you can add a catch block to your code to do so.

The interface between Open Class Library and tbe presentation system adds a unique problem
to the C++ exception model. The presentation system sends messages to Open Class Library's
subclass procedure. The subclass procedure routes these events to the window dispatcher and
then on to a list of handlers.

If a library handler or one of your callbacks throws an exception, the C++ run time's exception
handler unwinds the call stack until it finds a catch block for the exception. Figure 4-7
displays most of the call stack for an application that has implemented the command function in
a class derived from ICommandHandler. In the call stack, you see that the main function is the

84 Power GUI programming with visualAge for c++

mE'IAEh=treoandcc=eenntt((,)=o(:essMsgs()

(|h7indows)DispatchMes s age() or (OS/2)WinDispatchMsg()

oEc=s=:::r:=s:::cc::;s Library Subclass Procedure

ommandHandler::dispatchHandlerEvent()

UserHandler::conrmand()

eption)Car;aE:C:Pdti:Own:):handieExcepti°n()

Figure 4-7. Call Stack from maino to Your Handler.

only application function above the command callback function in the handler. If your appli-
cation throws an exception in the command callback function, it would not normally catch the
exception until the exception reaches the main routine.

To catch exceptions that occur during the processing of events, Iwindow: :dispatch calls all
handlers from within a try block. If a function below the dispatcher throws an exception of a
class inherited from IException, the dispatcher catches the exception and calls the Iwindow
virtual function handleException. Iwindow: :handleException passes the exception on to an
object of the class Iwindow: :ExceptionFn if your application registered an exception
function. To register an exception function object, do the following:

1. Define a class derived from Iwindow: :ExceptionFn that implements the function
handleException. If this function can correct the problem, it returns true. This causes
the dispatcher to ignore the error and continue.

2. Create an object of your exception class.

3. Register this object with Iwindow by calling the setExceptionFunction static function.
If you previously called setExceptionFunction, subsequent calls return a pointer to the
previous exception function object. Use this technique to chain exception functions.

If you do not register an exception function, or the one you did register returns false to
indicate it could not correct the error, the Iwindow function handleException rethrows the
exception. Unl,ess you execute the code in main within a try block, this rethrown exception
causes the application to end.

Chapter 5

Frame Window Basics

• Discusses primary and secondary windows and the composition of applications using
Open Class Library

• Describes the IFramewindow, IFrameHandler, IFrameExtension, ITitle, and
IInfoArea classes

• Introduces the IMenuBar, IsystemMenu, IAccelerator, and IAcceleratorTable classes
• Read chapter 4before reading this chapter.
• Chapters 6,19, 20, and 24 coverrelatedmaterial.

This chapter describes the classes you use to manage the primary and secondary windows of
your applications. Open Class Library provides tbe frame window class, IFramewindow, and
related classes for this purpose. Chapter 19, "Advanced Frame Window Topics," contains
additional information on these classes.

Overview
The discussion of graphical user interfaces in Chapter 2, "Object-Oriented User Interface
Fundamentals," introduces the basic definition of a wz.Jedoi4; as a view of an object or a dialog
with the user. In more concrete terms, a/rc!J„e wz.#dow is a presentation system window that
manages the collection of controls that comprise such views.

In certain respects, a frame window is no different from any other control window in the
following ways:

• Allwindowshave asize andposition.

• All have aparentwindow and canhave an ownerwindow.

• All support a basic set offunctions, which is evident in the class hierarchy of open class
Library; IFramewindow derives from Iwindow, as do all control window classes.

Various smaller-scale components-the title bar, menu bar, system menu, scroll bars, and
client window-help comprise frame windows. Some controls are also composites such as a
combination box control, which is comprised of an entry field and list box component.

What distinguishes frame windows from other kinds of windows is what distinguishes almost
any class of object from another: behavior.

85

86 Power GUI programming with visualAge for c++

The frame window and the standard set of components that comprise it provide the following
application-level function:

• The frame window manages these component windows to help ensure a common look
and feel for all object views and action windows.

• The title bar manages the application's entry in the task bar on the windows desktop and
the window list on the OS/2 desktop, and allows you to move the frame window using
direct manipulation.

• The system menu provides functions common to most applications: minimizing,
maximizing, and restoring the view, closing the view and the application, accessing the
window list, and moving and sizing the view on the desktop.

• The frame window allows you to size it through direct manipulation of the sizing border.

• The frame window processes certain events and routes others to the client window,
allowing either the frame or client window to be the centralized location for
application-specific processing.

• The frame window manages the relationships among related (owned) frame windows by
enabling, disabling, moving, and closing these related frames in concert.

Thus, the frame window is the anchor for the visual representation of your application.
IFramewindow and its related classes provide a full set of functions for creating, tailoring, and
managing frame windows and dialogs.

One important distinction between Open Class Library and regular Windows or OS/2
programming is that Open Class Library unifies frame windows and dialogs. To the
IFramewindow class, a dialog is just another attribute of a frame window.

Constructing Frame Windows
This topic explains how to construct your application's frame windows. You learn the three
most common uses of frame windows and how to easily construct an IFramewindow object for
each. You also learn how to use dialog template resources to construct IFramewindow objects.

In this section, you learn the IFramewindow constructors that you use most often. Chapter 19,
"Advanced Frame Window Topics," describes the full set of construction attributes and

IFramewindow constructors. Read that chapter if you need to do something more advanced
than what we present here. You can accomplish most tasks, however, by using a small subset
of the IFramewindow constructor options.

Cfeapfe7. 5 Frame window Basics 87

Constructing Primary Windows
In most cases, the primary window of your application shows a view of the main object in your
application. For example, the primary window of the shopping-list application presented in
Chapter 3, "Tour of Open Class Library," is a view of the two lists that the application
manages.

You create a primary window by constructing an IFramewindow object that has the desktop
window as its parent and no owner. Its lack of an owner is what distinguishes a primary
window from a secondary window. We discuss secondary windows in more detail in the next
topic.

Primary windows are independent views that do not close until the user explicitly closes them.
The lifetime of primary windows is usually the same as the lifetime of your program. The code
that reflects this use is almost always of the same form you saw in the example program
presented in Chapter 3 :

void main ()
(

IFranewindow
primary(...);

//. . .
)

You see this same basic application structure in most of the examples in this book. The
primary frame window object is constructed when the program starts. The program processes
user-initiated window events until the primary window closes and the frame window object is
deleted. Then the program ends.

You read about the event-processing aspects of your application a little later. For now, we
concentrate on techniques to construct the primary frame window itself.

Primary windows showing views of objects usually are not constructed from dialog template
resources (see "Using Dialog Template Resources" in this chapter following the section on
secondary windows). Because a primary window has the desktop window as its parent and has
no owner, constructing this kind of frame window object is relatively straightforward.

The simplest constructor requires no arguments. The resulting frame window has the
following characteristics :

• The default window identifier: IC_DEFAULT_FRAIffi_ID, defined in the file, ICCONST.H.

• The defaultparent window: the desktop window.

• The defaultownerwindow: none.

• The default initial size and position, as returned by the function
IFramewindow : : nextshellRect.

(`

• The default frame window style, as returned by the function
IFramewindow : : defaultstyle.

• The default frame window title defined by a string table entry. This is obtained from the
default application resource library using the frame window identifier, or, if no string
resource is found, the name of the application's . EXE file.

88 Power GUI programming with visualAge for c++

These defaults are acceptable in many cases. The two attributes whose values you most likely
need to supply in place of the defaults are the frame window identifier and the style. The
window identifier for a frame also identifies its associated resources as specified by styles
(such as a string for the title bar text, a menu bar, an accelerator table, and a minimized icon),
and identifies its help subtable (see Chapter 23, "Using Help," for more information). Other
constructors allow you to specify either or both a window identifier and style. If you need
both, you can specify them in either order.

Constructing Secondary Windows
A secondary window is an IFramewindow whose parent is the desktop window, but which is
owned by another window-typically a primary window.

Ownership establishes the following behavior between frame windows:

• Aframe window always stays ontop of its ownerwindow.

• A frame window minimizes and closes when the user minimizes or closes its owner
window.

• When a frame window is closed, its owner window becomes the active window.

Use secondary windows in the following situations:

• To display views of subcomponents of the objects displayed in your primary view. For
example, the properties (or settings) views of the shopping list entries shown in
Chapter 3 are secondary windows.

To display action windows to prompt the user for input to carry out an action selected by
a menu choice. For example, the file dialog typically shown as a result of selecting the
Save as... menu choice is a secondary window.

The lifetime Of secondary windows is different from the lifetime of primary windows.
Secondary windows are created whenever the user requests them, for example, when the user
selects a menu item or double-clicks on a container object. Secondary windows can also be
closed whenever the user chooses. As a result, most secondary windows are created using
operator new. You may want to call Iwindow: :setAutoDeleteobject so that Open Class
Library calls operator delete when the window closes.

Using Dialog Template Resources
You can create IFramewindow objects from dialog template resources. You are most likely to
use these kinds of frame windows as secondary action windows. Whereas the
IMulticellcanvas class provides another way to put a set of controls on a frame window and
is superior to dialogs in many respects (see Chapter 15, "Canvases," for more details), you may
have existing dialog templates you still want to use. In this topic you learn how to construct
IFramewindow objects from dialog template resources.

Cfe¢pfe7. 5 Frame window Basics 89

The following IFramewindow constructors allow you to construct a frame window from a
dialog template:

IFramewindow (unsigned long id = IC_DEFAULT_FRAME_ID,
Framesource source = tryDialogResource) ;

IFramewindow (const IResourceld &resld,
Iwindow* owner = 0,
Framesource source = tryDialogResource) ;

IFralnewindow (const IResourceld &resld,
Iwindow* parent,
Iwindow* owner,
Framesource source= tryDialogResource) ;

The first constructor creates primary windows and the third creates child frame windows. So
the second constructor is the one you use most often to construct frame windows from dialog
templates. This is the same constructor you use to construct most standard secondary
windows. The first parameter of each constructor identifies the dialog template to load, and it
also provides the window identifier for the resulting frame window. See Chapter 24, "Using
Resources," for more information on resource libraries and the IResourceld class.

The last parameter of each of these constructors is the enumerated type, Framesource. This
parameter allows you to control whether the constructor creates a frame window using a dialog
template and to control the behavior of the constructor if a dialog template cannot be loaded.
The following describes the behavior controlled by the IFralnewindow : : Framesource values:

IFramewindow::dialogResource

The constructor attempts to create a frame window from a dialog template in your
resource library. If it cannot load the dialog template, it throws an exception. This is
generally the desired behavior if you want to display a dialog.

IFramewindow::noDialogResource

The constructor creates a standard frame window. It does not attempt to load a dialog
template. If you are not trying to display a dialog, this behavior is more efficient than
the default.

IFramewindow::tryDialogResource

The constructor first attempts to create a frame window from a dialog template in your
resource library. If it cannot load the dialog template, the constructor creates a standard
frame window instead of throwing an exception. This is the default behavior.

The following example loads a secondary window from a dialog template:

Resource Definitions - framel\dialog\dialog.rc
#include `'dialog.h"
#ifdef IC_PM /* Define OS/2 resources. */
#include <os2.h>

I

90 Power GUI programming with visualAge for c++

DLGTEMPLATE ID_DIALOG
BEGIN

DIALOG `'Dialog Title", ID_DIALOG, 10, 10, 100, 100, ,
FCF_SYSMENU I FCF_TITLEBAR

BEGIN
CTEXT "Hello, World!'', 0, 5, 30, 90, 48
DEFPUSHBUTTON `'OK", ID_OK, 5, 5, 40, 20
PUSHBUTTON "Cancel", ID_CLOSE, 55, 5, 40, 20,

BS_SYSCOMMAND I NOT WS_TABSTOP
END

END
#else /* Define Windows resources. */
ID_DIALOG DIALOG LOADONCALL MOVEABLE DISCARDABLE

10' 10' 100, 100
CAPTION `'Dialog Title" STYLE WS_BORDER I WS_CAPTION I

WS_DLGFRADffi I WS_POPUP I WS_SYSMENU
BEGIN

CONTROL `'Hello, World!", 0, `'static'', SS_CENTER I WS_CHILD,
5, 22, 90, 48

CONTROL `'OK", ID_OK, "button", BS_DEFPUSHBUTTON I
WS_TABSTOP I WS_CHILD,
5, 75, 40, 20

CONTROL `'Cancel", ID_CLOSE, "button", WS_CHILD,
55, 75, 40, 20

END
#endif
Loading a Dialog Template - framel\dialog\dialog.cpp
#include <iapp.hpp>
#include <icmdhdr. hpp>
#include <iframe.hpp>
#include <imenubar. hpp>
#include `'dialog.h"
class Primarycmdllandler : public IComlnandHandler {
protected:virtual Boolean

command (ICommandEvent& event) ;
} ; // PrimarycmdHandler
class Dialogcmdl.Iandler : public ICommandHandler {
protected:virtual Boolean

command (ICommandEvent& event) ;
} ; // DialogcmdHandler
class DialogFramewindow : public IFramewindow {
public:DialogFramewindow (unsigned long identifier,

Iwindow* owner) ;
~DialogFramewindow () ;

private :
DialogFramewindow (const DialogFramewindow&) ;

DialogFramewindow
&operator= (const DialogFramewindow&) ;

Dialogcmdllandler
cmdHandl er ;

} ; // DialogFramewindow
void main ()
(

// Create a primary frame window.
IFranewindow

primary("Primary Frame That Loads a Dialog Template") ;

Cfeapfer 5 Frame window Basics 91

// Create a menu bar and add a choice to open a dialog.
IMenuBar

menuBar(&primary) ;
menuBar

#ifdef IC_PM
.addText(ID_FILE, "~File")

#else
.addText(ID_FILE, "&File")

#endif
.addsubmenu(ID_FILE)
.addText(ID_DIALOG_CMD, "Hello...", ID_FILE) ;

// Create the command handler for the primary window.
PrimarycmdHandler

cmdHandler;
cmdHandler

.handleEventsFor(&primary) ;

// Set the focus and show the frame window.
primary

. setFocus ()

. show () ;

IApplication : : current () . run () ;
)

IBase : : Boolean
PrimarycmdHandler: : command (|CommandEvent& event)

(
Boolean

stopprocessingEvent = false;
// Check for the `'Hello. . ." menu choice.
if (event.commandld() == ID_DIALOG_CD®)
(

DialogFramewindow *dialog =
new DialogFramewindow (ID_DIALOG,

event.dispatchingwindow()) ;
(*dialog)
. setAutoDeleteobj ect ()
. setFocus ()
. show () ;

stopprocessingEvent = true;
)
return stopprocessingEvent;

)

IBase : : Boolean
DialogcmdHandler: :command (IConmandEvent& event)

(
Boolean

stopprocessingEvent = false;
if (event.commandld() == ID_OK)
(

DialogFramewindow *dialog =
(DialogFramewindow*) (event.dispatchingwindow()) ;

(*dialog)
.setResult(event.commandld())
. close () ;

stopprocessingEvent = true;
)
return stopprocessingEvent;

)

In this example, we use the command handler, DialogcmdHandler, to close the secondary
window when the user selects the OK push button. Without this code, selecting the push
button would do nothing. This behavior differs from that of a dialog displayed using Windows
or OS/2 Apls, such as DialogBox and WinDlgBox. With these Apls, the dialog is dismissed

92 Power GUI programming with visualAge for c++

when the user selects any push button not explicitly handled by the dialog procedure. Open
Class Library suppresses this behavior, so that "undefined" push buttons are instead ignored.

Showing Frame Windows and Dialogs
In the preceding sections you learned what frame windows are and how to construct
IFramewindow objects. The next step is to show a frame window on the screen and initiate user
interaction with your application.

Giving Your Frame the Input Focus
You frequently create frame windows upon initiation of your application. These are probably
primary windows. If you create them in response to some action by the user during execution
of your application, they are probably secondary windows. In both cases, the user expects the
input focus to be transferred to the newly opened window.

An IFramewindow object does not automatically set the focus to itself. You are responsible for
explicitly calling the Iwindow: : setFocus member function. You can either set the input focus
to the frame window itself or to a specific child control. If you set the focus to a frame window
that has a client window, the frame gives the input focus to its client window.

Displaying Frame Windows
Frame windows, unlike controls, are not visible by default because frames typically require
configuration after construction. If this were to happen while the frame is visible on the
screen, the user would see the frame window flash when you add the menu bar, attach an
information area, add a client window, and so on. So, by default, Open Class Library creates
frame windows in the hidden state. You construct the frame, con figure it-including giving it
the focus as discussed above-and finally show it.

The conventional means of showing the frame is simply to call IFramewindow: : show. In the
following typical application, you see the main function' s implementation:

#include <ifralne. hpp>
// Include other header files here.
void main ()
(

IFranewindow
mainwindow (MY_FRAME_ID) ;

// Con figure the frame here.

// Give the frame the input focus and show it.
mainwindow. setFocus () ;
mainwindow . show () ;

// Start event processing here (to be discussed) .
)

Cfoapfer 5 Frame window Basics 93

Event Processing
Making your frame window visible on the screen does not enable the user to interact with it.
Up to this point all communication with your window has been via calls to your frame window
object. User input, entered using the keyboard or mouse, causes events to be posted to your
application. You must set up your application to process these posted events before the user
can interact with your window.

To help you understand what processing these events entails, consider the previous code
example. The last line of the code presented above is a comment:

// Start event processing here (to be discussed) .
What would this program do if we just left this line as a comment? Obviously, execution
would simply flow off the end of main and the program would end. The user would see your
frame window flash for just an instant before it disappears.

This reveals a bit about the code that must replace this comment. The code executed there
must continue to execute while the frame window appears on the screen. The code required at
that point in the program is a loop that obtains and processes window events. This loop is
called a 7#esSczge-proces'sz.7®g Zoap in presentation system terminology. In the terminology of
Open Class Library, you would more accurately describe it as an eve7if-p7ioceSsiz.7®g Joap.

Open Class Library encapsulates this event-processing loop within the function
ICurrentThread: :processMsgs. Invoke this function using the following expression:

IThread: : current () .processMsgs () ;
This expression needs to be added to the above example program where the comment indicates
that event processing must occur.

We have not yet discussed in any detail the subject of threads of execution. Event processing
occurs on a per-thread basis. Thus, the function that does this processing is a member function
of a thread object. You can find details on threads and the relationship between threads and
event processing in Chapter 20, "Applications and Threads."

In a single-threaded application these details are superfluous. Consequently, Open Class
Library provides a simpler means of initiating the event-processing loop. You can use the
following function instead:

IApplication : : current () . run () ;
This function's implementation consists solely of a call to the underlying ICurrentThread
function described previously. The only difference is that you can access this function by
including IAPP . HPP instead of ITHREAD . HPP. In a single-threaded application where the idea of
threads is not applicable anyway, this approach might be preferred. The VisualAge for C++
sample programs use the IApplication version.

Once you have called ICurrentThread: :processMsgs through either means, control does not
return to the point of the call until all event processing on the thread stops. Chapter 20
discusses how you can force the processing of events to stop. However, generally you let Open
Class Library manage ending the event-processing loop based on whether a primary or object
window still exists. When a user or the application closes a primary or object window and no

94 Power GUI programming with visualAge for c++

other primary or object windows are left on that thread, Open Class Library causes the call to
ICurrentThread: :processMsgs to end.

Displaying Application-Modal Frame Windows
IFralnewindow provides another way to display a frame window and process its events. This
way is to display an application-modal frame window. When you display an application-modal
frame window, its owner window becomes disabled. Any frame windows that are not in the
owner chain of the application-modal frame window remain enabled.

The term appJ!.cczfz.o#-fflod¢J derives from the more general term, 7„odcIJ. In the context of user
interfaces, modal describes a window where the application limits the user's actions to a set of
choices, or even a single choice. Application-modal means that the limitation extends only to
the application's boundaries. Users can switch to another application; they just cannot use
part or all of the rest of the application that displays the application-modal dialog. Hereafter,
the term "modal" means "application-modal."

Use the member function showModally to show an IFramewindow as a modal window. This
function in effect contains an embedded event-processing loop. This is less surprising when
you consider how you might use this function. Typically, you are processing an event at your
primary window that signals your application to display a modal frame window. You could
construct an IFramewindow object from a dialog template and show it modally as follows:

(
IFramewindow

dialog(DIALOG_ID, &mainwindow) ;

dialog . setFocus () ;
dialog . showModally () ;

)

The showModally call must not return until the user dismisses the dialog because, upon return,
the IFramewindow object goes out of scope and thus gets deleted. Your code eventually returns
to process the next window event. Obviously, you do not want the IFramewindow object
deleted or the dialog destroyed until the user has dismissed it. You do not need to process
events for your primary window until the user' s dismissal of the dialog reenables it.

In effect, calling showModally is equivalent to calling ICurrentThread: :processMsgs except
that showModally has the following additional behavior:

• It disables the owner of the modal frame window.

• Itmakes the modal frame window visible.

• It returns when the user dismisses the modal window, which may be sooner than
ICurrentThread: :processMsgs would return (such as when a primary window still
exists).

If the frame window you are showing does not have an owner window, you can use
showModally instead of the show and processMsgs combination you saw previously. You can
rewrite the previous simple code example as follows:

Cfe¢pfer 5 Frame window Basics 95

OS/2 Considerations for Modal Frame Windows and Dialogs
In the OS/2 operating system, the parent and owner windows of an application-modal frame
window must not be the same. The reason becomes clear when you look again at what
happens during the modal display of a frame window. To be modal means that the frame's
owner window becomes disabled. When the OS/2 operating system disables a window, it
disables all of its child windows as well. So, what happens if one of the owner's children is
the modal frame window? You guessed it; the modal frame window also becomes disabled.
A classic deadlock occurs because the user cannot dismiss the disabled modal window
(being disabled, it accepts no user input) and the owner window remains disabled until the
user dismisses the modal frame window.

Fortunately, in the OS/2 operating system, showModally detects when the frame's owner
and parent are the same window. It throws an IInvalidparameter exception in such cases.
You still must be careful, however, because this function does not detect the equally
problematic situation where the parent of your modal frame is a child window of its owner.
The safest course is to ensure that all your modal frame windows have the desktop window
as their parent.

Another aspect is that the OS/2 operating system also attempts to circumvent this problem.
When you load a dialog template resource, it checks to see that the dialog's parent and
owner do not form an invalid combination. If they do, then it removes the owner window so
that the dialog becomes a primary window. As a result, a program such as the following one
does not initially disable the owner window, primary, as it does on the Windows operating
system. You are left wondering why showModally is not working.

void main ()
(

IFranewindow
primary(`'Main Window") ,
// Next create a child frame from a dialog template.
child(IResourceld(DIALOG_ID) , &primary, &primary) ;

primary . show () ;
child. setFocus () ;
child . showModally () ;
IThread: : current () .processMsgs () ;

)

Even if you do not use showModally and instead enter a conventional event-processing
loop, you still lose the fact that the child frame is owned by the primary one. The OS/2
operating system discards this fact when it loads the child frame from the dialog template.

Modal Frame Window - framel\modal\modal.cpp
#include <iframe.hpp>
void main ()
(

IFranewindow
mainwindow("Modal Frame Window") ;

96 Power GUI programming with visualAge for c++

// Give the frame window the input focus.
mainwindow . setFocus () ;

/ / Process eN: eFTLs .
mainwindow . showModally () ;

)

Using this technique, you do not need to include the IAPP . HPP or ITHREAD . HPP header files.

You can test an IFramewindow to see if showModally is displaying it in application-modal
fashion by using the isModal function.

When you call showModally, control does not return to your code until the user closes the
modal dialog. You can subsequently call IFramewindow: :result to query the "result" of the
dialog, which can indicate the push button the user selected to dismiss the dialog. You set this
result by calling IFramewindow: :dismiss. See "Closing Frame Windows" for details. True
modal dialogs-that is, secondary frame windows displayed in application-modal fashion
-have their disadvantages. The greatest disadvantage is that you prevent your users from
interacting with your application views in the order that they prefer. They are instead limited
to the order that your interface dictates.

Minimizing, Maximizing, and Restoring
Besides making your frame window appear on the screen, you can use various functions to
modify its appearance. A frame window normally supports three different states: minimized,
maximized, and normal. You can modify a frame's style so that it cannot be minimized or
maximized by turning off the IFramewindow styles minimizeButton and maximizeButton,
respectively. The operating system disables these two choices on the system menu when you
turn off (remove) these styles. It enables the Restore system menu choice only when the user
has minimized or maximized the window. The Restore system menu choice returns a
maximized window to its normal state.

The user can minimize, maximize, or restore a frame window using a variety of means,
depending on how you con figure the frame window. You can perform these actions from
within your application code by calling the IFramewindow member functions, minimize,
maximize, and restore. However, use of these functions is rare. Normally, you let the user
request these actions and let the system carry out the requests. Notice that minimize and
maximize only work if you set the appropriate style; otherwise, these functions have no effect.
Open Class Library does not call these functions when the user requests these actions using the
minimize or maximize buttons or system menu choices. To detect when the user minimizes,
maximizes, or restores your frame window, you must add an event handler that looks for the
appropriate events that signal when the frame's state has changed. To process these events,
you can derive from the MinMaxHandler class in the framel\minmax example program
included with this book.

You can query the size and position that your frame window has in each of these states. The
frame window returns the corresponding IRectangle if you call the minimizeRect,
maximizeRect, and restoreRect member functions of IFramewindow.

Cfeapfer 5 Frame window Basics 97

OS/2 Considerations for Minimizing Dialogs
When you minimize a frame window with a minimized icon, the frame hides its client
window, frame extensions, and other standard components (such as the title bar and system
menu). This prevents these windows and their child windows from drawing on top of the
minimized icon. Unfortunately, a frame window hides only those windows whose size and
position it manages. If your frame window has other child windows that occupy the
lower-left corner of the frame window, then those child windows draw on top of the
minimized icon. This often happens when you load your frame from a dialog template
because those frames do not have a client window. The only way to overcome this problem
is to hide all of the frame' s children when the user minimizes it. Of course, you would have
to show these child windows again when the user later maximizes or restores the frame.
See the framel\minmax program included with this book for an example of how to do this.

Another issue related to minimized frames is how a' frame window draws itself when it is
minimized. When the user minimizes your frame, it draws its minimized icon. You can set
that icon in one of two ways:

1. By using the IFramewindow: :minimizedlcon style when you construct the frame. The
icon resource with the resource identifier you pass to the constructor is loaded
automatically. This is the simplest and most common technique for setting your frame's
minimized icon.

2. By calling IFramewindow: : setlcon. You can specify the icon as either a pointer handle
or resource identifier.

In the Windows operating system, if your frame window does not have a minimized icon, then
it draws a default icon when it is minimized. In the OS/2 operating system, however, the frame
window paints itself normally after reducing its size to the size of a minimized icon. If the
frame has a client window, the frame sizes the client window to fill the frame. The client
window is not hidden in this case. If there is no client window, then only the lower-left corner
of the frame window is visible in the minimized icon area. Because you probably did not
design your frame to look right when drawn either way-with or without a resized client
window-you should always provide a minimized icon if your frame can be minimized. The
icon also looks nicer on the frame' s system menu.

Closing Frame Windows
You have now learned about creating frame windows, making them visible on the screen,
enabling the processing of user interaction, and working with the various states in which you
can display the frame window. You will now learn what happens when the user closes a frame
window.

98 Power GUI programming with visualAge for c++

Close Events
The following are ways for a user to close, or dismiss, a frame window:

• Double-clickon the systemmenu
• Select close fromthe systemmenu
• PressAlt+F4

Each of these methods is equivalent in terms of the event they generate: a system command
event for the frame window.

The default frame window handler, which IFramewindow attaches to all frame window objects,
intercepts the system command event that signals that the frame is closing. This handler
notifies the client window that the frame window is closing by sending it a modified close
event. This pseudo-close event is an ICommandEvent with a command identifier of
IC_ID_CLOSE (IsystemMenu: : idclose), which triggers a call to the systemcommand virtual
function of any command handlers attached to your client window. To perform some
processing when your frame window closes, you can derive a specialized ICommandHandler
that overrides the systemcommand function. Attach one of these handlers to your client
window.

Open Class Library provides this processing on the OS/2 platform to avoid having a frame
window send a WM_CLOSE message to its client window. A client window would, by default,
process this message by posting a WM_QUIT message to the message queue of its thread. This
message ends the event-processing loop described in the "Event Processing" topic. Because
most threads end after their event-processing loops end, this can cause the application to end if
it occurs on the main or only thread of the application.

The notification that the frame window handler sends to the client window is just that, a
notification. You cannot prevent the frame window from closing by attaching a command
handler to the client window that intercepts the close notification. To interrupt the frame
closing-for example, to display a message box and prompt the user for confirmation-attach
a command handler to your frame window instead. The following example program shows
how you might implement such a handler:

Confirm Frame Closing - framel\ok2close\ok2close.cpp
#include
#include
#include
#include
#include
#include

<icmdhdr.hpp>
< i f rare . hpp>
< imsgbox . hpp>
= i s tat txt . hpp=
< i sysmenu . hpp>
< i thread . hpp>

class CloseHandler : public ICommandHandler {
public :
// Use this function to attach this handler to your frame.
virtual CloseHandler

&handleclosingof (IFralnewindow& frame)
(

this->ICommandHandler: :handleEventsFor (&frame) ;
return *this;

)

Cfo¢pfer 5 Frame window Basics 99

// Override this function to insert your own "close" logic.
virtual IBase: :Boolean

systemcommand (ICommandEvent& event)
(

Boolean
stopprocessingEvent = false;

if (event.commandld() == IsystemMenu: :idclose)
(

IFramewindow*frame = (IFralnewindow*) (event.dispatchingwindow()) ;
IMessageBox

prompt(frame) ;const char*text = ''Press Cancel to keep the window open."
" Press OK to let it close.";

IMessageBox : : Response
rc = prompt.show(text,

IMessageBox : : okcancelButton
I IMessageBox: : informationlcon
I IMessageBox: :moveable) ;

if (rc == IMessageBox::cancel)
(

stopprocessingEvent = true;
)

)
return stopprocessingEvent ;

)
private :virtual IHandler

&handleEventsFor (Iwindow* window)
(

return this->ICormandHandler: :handleEventsFor (window) ;
)

}; // CloseHandler
void main ()
(

IFranewindow
frame(''Confirm on Close") ;

IstaticText
client (IC_FFiAME_CLIENT_ID, &frame, &frame) ;

client
.setAligrment (IstaticText: :centercenter)
.setText(`'Press Alt+F4 to close this window.") ;

frame
.setclient(&client) ;

CloseHandler
closeHandler;

closeHandler
.handleclosingof (frame) ;

frame
. setFocus ()
. show () ;

IThread: : current () .processMsgs () ;
)

In the OS/2 operating system, the user has another way to close the frame window: selecting
the Close choice on the frame window's pop-up menu in the window list. That presents even
more complications. Selecting Close on the window list causes a WM_QUIT message to be
posted directly to the frame window's message queue. Fortunately, this quit event can be
detected. ICurrentThread: :processMsgs, the Open Class Library function that processes
these quit events, translates them to equivalent system command events. These events are just
like those that are generated when the user double-clicks on the system menu. Therefore, you

100 Power GUI programming with visualAge for c++

can process these events with a command handler, as described above, just as you would any
other close event.

You can close an IFramewindow under program control by calling its close member function.
Call this function from a command handler, for example, to close a window when the user
selects an application-specific push button. A conventional WM_CLOSE message is posted to the
frame window, which IFramewindow treats in the same manner as the system-close event
generated when the user closes the window.

Throughout this book, we use the terms "close" and "dismiss" synonymously, usually to denote
the user ending the display of a window. However, the functions IFramewindow: :close and
IFramewindow: :dismiss are not equivalent, just similar. Calling dismiss hides a frame
window whether you display it modally or modelessly. In this case, a close event is not
generated so command handlers are not called. Because this function never causes the frame
window to be destroyed, you can later show the window again without first having to create it.
Calling close generates a close event and generally destroys the frame window (see the next
topic for details).

Calling either close or dismiss on a modal frame window ends the showModally call that is
displaying it. The same is true when the user closes a modal frame window. The value
returned by showModally is the value you pass to IFramewindow: : setvalue prior to calling
close or the user closing the window (the value defaults to IC_ID_CANCEL, or 2, if you do not
call setvalue), or the unsigned long value you pass to dismiss. You can use this value, which
can indicate the push button or command used to end the modal window, to determine the
course of action for your application to take after returning from showModally. Note that by
default, Open Class Library maps the user's closing of a modal frame window to the selection
of a Cancel push button.

The following example uses dismiss and showModally to redisplay the same frame window
each time the user selects the Show the window again push button. The underlying operating
system window is not destroyed until the user selects the Close system menu choice. You can
use this technique to show modal frame window dialogs over and over in your application
confirmation dialog, for example). The following example examines the value returned
IFramewindow: :result to determine if the user closed the frame window by selecting t
Show the window again push button, which causes the command handler to pass AGAIN_CID to
IFramewindow: : dismiss.

Dismissing a Window - framel\dismiss\dismiss.cpp
#include
#include
#include
#include
#include
#include

<icmdidr.hpp>
< i f rare . hpp>
<ipushbut . hpp>
= i s tattxt . hpp=
= i s tring . hpp=
<iccons t . h>

#if (IC_MAJOR_VERSION < 320)
#define IC_ID_CLOSE 0x8004

#endif
#define AGAIN_CDco 100

Cfo¢pfe7.5 FramewindowBasics 101

class CmdHandler : public ICormandHandler {
public=

CmdHandler (IFramewindow& frame)
: fralne(frame)

(
this->handleEventsFor (&frame) ;

)
protected:virtual Boolean

command (ICommandEvent& event)
(

Boolean
stopprocessingEvent = false;

if (event.commandld() == AGAIN_Clo)
(

frame.dismiss (event.commandld()) ;
stopprocessingEvent = true;

)
return stopprocessingEvent ;

)
private :
Cmdiandler

&operator= (Cmdllandler&) ;
IFranewindow
&frane;

}; // Cmdllandler
void main ()
(

IFramewindow
framewindow("Using IFramewindow: :dismiss") ;

IstaticText
text (IC_FRAIffi_CLIENT_ID, &framewindow, &framewindow) ;

franewindow
.setclient(&text) ;

IPushButton
againButton (AGAIN_Crm, &framewindow, &framewindow) ;

againButton
.setText(`'Show the window again") ;

franewindow
. addExtension (&againButton,

IFramewindow: :belowclient) ;

CmdHandler
handler(framewindow) ;

// Keep displaying the frame window until the user has
// closed it via some means other than the "Again"
// push button (for example, pressing Alt+F4) .
franewindow

. setResult (AGAIN_CMD) ;
for (int i = 1; fralnewindow.result() == AGAIN_CMD; i++)
(

text.setText("Display NIimber " + Istring(i));
framewindow. setResult (IC_ID_CLOSE) ;
framewindow. setFocus () ;

framewindow . showModally () ;
)

)

102 Power GUI programming with visualAge for c++

Destroying the Window
The previous chapter discusses the relationship between the lifetime of operating system
windows and the lifetime of Iwindow objects. With frame windows, there is another twist to
the window story. The closing of a frame window is distinct from the destruction of the under-
lying operating system window. The IFralnewindow class provides facilities you can use to
connect these two events, thereby forcing the frame window to be destroyed when the user
closes it. Given the facilities to connect the lifetimes of a window and its C++ object, this
capability lets you force the IFramewindow object to be deleted when the user closes the frame
window.

Open Class Library calls this attribute of frame windows deSf7ioy-o73-cZoSc. You can call
IFramewindow:setDestroyonclose to enable or disable this attribute, and you can call
IFramewindow: :willDestroyonclose to query this attribute. By default, IFramewindow
enables this attribute by setting it to true.

If you disable the destroy-on-close attribute for a frame window, it still generates a close event
that handlers can process when the user closes the window. However, Open Class Library
neither hides nor destroys the window, so it remains on the screen.

Filling Your Frame Window
So far, you have learned the basic characteristics of all frame windows, the frame window
infrastructure. Now, you learn ways to customize a frame window for your particular applica-
tion.

The Client Area
The user can distinguish your application's frame windows by the contents of their client
areas. The cJz.e7®f czrecz is that portion of your frame window not occupied by the standard frame
components and frame extensions. The window that occupies the client area is the cJz.e7®f
wz.7edow. Most of the time, your client window is one of the following:

container

Use an IContainercontrol object as the client window when your frame window shows
a collection of objects for its view.

canvas

Use a canvas class, usually IMulticellcanvas, when your frame window shows action
Options.

notebook

Use the INotebook class to show an object's properties or settings view, or another
similar view.

Cfe¢pfe7.5 FramewindowBasics 103

multiple-line edit

Use the IMultiLineEdit class to display an object consisting solely of text.

view port

Use the Iviewport class to manage scrollable client windows.

If you load your frame window from a dialog template, it does not have a client window. The
dialog's controls populate the client area of these dialog frames. These controls are direct
descendants of the frame window, and the frame window paints the space between them.

Deriving Views from IFramewindow
Many of the examples in this book show view classes derived from the IFramewindow class.
As with many matters of programming, there are trade-offs for using this technique.

Certainly, a view class can gain IFramewindow functionality through composition. That is,
the view class can include an IFramewindow object as part of its member data rather than
deriving from IFramewindow. For some cases, this may give you a cleaner design.

However, the most compelling reason to derive views from IFramewindow is to be able to
use Iwindow: : setAutoDeleteobject to manage the lifetime of view objects created with
operator new. As discussed previously in "Constructing Secondary Windows," you must
create a view object that is displayed as a modeless secondary frame window using
operator new. This requires a corresponding call to operator delete to avoid a memory
leak. Open Class Library calls operator delete for you when it manages the lifetime of
auto-delete windows.

Setting the Client Window
You identify your client window to the frame by calling IFralnewindow: : setclient. The only
argument is a pointer to the client window object.

The frame window automatically makes itself both the parent and owner of the client window.
It also sets the client window's identifier to IC_FRAIffi_CLIENT_ID, whose value is defined in
ICCONST . H. (For the OS/2 platform, this constant has the value of FID_CLIENT, which the OS/2
operating system uses to identify client area windows.) Because IFramewindow modifies the
identifier of a window when it is made the client window, you need to be careful to either give
the window the identifier IC_FRAME_CLIENT_ID, or to not rely on your client window's
identifier when writing your applications. You can access the client window via the frame
window' s clientHandle or client member functions.

104 Power GUI programming with visualAge for c++

Switching Client Windows
You can switch client windows whenever you like by calling setclient with a pointer to
another client window. For example, you might do this when switching a frame window
between settings and icons views. If your frame window already has a client window when you
call setclient, then it changes the parent window of the previous client window to the object
window. This causes the previous client window to be removed from the screen. The window
reappears if you call setclient again, passing its address.

The following example of a View object uses a command handler to switch between the
standard container views and a properties (or settings) view notebook:

class ViewHandler : public ICommandllandler {
//. . .
protected:virtual Boolean

command(ICommandEvent &event)
(
Boolean stopprocessingEvent = false;
View *view = (View*) (event.window()) ;
switch(event.commandld())

(
case VIEW_ICON:

view->container () ->showlconview () ;
view->setclient(view->container()) ;
stopprocessingEvent = true;
break;

Case VIEW_TREE :
view->container () ->showTreelconview () ;
view->setclient(view->container()) ;
stopprocessingEvent = true;
break;

case VIEW_DETAILS :
view->container () ->showDetailsview () ;
view->setclient(view->container()) ;
stopprocessingEvent = true;
break;

case VIEW_SETTINGS :
view->setclient(view->settings ()) ;
stopprocessing-Event = true;
break;

default:
breakj

)
return stopprocessingEvent;
)

//. . .
);

class View : public IFramewindow {
public :
//. . .
// Get the view's container.
IContainercontrol*container () const

(
return &cnr;
)

// Get View's settings notebook.
INotebook*settings () const

(
return &nbk;
)

Cfeapfe7.5 FramewindowBasics 105

//. . .
private :IContainercontrol

Cnr;
INotebook

nbk;
//. . .
EI

Sizing and Positioning via the Client Window
Because a frame window manages the size and position of its client window, you can only
indirectly control the size and position of a client window through the size of its frame window
and by adding or removing other standard component windows. But the client window is
really the heart of your application's interface; so you want to be able to control its size and to
wrap the frame window around a specific client rectangle.

To facilitate this, the IFramewindow class provides a set of functions, shown in Table 5-1,
which let you size and position the frame by specifying the client area dimensions. You use
IFramewindow: : clientRectFor and IFramewindow: : frameRectFor to determine the size and
position of either the frame or client window, given the size and position of the other. Once
you know the size and position for the client window, call IFramewindow: :movesizeToclient
to size and position the frame window accordingly. These functions account for the space
needed by the standard frame components and frame extensions, both of which you learn about
in later topics in this chapter.

Table 5-1. Size and Position Functions of the IFramewindow Class

Function Description
movesizeToclient Sizes and positions the frame window so that the client window ends

up with the specified size and position.

clientRectFor Returns the size and position that the client window would have if
the frame were to have the specified size and position.

frameRectFor Returns the size and position that the frame window requires for the
client window to have the specified size and position.

The Standard Frame Components
Whereas the client window provides the true character of your application, you can tailor the
standard frame components as well. These include the title bar, menu bar, and system menu.
IFranewindow provides styles that control the presence of these components. For some, your
only option is whether to have them present on your frame window. Others you can customize
using classes that Open Class Library provides.

106 Power GUI programming with visualAge for c++

Title Bar
Open Class Library provides the ITitle class for accessing a frame window's title bar. ITitle
has functions to help you compose your frame window titles using the following information:

• Theobjectname
• Theviewname
• The view number (ifmultiple views of an object are open)

In the following example, the object name is "yourapp.ini," the view name is "Icon View," and
the view number is 1. The ITitle object puts these components together so that your title text
looks like this:

+ yourapp.ini -Icon View:1

Construct the title bar object by passing in a pointer to your frame window. You can optionally
specify the title. If you do not provide a title, tbe title remains as it was and the ITitle object
reflects those contents.

The following code example shows how to set a frame' s title:

Accessing the Title Bar - framel\titlebar\titlebar.cpp
IFranewindow

frame("Original Title Bar Text") ;

// Now replace the existing title bar text.
ITitle

title(&frame, "yourapp.ini", "Icon View",1);

Note that the only way you can query and change a frame window's title is by creating an
ITitle object for the frame. You can set the title text in its entirety or just change one
component of a composite title.

If you have a simple title, you can deal simply with the text by calling ITitle: : text and
ITitle : : setText.

Menu Bar
You can access the frame window's menu bar by creating an object of class IMenuBar. You
construct it in a manner similar to the title by passing a pointer to the frame window whose
menu bar you want to access. If the frame window already has a menu bar, the IMenuBar object
becomes a wrapper for it. Otherwise, the IMenuBar object creates a new menu bar and attaches
it to the frame. Read about menu bars in Chapter 6, "Menus and Keyboard Accelerators."

System Menu
Another frame-related menu that you sometimes need to access and manipulate is the system
menu. To do this, you use an object of class IsystemMenu. You construct a system menu object
by passing a pointer to the frame window.

Cfeapfe7.5 FramewindowBasics 107

The operating system enables and disables system menu choices according to the presence of
their corresponding frame components. For example, if your frame does not have a sizing
border, the Size menu choice is disabled. You can use an IsystemMenu object to add and
remove items, and to enable some items such as the Minimize and Maximize choices. For
more information about IsystemMenu, see Chapter 6, "Menus and Keyboard Accelerators."

Accelerator Table
An c}cceJerczfor fczbJe contains entries that define short-cut key combinations and the
commands that the user automatically triggers when pressing those keys. For example, when
the user presses Alt+F4, an entry in the standard accelerator table causes a system command of
type IsystemMenu: :idclose (IC_ID_CLOSE) to be generated. An accelerator table differs
slightly from the other frame components covered under this section in that an accelerator
table is not visible on the screen.

Open Class Library provides several ways for you to work with accelerator tables. You can
load an accelerator table resource and attach it to a frame by using the
IFramewindow: : accelerator style when you construct an IFramewindow object. You can use
an IAccelerator object to load an accelerator table after the frame is constructed or to replace
the accelerator keys used by the frame with a different set. You can also use an
IAcceleratorTable obje.ct to query the accelerator keys used by a window, and to add,
remove, or modify individual accelerator keys. See Chapter 6, "Menus and Keyboard
Accelerators," for more information on accelerator tables.

Frame Extensions
Frame windows manage the layout of the standard frame components and the client window.
To do this, frame windows use a set of events designed specifically for this purpose. Open
Class Library intercepts these events and uses them to support application-defined frame
components, called/rcz77®e exfe7®Sz.o7®s'. You can use frame extensions to reserve areas of a frame
window' s screen real estate to show controls of your choosing.

Open Class Library represents these frame extensions as objects of the class IFrameExtension.
You rarely use this class directly. Instead, you simply provide the attributes of your frame
extensions to the frame window, and the frame creates the underlying IFrameExtension
objects for you.

Location
The following code displays a frame extension in several different regions of the frame
window. Open Class Library identifies these regions by the values of the enumeration
IFramewindow: :Location. You can see the resulting frame window, with its extensions, in
Figure 5-1.

108 Power GUI programming with visualAge for c++

Frame Extension Sampler -framel\frmextns\frmextns.cpp
#include <iframe.hpp>
#include <imenubar.hpp>
#include <istattxt.hpp>
void main ()
(

// Create a frame window and add a menu bar.
IFranewindow

frame("Title Bar");
IMenuBar

menuBar(&frame) ;

menuBar
#ifdef IC_PM

.addText(10, "~File"

.addText(11, "~Edit"

.addText(12, "~View"
#else

.addText(10, `'&File"

.addText(11, ''&Edit"

.addText(12, ''&View"
#endif

// Create some static text controls.
IstaticText

textl
text2
text3
text4

Figure 5-1. Frame Extension Sampler.

Cfea!pfer5 FramewindowBasics 109

#ifdef IC_PM
IstaticText

text5(0,
text6(0,
text7(0'
text8(0'

#endif
IstaticText : : Alignment

aligrment = IstaticText: :centercenter;
textl. setAligrment (alignment) . setText (
text2. setAlignlnent (aligrment) .setText (
text3.setAligrment (alignment) . setText (
text4. setAlignlnent (aligrment) .setText (

#ifdef IC_PM
text5.setAligrment (alignlnent) .setText (
text6.setAlignment (alignment)

.setText(" rightofTitleBar ");
text7.setAlignlnent (alignment) . setText (
text8. setAligrment (alignment) . setText (

#endif

"aboveclient") ;
"belowclient") ;
`' 1eftofclient ");
"rightofclient") ;
"1eftofTitleBar") ;

" 1ef tofMenuBar ") ;
" rightofMenuBar ") ;

const unsigned long fixed = 150;
const IFramewindow: : SeparatorType

none = IFramewindow: :none,
thin = IFramewindow: : thinLine,
thick = IFramewindow: : thickLine;

// Add the static text controls as fralne extensions.
frame

. addExtension (&textl, IFramewindow: : aboveclient,
0.25, thick)

. addExtension (&text2 , IFramewindow: :belowclient,
thick)

.addExtension(&text3 , IFramewindow: : 1eftofclient,
thin)

.addExtension(&text4, IFramewindow: :rightofclient,
fixed, thin);

#ifdef IC_PM
frame

. addExtension (

. addExtension (

. addExtension (

. addExtension (

&text5 , IFramewindow: : 1eftofTitleBar,
fixed, thick)
&text6 , IFramewindow: : rightofTitleBar,
thin)
&text7 , IFramewindow: : 1eftofMenuBar,
thick)
&text8 , IFramewindow: : rightofMenuBar,
none) ;

#endif
frame.setFocus ();
frame . showModally () ;

)

Size

You can specify the size of the frame extension in one of three ways:

• As an integral value. When you specify an integral value, the extension has a fixed
width if it is lef tofclient or rightofclient, or a fixed height if it is aboveclient or
belowclient. The size of the extension is specified in pels and remains constant as the
user resizes the frame window.

110 Power GUI programming with visualAge for c++

As a floating point value. When you provide a floating point value, it is used to
calculate the relative dimensions of the frame extension. For example, 0.33 would
allocate one-third of the client area for the extension. The extension's size is recalcu-
1ated to one-third the new width or height of the frame, as the user resizes it.

The frame extension layout logic is simplistic. If you attach two frame extensions to the
same portion of the frame using relative sizing, the size of the second one is calculated
using the remaining space after the frame window allocates space for the first one. For
example, placing one control aboveclient with size 0.33 and another belowclient with
size 0.33 does not divide the client area up into three equal-sized pieces. The second
extension only occupies two-ninths of the overall client area: one-third of the two-thirds
that remain after the frame allocates space for the first extension.

• As a control's minimum size. If you add the extension without specifying an integral or
floating point value, the size of the frame extension is determined by its minimum size.
This allows the frame window to resize the extension when attributes that affect its size
change, such as its font. See Chapter 15, "Canvases," for information on minimum sizes.

Separator trype
Another frame extension attribute is the fepczr¢£or type. This is the type of visual separator
that the extension draws between itself and the frame component to which you attached it.
Open Class Library supports three types of separators: none (IFramewindow: :none), a
one-pel-wide line (IFramewindow::thinLine), or a three-pel-wide line
(IFramewindow: :thickLine). You identify these with the values of the enumeration
IFramewindow: : SeparatorType. The previous example program uses all three.

Adding Frame Extensions
To add an extension to your frame, call IFramewindow: addExtension. This function accepts
the extension attributes described above-location, an optional size, and optional separator
type-and requires a pointer to the window object that occupies the space for the extension.
IFramewindow overloads this function to distinguish the different kinds of sizing (relative,
fixed, and minimum size). The separator type defaults to a thin line.

The previous example code shows how to use this function.

Removing and Resizing Extensions
You can remove frame extensions by calling IFramewindow: :removeExtension. As an
argument, provide a pointer to the window object that occupies that extension.

You can call IFramewindow: :setExtensionsize to change the size of an existing frame
extension. The arguments for this function are a pointer to the window occupying the
extension and the new size. If there is no extension occupied by the window, then the function
throws an IInvalidparameter exception.

CfoapfeJ.5 FramewindowBasics 111

Information Area
Open Class Library provides one control designed explicitly to use as a frame extension:
IInfoArea. You use an object of this class to implement an information area for your frame
window that displays descriptive text about the currently selected menu choice, that is, the
menu choice that has the input focus. You can also display the long text associated with
fly-over, or hover, help in the information area. See Chapter 16, "Tool Bars, Fly-Over Help,
and Custom Buttons," for more information on fly-over help.

IInfoArea objects automatically attach themselves as frame extensions beneath the client
area. They also attach themselves as a menu handler to the frame. When the user moves the
cursor to a menu choice, the information area object detects the corresponding events and
displays text corresponding to the current menu bar choice. The IInfoArea object displays the
following kinds of text:

Inactive

The information area uses this text when the user has not selected any menu choice. The
information area maintains the inactive text as a data member. You can query and set
this text using inactiveText and setlnactiveText. The default inactive text is blank.

Call IInfoArea: :setlnactiveText to specify that the information area can display
other kinds of informational text. For example, you might use it to display similar text
when the various controls on your window have the input focus, or as the user selects
objects in your container. For example, on initial display of your frame window you
might use:

infoArea
.setlnactiveText("Press Flo to access the menu bar.") ;

Missing

The information area uses this text when it cannot find the informational text for a menu
choice. To access the information area's missing text, call IInfoArea: :missingText
and IInfoArea : : setMissingText. The default missing text is blank.

Disabled

The information area displays this text when a disabled menu choice has the input focus.
It permits you to override the normal text for that choice. All menu choices use the same
disabled text string. To access the information area's disabled text, call
IInfoArea : : disabledText and IInfoArea : : setDisabledText.

If there is no disabled text, the information area displays the normal text for the menu
choice.

Normal text

The information area displays this text when the user places the selection cursor on a
menu choice. It obtains the text from its resource library using the menu item's
identifier as the identifier for a string resource.

112 Power GUI programming with visualAge for c++

You can specify which resource library the information area searches. By default, it
searches the default application resource library, which is obtained by calling
ICurrentApplication: :userResourceLibrary. You can set the application resource
library by calling ICurrentApplication : : setuserResourceLibrary.

To adjust the identifier used to search for the string resource, specify an offset value.
The information area adds the offset value to the menu identifier to come up with the
string resource identifier. You need to specify an offset value if the menu identifiers
conflict with other string resource identifiers.

The information area extension occupies a fixed size at the bottom of the client area based on
the size of its font. If your information text requires more or less space, you can call
IInfoArea : : setLinecount to set the height of the window.

The information area also tries to display information about the system menu choices, so you
must supply string resources for the corresponding menu identifiers. The following is a
sample resource script file, which shows how to define string resources for the system menu
choices.

Information Area for the System Menu - framel\infoarea\infoarea.rc
#include <icconst.h>
#ifdef IC_PM

#def ine INCL_WIN
#define INCL_WINFRAMEMGR /* For SC_* */
#include <os2.h>
#include <ibase.hpp>

#ifndef IC_ID_CLOSE
/* Define these constants which do not exist on */
/* VisualAge C++ for OS/2, Version 3.0. */
#define
#define
#define
#define
#define
#define
#define
#define

#endif
#endif

IC_ID_CLOSE
IC_ID_MOVE
IC_ID_SIZE
IC_ID_MINIMIZE
IC_ID_MAXIMIZE
IC_ID_SYSHIDE
IC_ID_RESTORE
IC_ID_WINDOWLIST

SC_CLOSE
SC_MOVE
SC_SIZE
SC_MINIMIZE
sc_DexlMlzE
SC_HIDE
SC_RESTORE
SC_TASKMANAGER

STRINGTABLE
BEGIN

IC_ID_RESTORE `'Restore the frame window size and position."
IC_ID_MOVE
IC_ID_SIZE
IC_ID_MINIMIZE
IC_ID_MAXIMIZE

#ifdef IC_PM
IC_ID_SYSHIDE

#endif
IC_ID_CLOSE
IC_ID_WINDOWLIST

END

"Move the frame window. "
"Size the frame window. "
`'Minimize the fralne window. "
"Maximize the frame window. "

"Hide the frame window."

`'Close the frame window. "
`'Show the system window list."

To use this information text for the system menu choices, compile this resource script file into
a binary resource file and bind it to your application's default resource library. See
Chapter 24, "Using Resources," for details on how to bind these resources to your application.

Chapter 6

Menus and Keyboard Accelerators

• Describes the classes provided by open class Library to work with keyboard accel-
erators and all of the various types of menus
Describes the IMenu, IMenultem, IMenuB ar, IPopUpMenu, IsystemMenu,
ISubmenu, IMenuHandler, IMenuEvent, IMenuDrawltemHandler,
IMenuDrawltemEvent, IMenu: : Cursor, ICommandHandler, ICommandEvent, and
IAccelerator classes
Chapters 5,10,13, and 17 cover related material.

This chapter describes the classes in Open Class Library that you use to build menus and add
keyboard accelerators. A 7#e73zc presents a list of choices to a user. The behavior of a menu is
similar to the behavior that the button classes provide (see Chapter 10, "Button Controls"). A
menu, however, extends the capability that buttons provide because it enables you to construct
a complex list of cboices, including nested choices. You can predefine it in a resource script
file or a program can dynamically create it. A keyboczrd czcceJerczfor, an application-defined
key or combination of keys, is closely related to a menu because you can include a keyboard
accelerator to give your users a fast-path method for selecting each item on a menu.

Just as buttons do, the menu sends a command event to the window owning the menu when a
user selects an item. Open Class Library provides a set of handler classes to handle command
events and specific menu-related events. For example, when a user presses mouse button 2,
the system sends an event to the application to display a pop-up menu. (In the OS/2 operating
system, a user can also press the pop-up menu request key, Shift+Flo.) The application
receives another event when a user selects a choice from the menu. In addition, Open Class
Library provides ways to alter the contents of the pop-up menu before it is displayed and to
refresh the menu to its original state when the menu is dismissed.

This chapter describes the different kinds of menus that Open Class Library supports and
shows you how to use the menu classes to create and manipulate the menus. It also includes
examples to demonstrate how to code the following tasks:

• Construct menu bars and pop-up menus from a resource script file, and, dynamically, as
your program is executing

• Define anduse acceleratorkeys

• Add and remove items from a menu, including the system menu

• Change amenuitem's textorbitmap

113

114 Power GUI programming with visualAge for c++

• Change whether a menu item is checked or disabled

• Drawyourownmenuitems

About Menus
A menu is a window with a list of choices, and a me7®z4 I.feJ7® represents each choice in the list. A
menu item includes the text or bitmap for the choice and describes how it is displayed. For
example, menu items can be checked, disabled, framed by a box, or highlighted. When users
select a menu item, it can generate a command event or help request, or it can display a
S#b7„e7®z4. A submenu is a menu window that the operating system displays when users select
the menu item that contains a reference to the submenu. For our purposes, a submenu is any
menu window displayed on request. This includes pull-down, cascade, and pop-up menus.
Figure 6-1 shows a variety of the menus you can use in your applications.

System menu Menu bar Minimize/Maximize menu

i__==___________ ______ - -
(¥ i..I. EE-I..11..[=

BitmalPull-Ca

; EiLE Edit ±j±ampleE i HErp ir [` + ;
),\>,\,,\>,\>>,,\,\>>\,>\\,,>,},\,\,,}?,\>,\+, , y> _ _, -I+» _, +~ , +* , _^+v _, +~ , +„ , _K\ , , +~ , +N , 1\ , , \ , +~ ,^

EitrtiHP
>\>,

\),>\,\}

£#itGfl \,

#ELEcaHe +I fab"#i#a`Ti >,\,\\,`€l#§e- - a. -.

A HBlp,I
C:hdiGe 3),}\\,,)\x^,,+

/ xN+r _i++I / *+/ / +` / i`++ /`` >*` / r`:+I /y+/ /y++T wN+/ .`+/ i `+I i +` I /`+/ /`^ / `` / .`+r r`>r I `, _, _ ++, ,++, ,+^ , ^+ , _,++, ,++ ,\\ , ,++, ,\>, ,+++ , v+, , y+, ,y+,

/1
Mnemonic key (ID Cascade arrow

p menu item

-down menu

scade menu

Figure 6-1. Different Kinds of Menus.

Cfeapfe7. 6 Menus and KeyboardAccelerators 115

Menu Bar
A ffle7®# bczr is a horizontal list of choices that appears below the title of many primary and
secondary windows. Usually, all of the choices or menu items on the menu bar refer to
submenus displayed when a user selects the item. These menu bar submenus are called pz4JZ-
dow#, or drop-dow#, 77®e73z4F. For most applications, you define the menu bar contents using a
resource script file, but you can create them dynamically as well.

PulllDown Menu
Pull-down, or drop-down, menus are submenus associated with the menu bar. The name is a bit
misleading because these menus only drop dow# if there is sufficient room below the menu bar
to do so. If the menu bar is close to the bottom of the display, the presentation system displays
the menu czboi;e the menu bar. A pull-down menu is hidden when a user selects a choice in the
menu or moves the input focus off of the menu.

Cascade Menu
A c¢sc¢de 7„e7®z4 is a submenu associated with a menu item on a pull-down or pop-up menu.
You use it to layer menu choices. The presentation system places an arrow sign next to each
menu item with an associated cascade menu. When a user selects the item, the cascade menu is
displayed beside the pull-down or pop-up menLu. A cascade menu also can contain menu items
with other cascade menus, thus enabling you to have multiple layers.

Conditional Cascade Menu
The difference between a co7®dz.fz.oJ®czJ cczSc¢de me7®z4 and a cascade menu is that a conditional
cascade menu is only displayed when a user selects the boxed arrow button next to the text. If
a user selects anywhere else on the item, the default choice (the checked item in the submenu)
in the cascade menu is automatically selected. The Windows operating system does not
support conditional cascade menus.

Title Bar Menu
A fz.fJe bczr 7#e7®z4 is a menu to the left or right of the title bar. For example, the system menu in
the upper-left corner of a primary or secondary window is a title bar menu. Although Open
Class Library does not support creating additional title bar menus, it does support adding and
removing items from the system menu. The example disk contains code in the directory
MENUS\TITLEBMP that demonstrates how to create a class as a wrapper for the
minimize/maximize menu in the OS/2 operating system so that you can add menu items to it.
Only the OS/2 operating system supports this technique.

116 Power GUI programming with visualAge for c++

Pop-Up Menu
A type of submenu, the pop-up menu, or co7®£ex£ J"e##, is a vertical list of choices or menu
items displayed when users click the pop-up menu mouse button. A pop-up menu contains
action choices applicable to an object or a group of objects in a window. Although menu bars
and title bar menus are associated with frame windows, you can use a pop-up menu with any
window. You typically use them on the objects in a container control window. A pop-up menu
can appear anywhere on the screen, but normally you display it next to the object at the
position of the mouse pointer (if users use a mouse) or cursor (if users use the keyboard).

Keyboard Mnemonics and Accelerators
You can associate a mnemonic and a shortcut accelerator key with a textual menu item. Create
a mnemonic by placing a mnemonic indicator (the tilde character in the OS/2 operating
system, the ampersand character in the Windows operating system) before one character of the
menu item's text. Make the mnemonic unique within the choices on a menu or submenu. The
menu displays that menu item with the mnemonic character underlined. Open Class Library
does not translate mnemonic characters across platforms, so for portable applications, place
mnemonic text into a resource script file.

An accelerator is a key or combination of keys that you define in an accelerator table of a
resource script file. When users press the accelerator keys, the presentation system dispatches
a command event just as it does for a menu item selection. Identify the accelerators for menu
choices by providing text on the right side of a menu item. For example, the Cut choice on an
Edit menu usually includes Shift+Delete to the right. Then, instead of users selecting the
menu and then Cut, they can invoke the cut action by holding down the Shift key, and pressing
the Delete key. Although you identify a mnemonic in the text of a menu item, you do not
define the accelerator key when you add a description of an accelerator to the text of a menu
item. You must actually define an accelerator in an accelerator table of a resource script file,
or you can define it dynamically by using the class IAcceleratorKey.

Users can invoke a mnemonic only from a menu with input focus; they can invoke an accel-
erator from anywhere in the window.

The Menu Classes
Figure 6-2 displays the classes in Open Class Library you use to work with menus. Use the
IMenuBar, IPopUpMenu, and IsystemMenu classes to create menus and to add and remove items
from the menus. These classes derive most of tbeir behavior from their common base class
IMenu.

Use IMenultem to define the data, styles, and attributes of a menu item. You can create
IMenultem objects and add them to objects of any class that derives from IMenu. IMenu also
has several functions that you can use to add items without creating an IMenultem object.

Cfe¢pfer 6 Menus and KeyboardAccelerators 117

IMenu and Iwindow
The OS/2 operating system implements menus the same way it does other windows. Menus
have a specific window class (WC_MENU), a size, a position, and window attributes such as
modifiable fonts and colors. Applications can use the window handle to set and query
attributes, and they can control the destruction of the window.

The Windows operating system implements menus differently based on the type of menu.
For example, a menu bar is not a window; it is a specific nonclient area of the frame
window. The operating system controls sizing, positioning, and painting. It implements
submenus, such as pull-down menus and pop-up menus, as windows, but the similarity to
the OS/2 operating system ends there. The Windows operating system creates a single
window from a private window class and uses it for all submenus. Applications cannot
access this window.

Because of these differences, be aware of the following details when writing portable code:

• Although IMenu derives from Iwindow, do not manipulate menus as if they are
windows. For example, color and font changes have no effect on Windows platforms.

• Use IMenuHandle to uniquely identify menus instead of IwindowHandle. Use
IMenu: :menuHandle instead of Iwindow: :handle to query for the handle.
IMenuHandle wrappers the ENENU type on the Windows operating systems and the
HWND type on the OS/2 operating system.

Do not use IFramewindow: :handleFor(IFramewindow: :menuBar) to obtain the
menu bar handle. Because this member function returns an IwindowHandle, it returns
a window handle of 0 on the Windows operating system because a menu bar is not a
window.

ISubmenu is a menu class that enables you to dynamically modify the contents of a pull-down
or cascade menu. It keeps track of the dynamic changes made to the menu and automatically
restores them when a user closes it. You do not create ISubmenu objects directly. Instead,
IMenuHandler creates an ISubmenu object and passes it to its menushowing function before the
menu is displayed.

Open Class Library provides three general handlers to handle events that a menu window
generates. IMenuHandler enables you to process the IMenuEvents related to creating and
displaying a menu. This includes the following actions:

• Requesting apop-up menu

• Selectingamenuitem

• Displaying asubmenu

• Closingasubmenu

When you request a pop-up menu for a container window, use IcnrMenuHandler, a derived
class of IMenuHandler. For more information on this special case, see "Container Pop-Up
Menus" in Chapter 13, "Container Control."

118 Power GUI programming with visualAge for c++

I IBase IIIAccelerator

I IAcceleratorKey RIenultem I

I IAcceleratorTable IVBase II

Ill

I INotifier I I IHandler I I IEvent I

I Iwindow I I ICommandHindler I ICommandEventI

I IMenu I I IMenuHandler I IMenuEvent

I IMenuBar I IMenuDrawltemHandler I IMemuDrawltemEvent

I mopupMenu

I ISubmenu

I IsystenMenu

Figure 6-2. Menu classes.

Use ICommandHandler to process the ICommandEvent that the window dispatcher sends when a
user selects a menu item in a menu or presses an accelerator key.

To draw your own menu items, use IMenuDrawltemHandler. You must create these items with
the IMenultem: : drawltem style.

Use IAccelerator or IAcceleratorTable to load a keyboard accelerator table from a resource
file. Use IAcceleratorKey with IAcceleratorTable to manipulate individual accelerator
keys.

Loading Menus from a Resoulrce File
Usually, you use a resource script file to define a menu bar or pop-up menu and its layered
submenus bed;use they are simple to define. A second advantage is that you can translate the
text in the file into foreign languages without modifying the source code. A third advantage is
that you can change the menu structure without modifying the code.

Cfo¢pfe7. 6 Menus and KeyboardAccelerators 119

Defining a Menu Resource
Both the Windows and OS/2 operating systems use a resource script language to define menu
resources. Though similar, there are some differences. The following examples show a
resource script file that defines a menu-bar resource. The two examples show the same
resource but use the native script format for the respective operating system.

Typical Menu Resource Definition (Windows) - menus\menures\menures.rc
#include <windows. h>
#include `'menures.h"
MI_BITMAP BITMAP menures.bmp

MAIN_MEND nffiNUEX
BEGIN

POPUP `'&File", MI_FILE
BEGIN

MENUITEM "&New... " , MI_NEW
MENIITEM "&Open. . . ", MI_OPEN
MENUITEM " &Save" , MI_SAVE
MENUITEM `'Save &as. . . '', MI_SAVEAS

END
POPUP ''&Edit", MI_EDIT

BEGIN
MENUITEM `'&Undo \t Ctrl+U" , MI_UNDO
MENUITEM SEPARATOR
MENUITEM "&Cut \t Shift+Delete" , MI_CUT
MENUITEM "Copy \t Ctrl+Insert", MI_COPY
MENUITEM "&Paste \t Shift+Insert", MI_PASTE

END
POPUP "E&xamples", MI_EXAMPLE

BEGIN
MENUITEM "' , MI_BITMAP , BITMAP
MENUITEM SEPARATOR
MENUITEM "&Switch", MI_SWITCH
POPUP ''C&ascade" , MI_CASCADE

BEGIN
MENUITEM "Choice 1", MI_CASCADEI
MENUITEM `'Choice 2", MI_CASCADE2
MENUITEM `'Choice 3", MI_CASCADE3

END
MENUITEM `'&Close" , SC_CLOSE
MENUITEM `' &Help" , MI_HELP

END
POPUP "&Help'', MI_HELP

BEGIN
MENUITEM ''&General help... ", MI_GENERAL_HELP
MENUITEM `'&Extended help. . . " , SC_HELPEXTENDED
MENUITEM "&Keys help... " , SC_HELPKEYS
MENUITEM "Help &index... " , SC_HELPINDEX

END
END

Typical Menu Resource Definition (OS/2) - menus\menures\menures.rc
#include <os2.h>
#include `'menures.h"
BITMAP MI_BITMAP "menures.bmp"

120 Power GUI programming with visualAge for c++

MENU MAIN_MENU
BEGIN

PRESPARAMS PP_FONTNAMESIZE
SUBMENU "~File", MI_FILE

"14.Helv"

BEGIN
MENUITEM "~New... " , MI_NEW
MENUITEM "~Open. . . ", MI_OPEN
MENUITEM '' ~Save" , MI_SAVE
MENUITEM ``Save ~as. . . ", MI_SAVEAS

END
SUBMENU `'~Edit" , MI_EDIT

BEGIN
MENUITEM `'~Undo \t Ctrl+U", MI_UNDO
MENUITEM SEPARATOR
RENUITEM `'~Cut \t Shift+Delete" , MI_CUT
MENUITEM "Copy \t Ctrl+Insert" , MI_COPY
MENU|TEM "~Paste \t Shift+Insert" ,MI_PASTE

END
SUBMENU "E~xamples" , MI_EXAMPLE

BEGIN
MENUITEM `'#1061" , MI_BITMAP, MIS_BITMAP
MENUITEM SEPARATOR
MENUITEM `'~Switch" MI_SWITCH
SUBMENU ''C~ascade" , MI_CASCADE

BEGIN
MENUITEM `'Choice 1'' , MI_CASCADEI
MENUITEM ''Choice 2" , MI_CASCADE2
MENUITEM "Choice 3" , MI_CASCADE3

END
MENUITEM "~Close" , SC_CLOSE, MIS_SYSCOMMAND
MENUITEM "~Help'' , MI_HELP , MIS_HELP

END
SUBMENU "~Help" , MI_HELP

BEGIN
MENUITEM "~General help... " , MI_GENERAL_HELP
MENUITEM `'~Extended help. . . " , SC_HELPEXTENDED,

MIS_SYSCOMMAND
MENUITEM "~Keys help. . . " ,

MIS_SYSCOMMAND
MENUITEM "Help ~index. . . ",

MIS_S¥SCoDn¢AND
END

SC_HELPKEYS ,

SC_HELPINDEX,

END

You can add the menu defined in this resource script file to the menu bar using the following
code:

Loading a Frame Menu Resource - menus\menures\menures.cpp
#include <iframe.hpp>
#include <iapp.hpp>
#include "menures.h"
void main ()
(
// Create a frame window with a menu bar from a resource file.
IFramewindow

frame (`'Menu Resource Example" , MAIN_MENI,
IFramewindow: :defaultstyle () I IFramewindow: :menuBar) ;

// Set the focus and show the application.
frame

. setFocus ()

. show () ;
IApplication : : current () . run () ;
)

Cfe¢pfe7. 6 Menus and KeyboardAccelerators 121

The menu resource definition consists mainly of MENUEX, POPUP and MENUITEM statements for
Windows operating systems and MENU, SUBMENU and MENUITEM statements for the OS/2
operating system. All menu definitions begin with a MENUEX/MENU statement that contains a
unique identifier for the menu. If you are creating an IFramewindow with the
IFramewindow: :menuBar style, make this identifier the same as the window identifier of the
IFramewindow object. In the Windows operating systems, the MENUEX keyword comes after the
identifier, not before it as in the OS/2 operating system.

Within the BEGIN and END blocks Of the MENIEX/MENU statement, you can put any number of
POPUP/SUBMENU and MENUITEM statements. The POPUP/SUBMENU statement defines a pull-down
menu for a menu bar, pop-up, or cascade menu. The MENUITEM statement specifies the item's
text or bitmap, a unique identifier, plus any styles or attributes. If you don't specify a style or
attribute, the system defaults the item style to MFT_STRING/MIS_TEXT (textual menu item) and
the attribute to MFS_ENABLE/MIS_ENABLED. See Table 6-2 for a description of the MENUITEM
styles and Table 6-3 for a description of the MENUITEM attributes.

To define a bitmap item, use an MFT_BITMAP/MIS_BITMAP style and associate the bitmap
resource with the item. In the Windows operating system, you can only make this association
after you load the menu resource. In the OS/2 operating system, you can make this association
after loading the menu resource, or you can specify the identifier of the bitmap in the MENUITEM

MENU versus RENUEX
With the introduction of Windows 95, the Microsoft Corporation introduced a new API,
E#£e73ded Afe73z{s', to interface to menus. With this API, all menu items can have a unique
identifier, just as in the OS/2 operating system. Previous Windows platforms, including
Windows 3.1 and Windows NT 3.51, only supported identifiers on command items but not
on submenus and separators. Along with this new API, a new menu resource keyword,
MENUEX, was created to support this functionality. By specifying this keyword instead of the
MENU keyword, you can code your menu resource file with identifiers next to all menu items.

Because of the design of IMenu, Open Class Library requires applications to use the MENUEX
keyword and to specify unique identifiers for all menu items in any Windows menu
resources that applications define. This restriction applies to all applications that use
IMenu and related classes to access menus. Open Class Library supports this keyword for
all Windows platforms.

If no IMenu or related classes are required, you can develop an application that can use the
original menu resource specification (MENU keyword) as long as you follow these restric-
tions:

• You must use the IFramewindow: :menuBar style on the IFramewindow constructor to
load the menu. This restricts the menu to text menu items because bitmap and
draw-item styles require the use of the IMenu classes.

• You can use ICommandHandler objects to receive menu-generated command events,
but you cannot use IMenuHandler and IMenuDrawltemllandler and their related
events.

122 Power GUI programming with visualAge for c++

text. If you specify the bitmap identifier in the MENUITEM text, you must include the definition
of the bitmap in a BITMAP statement in the resource script file. In the preceding example, we
indicated the identifier of the bitmap for the MI_BITMAP MENUITEM by coding "#1061" for the
text string.

Notice in the preceding example the following points:

• The MENUITEM SEPARATOR style defines an unselectable line to separate the menu items.

• To specify a mnemonic character on a text menu item, use a mnemonic indicator
character in front of the character. In the Windows operating system, use the ampersand
character (&) as the mnemonic indicator; in the OS/2 operating system, use the tilde
character (~) as the mnemonic indicator.

• On the OS/2 operating system, you can change the font or color of a menu by adding
PRESPARAM statements .

• You can change the menu items to be system commands or requests for help by using the
MIS_SYSCOMMAND or MIS_HELP styles. Also, use any of the predefined system command
identifiers as the identifier of the menu item to get the operating system's default
processing for these commands.

• There is no MENUITEM style to create a conditional cascade submenu. To use a condi-
tional cascade menu, call IMenu: : setconditionalcascade after you load the menu.
Only the OS/2 operating system supports this.

Loading and Constructing a Menu Bar
After you have defined a menu resource, you have two ways to display the menu as a menu bar.
You can include the IFramewindow: :menuBar style when you create your frame window. The
frame window constructor then automatically loads the menu if it has the same numeric
identifier as the frame window (see the preceding example). Or, you can create an IMenuBar
object to load the menu resource. Using the IMenuBar object does not require you to use the
same numeric identifier for the frame window and the menu. After you create the IMenuBar
object, you can use it to modify the contents of the menu.

In the following example we load the same menu as the preceding example using an IMenuBar
object. After loading the menu, we use the menu bar object to associate a bitmap for the
bitmap menu item, and we change the Cascade menu item to a conditional cascade menu item.
Only the Windows operating system requires the first step because the OS/2 operating system
supports bitmap loading through a resource file. The second step has no effect in the Windows
operating system because it doesn't support conditional cascades.

Using an IMenuBar - menus\menubar\menubar.cpp
#include <iapp.hpp>
#include <iframe.hpp>
#include <imenubar. hpp>
#include "menubar.h"

Cfe¢pfe7. 6 Menus and KeyboardAccelerators 123

void main ()
(
// Create a frame window.
IFranewindow

frame ("Menu Bar Example") ;

// Add the menu bar from a resource file.
IMenuBar

menuBar (MAIN_MENI, &frame) ;

#ifdef IC_WIN
// For Windows, the bitmap is not automatically loaded into
// the menu, so load it now.
menuBar. setBitmap (MI_BITMAP, MI_BITMAP) ;
#endif
// Change the cascade to a conditional cascade.
menuBar. setconditionalcascade (MI_CASCADE , MI_CASCADE1) ;

// Set the focus and show the application.
frame

. setFocus ()

. show () ;
IApplication : : current () . run () ;
)

Loading and Showing a Pop-Up Menu
You can add a pop-up menu to any window in Open Class Library. In the same way that you
define a menu bar, you define a pop-up menu in your resource script file. You can load it
during program initialization or wait until a user requests the menu. Whenever you load the
pop-up menu, you must create a class derived from IMenuHandler and override
IMenuHandler: :makepopupMenu to show the pop-up menu. Open Class Library calls this
function when a user requests a pop-up menu for the control using either the keyboard or
mouse. To display a pop-up menu, call IPopUpMenu: :show and provide the location of the
menu. This location is relative to the window that owns the pop-up menu. When a user
requests a pop-up menu using the mouse, display the pop-up menu at the mouse pointer
location. IMenuEvent : :mouseposition returns the pointer location.

In the OS/2 operating system, the pop-up can also be requested via the keyboard. To determine
which device requested the pop-up, use IEvent : :parameter2 () . number2 () . To load the menu
on demand, create the IPopUpMenu object in your menu handler's makepopupMenu function.
When a user selects a menu item, the window that owns the menu receives the resulting
command event.

The following code adds a pop-up menu to a static text control that is the client window of a
frame window. We add a menu handler to the static text control to create and show the pop-up
menu and a command handler to process the selection of menu items. Several operating
system controls, such as the static text control, do not pass WM_COMMAND messages on to their
owners. To ensure these messages are passed to your command handler, you have two choices.
You can ensure that the owner of the pop-up menu is a window that passes these messages on to
its owner (such as any of the canvas classes), or attach the command handler directly to the
window that owns the pop-up menu. We used the latter in our example by making the static
text control the owner of the pop-up menu and attaching the command handler to it.

124 Power GUI programming with visualAge for c++

Using Poplup Menus - menus\txtpopup\txtpopup.cpp
#include <ifralne.hpp>
#include <istattxt.hpp>
#include <iapp.hpp>
#include <ipopmenu. hpp>
#include <imenuhdr. hpp>
#include <icmdhdr. hpp>
#include `'txtpopup.h"

// Menu handler to capture pop-up menu requests.
class MenuHandler : public IMenuHandler
(
protected:virtual Boolean

makepopupMenu (IMenuEvent& menuEvent) ;
);

// Command handler to capture menu commands.
class Commandllandler : public ICommandllandler
(
public :

Commandllandler (IstaticText& status)
: astatus(status) {}

protected:virtual Boolean
cormand

private :IstaticText
&astatus ;

);

void main ()

(ICommandEvent& event) ;

/ Create a frame window with a menu bar and an
/ accelerator table from a resource file.

IFramewindow
frame (`'Pop-Up Menu Example" , MAIN_MENU,

IFralnewindow: :defaultstyle () I
IFramewindow: :menuBar I
IFramewindow: : accelerator) ;

// Create a status area in the client
// and a command handler to write text in it.IstaticText

statusArea (ID_STATUS, &frame, &fralne) ;
CommandHandler

commandHandler (statusArea) ;

// Add the command handler to the frame to receive the
// menu commands and to the status area to receive any
// pop-up menu commands sent.
commandHandler

. handleEventsFor (&frame)

. handleEventsFor (&statusArea) ;

// Add a pop-up menu handler to the client status area.
MenuHandler

textpopupHandler;
textpopupHandler . handleEventsFor (&s tatusArea) ;

Cfea!pfer 6 Menus and KeyboardAccelerators 125

// Set the focus and show the application.
frame

. setclient (&s tatusArea)

. setFocus ()

. show () ;
IApplication : : current () . run () ;
)

// Create and show the pop-up menu.
IBase : : Boolean MenuHandler : :makepopupMenu (IMenuEvent& event)
(

IPopUpMenu* popUp = new IPopUpMenu (POPUP_MENU,
event . dispatchingwindow ()) ;

(*pOpUp)
. show (event .mouseposition ())
. setAutoDeleteobj ect () ;

return true;
)

IBase: :Boolean CommandHandler: :command(ICommandEvent& event)
(

switch (event . commandld ())
(

case MI_FILE
case MI_NEW
case MI_OPEN
case MI_SAVE
case MI_SAVEAS
case MI_EDIT
case MI_Uroo
case MI_CUT
case MI_COPY
case MI_PASTE
case MI_EXAMPLE
case MI_BITMAP
case MI_HELP
case MI_GENERAL_HELP
case MI_CASCADEI
case MI_CASCADE2
case MI_CASCADE3
(

astatus . setText (event . commandld ()) ;
return true;

)
)return false;

)

You define a pop-up menu in a resource script file the same as you do a menu bar menu. We
added the following menu resource statements to our resource script file to define a pop-up
menu with the items on our Edit menu. .

Poplup Menu Resource Definition (Windows) - menus\txtpopup\txtpopup.rc
popup_MENu nffiNUEx

BEGIN
RENUITEM "&Undo \t Ctrl+U", MI_UNDO
MENUITEM SEPARATOR
RENUITEM ''&Cut \t Shift+Delete" , MI_CUT
RENUITEM ''Copy \t Ctrl+Insert", MI_COPY
MENUITEM "&Paste \t Shift+Insert" , MI_PASTE

END

126 Power GUI programming with visualAge for c++

Pop-Up Menu Resource Definition (OS/2) - menus\txtpopup\txtpopup.rc
MENu popup_nffiNu

BEGIN
MENUITEM `'~Undo \t Ctrl+U", MI_UNDO
MENUITEM SEPARATOR
RENUITEM `'~Cut \t Shift+Delete" , MI_CUT
MENUITEM `'Copy \t Ctrl+Insert", MI_COPY
MENUITEM ''~Paste \t Shift+Insert", MI_PASTE

END

Creating Menus Programmatically
Although most applications use the menu resource script file to define menus, you can create
the menu bar and pop-up menus dynamically at run time. This is useful if the menu items vary
depending on the state of the selected object or objects. For example, in a container view
when multiple objects are selected, build a pop-up menu with items valid for all currently
selected objects. There are several ways to accomplish this. First, you can define a menu
resource that contains all possible menu items and submenus. After you load the menu, you
can remove any menu items that do not apply to the currently selected objects. The other way,
which we show in the next example, is to dynamically create the menu and then add the
necessary menu items and submenus. You can use the same techniques in the example to
dynamically create a menu bar. The only code that changes from the previous example is the
definition of the makepopupMenu function.

Dynamically Created Pop-Up Menus - menus\dynpopup\dynpopup.cpp
IBase : : Boolean MenuHandler : : makepopupMenu (IMenuEvent& event)
(

// Create the pop-up menu.
IPopUpMenu* popUp = new IPopUpMenu (event.dispatchingwindow() ,

POPUP_MENI) ;
// Create menu items for "Close" and ''Help."
IMenultem close (SC_CLOSE, IMenultem: :postsystemcommand) ;
close . setText (SC_CLOSE) ;
IMenultem help (MI_HELP, IMenultem: :postHelp) ;
help . setText (MI_HELP) ;

// Add the menu items to the pop-up menu.
(*pOpUp)

. addText (MI_EDIT , MI_EDIT)

. addsubmenu (MI_EDIT)
.addText (MI_UNDO, MI_UNDO, MI_EDIT)
. addseparator (MI_EDIT)
. addText (MI_CUT , MI_CUT , MI_EDIT)
.addText(MI_COPY, MI_COPY, MI_EDIT)
. addText (MI_PASTE, MI_PASTE, MI_EDIT) ;

(*pOpUp)
. addText (MI_EXAMPLE , MI_EXAMPLE)
. addsubmenu (MI_EXAMPLE)

. addBitmap (MI_BITMAP, MI_BITMAP, MI_EXAMPLE)

. addseparator (MI_EXAMPLE)

. addltem(close, MI_EXAMPLE)

. addltem (help, MI_EXAMPLE)
. setAutoDeleteobj eat () ;

// Show the pop-up menu.
(*pOpUp)

. show (event .mouseposition ()) ;
return true;

)

Cfoapfer 6 Menus and KeyboardAccelerators 127

Note the following points:

• Although you can create the menu dynamically, you can still store the text for the menu
items separately from the application code by defining a STRINGTABLE resource (not
shown in our example) in your resource script file.

To create submenus dynamically, first call IMenu: :addText to create the menu item.
Then, call IMenu : : addsubmenu with the same numeric identifier to create the submenu.

To mirror dynamic changes to a menu, use the IAcceleratorTable and
IAcceleratorKey classes to make corresponding changes to accelerator keys.

To cause the menu item selection to send a system command or help notification,
construct a menu item with the appropriate styles and use IMenu: : addltem to add them
to the menu. (Reminder: Only the OS/2 operating system supports this capability.)

Defining Keyboard Accelerators
In the previous example, we added text to the right of our Edit menu items on the pop-up
menu. This text describes how to invoke these items using accelerator keys. The \t in the text,
which represents a tab character, aligns the following text in a separate column. To enable
these accelerator keys, define an accelerator table with these keys and associate the table with
the frame window or the window that owns the menu. To define an accelerator table, you can
create an ACCELERATORS/ACCELTABLE resource in a resource script file or use the
IAcceleratorTable and IAcceleratorKey classes to create the table dynamically. An accel-
erator table contains accelerator keys. Each accelerator key generates a command, system
command, or help request when a user presses the key.

The accelerator table resource for our pop-up menu follows:

Accelerator Table Resource Definition (Windows) - menus\txtpopup\txtpopup.rc
MAIN_lffiNU ACCELERATORS
BEGIN`'^U'', MI_UNDO, ASCII

VK_DEljETE , MI_CUT , SHIFT , VIRTKEY
VK_INSERT, MI_COPY, CONTROL, VIRTKEY
VK_INSERT, MI_PASTE, SHIFT, VIRTKEY

END

Accelerator Table Resource Definition (OS/2) - menus\txtpopup\txtpopup.rc
AccELTABLE MAIN_nffiNu
BEGIN

"u " , MI_UNDO , CIIAR , CONTROL
"U" , MI_UNDO , CHAR , CONTROL
VK_DELETE, MI_CUT, VIRTUALKEY, SHIFT
VK_INSERT, MI_COPY, VIRTUALKEY, CONTROL
VK_INSERT, MI_PASTE, VIRTUALKEY, SHIFT

END

After defining the accelerator table in a resource script file, you must add code to load the
table. Similar to loading menus, you have two ways to load an accelerator table from a
resource file. You can define the accelerator table with the same numeric identifier as your

128 Power GUI programming with visualAge for c++

frame window and add the frame window style IFramewindow: :accelerator when creating
the window. Or, you can load the resource by creating an IAccelerator or
IAcceleratorTable object. IAccelerator enables you to load and associate an accelerator
table with one window of your application or with all frame windows created on the current
thread. The following example uses an IAccelerator object to load the accelerator table for
our Edit menu items and to associate it with the frame window.

Loading an Accelerator Table - menus\accel\accel.cpp
#include
#include
#include
#include
#include
#include

<iaccel . hpp>
=iapp.hpp=
<icmdhdr.hpp>
< i f rare . hpp>
= i s tattxt . hpp="accel.h"

// Command handler to capture menu commands.
class CommandHandler : public ICommandllandler
(
public :

CommandHandler (IstaticText& status)
: astatus(status) {}

protected:virtual Boolean
cormand

private :IstaticText
&astatus;

);

(ICommandEvent& event) ;

void main ()
(
// Create a frame window with a menu bar.
IFramewindow

frame ("Pop-Up Menu Example" , MAIN_MENU,
IFramewindow : : defaultstyle ()

I IFramewindow: :menuBar) ;

// Load an accelerator table from the resource
// file and associate it with the frame window.
IAccelerator accelTable (MAIN_MENI, &frame) ;

// Create a status area as the client window
// and a command handler to write text in it.IstaticText

statusArea (ID_STATUS, &frame, &frame) ;
CommandHandler

commandHandler (statusArea) ;

// Add the command handler to the frame to receive the
// menu commands and to the status area to receive any
// accelerator commands sent.
commandHandler

. handleEventsFor (&frame)

. handleEventsFor (&statusArea) ;

// Set the focus and show the application.
frame

. setclient (&statusArea)

. setFocus ()

. show () ;

IApplication : : current () . run () ;
)

Cfe¢pfe7. 6 Menus and KeyboardAccelerators 129

You can also associate an accelerator table to a window using the IAcceleratorTable class.
IAcceleratorTable duplicates much of the functionality of IAccelerator, although it lacks
some of its lesser-used capabilities. The biggest difference between the two classes, however,
is that you can use IAcceleratorTable with the IAcceleratorKey class to build an accelerator
table dynamically, or query or modify individual accelerator keys.

You define an accelerator key with IAcceleratorKey using either an ASCII character code or
an IKey: :VirtualKey value defined in IKEY.HPP (for keys that have no obvious character
code). Actually, IKey: :VirtualKey is a typedef for unsigned long, thus allowing you to use
virtual key values defined by the operating system that Open Class Library does not define in
IKEY.HPP (perhaps because it is not a portable virtual key). You can also use the
IAcceleratorTable::Cursor class to return the keys in an accelerator table as
IAcceleratorKeyobjects.

IAcceleratorTable provides functions for adding an IAcceleratorKey object and removing
an accelerator key with the same key combination as a specified IAcceleratorKey object.
IAcceleratorTable also provides a nested Cursor class for iterating the accelerator keys in
the table. You can use this class to return a key as an IAcceleratorKey object, to replace a
specific accelerator key, or to remove a specific accelerator key.

Once you build an IAcceleratorTable object, call Iwindow: :setAcceleratorTable to
associate the accelerator table with a window. An IAcceleratorTable object is also
associated with a window if you specify the window when constructing the
IAcceleratorTable object, or create the IAcceleratorTable object by calling
Iwindow: :acceleratorTable. If associated at creation time, you can optionally cause any
changes you make to the IAcceleratorTable object to be immediately reflected in the
window.

We provide an example, in the directory MENUS\DYNACCEL on the example disk, that shows a
selection handler using IAcceleratorTable and IAcceleratorKey to add and remove accel-
erator keys based on the selection or deselection of a check box:

Accessing Title Bar Menus
By default, a system menu is added to all primary and secondary windows in Open Class
Library because the IFramewindow: : systemMenu style is a frame window default style. Access
the system menu and its menu items by creating an IsystemMenu object. This lets you cbange
the styles and attributes of the system menu items and add or remove items. The following
example uses an IsystemMenu object to add a Window submenu to the system menu and to
move most of the existing system menu items to this submenu. Use the function
IFramewindow: : setlcon to replace the graphic displayed by the system menu. Figure 6-3
displays these changes in the system menu.

130 Power GUI programming with visualAge for c++

Accessing the System Menu - menus\sysmenu\sysmenu.cpp
#include <iapp.hpp>
#include <iframe.hpp>
#include <isysmenu. hpp>
#define MI_WINDOW 0xl00

void main ()
(
IFramewindow

frame ("System Menu Example") ;

// Provide a wrapper for the system menu.
IsystemMenu

sys temMenu (&fralne) ;

// We want the ''Window" submenu to be first in the list.
// This is accomplished by creating a menu item and
// setting its index to 0. We later call addsubmenu
// to change it from a normal menu item to a submenu.
IMenultem windowsubmenu (MI_WINDOW) ;
windowsubmenu

. setlndex (0)

// Because we are not using a resource file, we need to handle
// the different mnemonic indicators.
#ifdef IC_PM

. setText ("~Window") ;
#else

. setText ("&Window") ;
#endif
systemMenu

. addltem (windowsubmenu, IsystemMenu : : idpulldown)

. addsubmenu (MI_WINDOW) ;

Figure 6-3. Altering a System Menu.

Cfe¢pfe]. 6 Menus and KeyboardAccelerators 131

// Move some of the system menu items under
// the submenu we just added.
unsigned long itemsTOMove[] =

{IsystemMenu: : idRestore, IsystemMenu: : idMove,
IsystemMenu: : idsize, IsystemMenu: : idMinimize,
IsystemMenu : : idMaximize, IsystemMenu: : idHide}

(int i=0; i<sizeof(itemsTOMove) /sizeof(unsigned long) ; i++)

// 1) Save the menu item data.
// 2) Change the item's index to add it last.
// 3) Delete the old menu item.
// 4) Add the menu item under `'Window".
IMenultem systemltem = systemMenu.menultem(itemsTOMove [i]) ;
systemltem . setlndex (-1) ;
systemMenu

. deleteltem (itemsTOMove [i])

. addltem (systemltem, MI_WINDOW) ;
}

// Add an icon, set the focus, show the frame,
// and run the application.
frame

. setlcon (IsystempointerHandle (IsystempointerHandle : : folder))

. setFocus ()

. show () ;

IApplication : : current () . run () ;
)

This example demonstrates how to do the following tasks:

• Access menu items in the system menu. The system menu provides a list ofdefault items
and the operating system enables and disables them automatically, depending on the
state of the frame window. Each of these menu items has a unique identifier you can
reference using constants defined in IsystemMenu or ICCONST.H. Table 6-llists the
system menu items and their identifiers, values, and default behavior.

Add an item as the first item in a menu by creating an IMenultem object and then calling
its setlndex function to set the index to 0.

Manipulating Menu Items
Most applications manipulate menu items at run time. The most commonly performed tasks
include enabling and disabling menu items, adding and removing menu items, and checking
and unchecking menu items.

IMenu provides functions you can use to change many common menu item characteristics. To
use these functions, provide the menu item's numeric identifier. These functions include
changing the text or bitmap using setText or setBitmap, adding or removing a check using
checkltem or uncheckltem, enabling or disabling an item using enableltem or disableltem,
and selecting an item using selectltem.

Use an IMenultem object to query the state of a menu item (other than whether it is checked or
enabled) or to alter other styles or attributes of the menu item.

132 Power GUI programming with visualAge for c++

Table 6-1. System Menu Items

CThofce OS/2 Constant Windows Constant Default Frame Processing
Restore SC RESTORE SC RESTORE Restore is enabled when the window is

maximized.

Move SC MOVE SC MOVE Move is enabled if the window has a
title-bar.

Size SC SIZE SC SIZE Size is enabled if the window has size
borde'rs.

Minimize SC MINIMIZE SC MINIMIZE Minimize is enabled unless the window is
minimized.

Maximize SC MAXIMIZE SC MAXIMIZE Maximize is enabled unless the window
is maximized.

Hide SC_HIDE Not available Hide is enabled if the window has a
hideButton style.

Close SC CLOSE SC CLOSE Close is always enabled.

Window List SC WINDOW SC TASKLIST Window list is always enabled.

Using the Menu Item Class
IMenultem is a "settings" type object that encapsulates information found in either the
Windows MENUITEMINFO data structure or the OS/2 MENUITEM data structure. To change any
menu item characteristic not directly supported by IMenu, build one of these objects. IMenu
also returns an IMenultem object when you query the characteristics of a menu item using
IMenu: :menultem. You can then use the functions in IMenultem to determine all character-
istics of the menu item including the text or bitmap that it displays.

You can construct an IMenultem object two ways. The first way is to provide the appropriate
styles and attributes when you construct the IMenultem object using the bitwise OR operator.
When you construct IMenultem objects in this way, do not combine any mutually exclusive
choices. The second way is to let the styles and attributes default when constructing the
IMenultem object; then, use functions in IMenultem to alter the menu item' s characteristics. In
fact, you must add several menu item characteristics, such as the text or bitmap and the index
in its submenu, by using the IMenultem functions.

You can use an IMenultem object to add a new menu item or to change the characteristics of an
existing menu item. To add an item, call IMenu: : addltem with the IMenultem object. To alter
an existing menu item, call IMenu : : setltem with the IMenultem object.

Menu Item Styles
Menu item styles determine the type of menu item (how it looks and acts) and what kind of
message it generates when a user selects it. Open Class Library represents these styles by
IMenultem: : Style values. Table 6-21ists the styles and functions you can use to alter or query

Cfe¢pfe7. 6 Menus and KeyboardAccelerators 133

Table 6-2. IMenultem Styles

Style Object Related Definition and Description

Functions OS/2 / Windows Value
buttonseparator setLayout Menu items with this style are buttons. They can only be

1ayoutType selected with a mouse pointer. They are placed at the end
of the menu, separated by a line.

MIS BUTTONSEPARATOR/not available

drawltem setDrawltem Menu items with this style must be drawn by the appli-

isDrawltem cation with an IMenuDrawltemHandler.

MIS OWNERDRAW"FT OWNERDRAW

postHelp setcommand Menu item with this style generate an IHelpEvent when

commandType selected.

MIS HELP/not available

postsystemcommand setcommand Menu items with this style generate an ICommandEvent

commandftype when selected.

MIS SYSCOMMAND/not available

separator setseperator Menu items with this style display a horizontal dividing

isseperator line.

MIS SEPARATOR/MFT SEPARATOR

split setLayout This style causes the menu items to display in a new row

layoutType or column.

MIS BREAK"FT MENUBREAK

splitwithseparator setLayoutlayoutftype This style causes the menu items to display in a new row
or column with a separator dividing it from the previous
item.

MIS BREAKSEPARATOR"FT MENUBARBREAK

unavailable setselectable Users cannot move the cursor or select a menu item with

isselectable this style.

MIS STATIC/MF GRAYED

the style. It also includes a brief description of the style and its operating-system-equivalent
value.

IMenultem also provides a set of enumeration values you can use to alter the "layout" and
"command type" styles using functions in IMenultem. The setLayout and layoutType

functions accept and return the normalLayout, splitLayout, splitwithseparatorLayout, or
buttonseparatorLayout enumeration values. These constants are mutually exclusive and,
with one exception, correspond to the styles you specify on construction. The value
normalLayout corresponds to not specifying a layout style on construction. Similarly, the
setcormand and cormandType functions accept and return command, systemcormand, and

134 Power GUI programming with visualAge for c++

helpcommand. The value command corresponds to not specifying a command type style on
construction.

Menu Item Attributes
Menu item attributes determine how an item is displayed and whether a user can choose it.
The default attribute is IMenultem: : noAttribute.

More so than with styles, it is the menu item's attribute values you need to change dynami-
cally. For example, when you display an Edit menu, disable the Paste option if there is no
valid data in the clipboard. Consequently, the IMenu functions directly support changing the
commonly used attribute values. You can check, uncheck, disable, and enable a menu item by
invoking the checkltem, uncheckltem, disableltem, and enableltem functions in IMenu.
Because you typically want to change these menu item attributes dynamically, you see an
example of this in the "Dynamic Submenus" topic later in this chapter. Table 6-3 lists the
menu attributes and the functions you can use to set and query their values.

Table 6-3. IMenultem Attributes

Attributetyobject¥gr Related Definition and Description
tr*A-:-.`I.`S `

Functions OS/Z+/WindowsValue_J

checked setchecked Draws a check mark next to the item.

ischecked MIA CHECKED/MFS CHECKED

disabled setDisabled Disables the menu item, making it not selectable.

isDisabled MIA DISABLED/MFS DISABLED

framed setFramed Draws a frame around the menu item.

isFramed MIA FRAMED/not available

highlighted setHighlighted Displays the menu item with selected-state emphasis.

isHighlighted MIA HILITED/MFS HILITED

noDismiss setNODismiss Menu items with this attribute, when selected, do not

isNODismiss terminate the submenu.

MIA NODISMISS/not available

Adding and Removing Submenus
You have already seen how to load a menu from a resource file and how to dynamically
construct a menu and add items to it. You can also combine these two strategies. For example,
you can dynamically construct the menu and then load its submenus from a resource file. You
load submenus using the function IMenu: : addsubmenu by passing the resource identifier of a
menu resource. The following example demonstrates this approach by modifying our
makepopupMenu function to add the Edit and Example submenus from a resource, rather than

Cfe¢pfer 6 Menus and KeyboardAccelerators 135

creating them dynamically as we did previously. To do this requires that we add two new menu
resources to our resource script file for the Edit and Example submenus.

Although we do not demonstrate it here, you can also remove a submenu by calling
removesubmenu with the identifier of the submenu item.

Submenu Resource Definition (Windows) - menus\addsubmn\addsubmn.rc
EDIT_nffiNu MENUEx

BEGIN
DffiNUITEM "&Undo \t Ctrl+U" , MI_UNDO
MENUITEM SEPARATOR
MENUITEM "&Cut \t Shift+Del'' , MI_CUT
RENUITEM "Copy \t Ctrl+Ins'', MI_COPY
RENUITEM ''&Paste \t Shift+Ins", MI_PASTE

END

EXAMPLE_nfflNu MENUEX
BEGIN

MENUITEM `'&Close" , SC_CLOSE
MENUITEM "&Help" , MI_HELP

END

Submenu Resource Definition (OS/2) -menus\addsubmn\addsubmn.rc
MEND EDIT_nffiNu

BEGIN
MENUITEM "~Undo \t Ctrl+U", MI_UNDO
lmNUITEM SEPARATOR
MENUITEM "~Cut \t Shift+Del", MI_CUT
MENUITEM "Copy \t Ctrl+Ins", MI_COPY
MENUITEM "~Paste \t Shift+Ins", MI_PASTE

END

MENU EXAMPLE_nffiNu
BEGIN

MENUITEM `'~Close" , SC_CLOSE, MIS_SYSCOMMAND
MENUITEM "~Help" , MI_HELP , MIS_HELP

END

Loading a Resource Submenu - menus\addsubmn\addsubmn.cpp
IBase: :Boolean MenuHandler : : makepopupMenu (IMenuEvent& event)
(

// Create the pop-up menu.
IPopUpMenu* popUp = new IPopUpMenu (event.dispatchingwindow() ,

POPUP_MENU) ;
// Load the Edit and Example submenus from a resource file.
(*pOpUp)

. addText (MI_EDIT, MI_EDIT)

. addsubmenu (MI_EDIT , EDIT_MENI)

. addText (MI_EXAMPLE , MI_EXAMPLE)

. addsubmenu (MI_EXAMPLE , EXAMPLE_tyHNU)

. setAutoDeleteobj ect () ;

// Show the pop-up menu.
(*pOpUp)

. show (event .mouseposition ()) ;
return true;

)

136 Power GUI programming with visualAge for c++

Using a Menu Cursor
Like other classes in Open Class Library, IMenu provides a nested Cursor class. You can use
this class to iterate through the items in a menu or the submenu of a menu. There are also
functions in IMenu to remove an item at a cursor location or add an IMenultem object at the
cursor location.

The following example iterates through the contents of the menu bar and displays the text
associated with each menu item in a tree text container. Figure 6-4 displays the result of the
program. We made one change to our resource script file for this example. Because the
operating systems do not return a menu item definition when you create a separator using the
MENUITEM SEPARATOR definition, we instead create a normal menu item with the style
MET_SEPARATOR/MIS_SEPARATOR. This approach also gives you the ability to change or remove
this menu item because now it has its own identifier. We do not show the entire resource script
file, but the separator definition in the Windows operating system is as follows:

MENIITEM " , MI_SEPARATOR, MFT_SEPARATOR

In the OS/2 operating system, it is as follows:

MENUITEM `" , MI_SEPARATOR, MIS_SEPARATOR

Menu Cursor Example - menus\cursor\cursor.cpp
#include <iapp.hpp>
#include <icnr.hpp>
#include <icnrobj .hpp>
#include <iframe.hpp>
#include <imenubar. hpp>
#include <imnitem.hpp>
#include "cursor.h"
void main ()
(
IFramewindow frame ("Menu Cursor Example") ;

// Add the menu bar from a resource file.
IMenuBar menuBar (MAIN_MENU, &frame) ;

// Create a container status area in the client.
IContainercontrol

statusArea (ID_STATUS, &frame, &frame) ;
statusArea

. showTreeTextview ()

. setDeleteobj ectsonclose () ;

// Create menu cursors to display the menu bar contents
// in the client area.
IMenu: :Cursor levellcursor (menuBar) ;
for (1evellcursor.setTOFirst () ;

1evellcursor . isvalid () ;
1evellcursor . setTONext ())

(
IContainerobj ect* 1evell0bj ect;
IMenultem levellltem =

menuBar . elementAt (1evellcursor) ;

Cfe¢pfer 6 Menus and KeyboardAccelerators 137

Figure 6-4. Menu Cursor Example.

if (1evellltem.text() .length()>0)
1evell0bject = new IContainerobject (1evellltem.text ()) ;

else if (levellltem.bitmap()) .
1evell0bject = new IContainerobject ("Bitmap") ;

else if (1evellltem.isseparator())
1evell0bject = new IContainerobject ("Separator") ;

else
levell0bject = new IContainerobject (`'Unknown") ;

statusArea . addobj eat (1evell0bj ect) ;
if (1evellltem . submenuHandle ())
(

IMenu: :Cursor level2Cursor(menuBar, 1evellltem.id()) ;
for (1evel2Cursor.setTOFirst () ;

level2Cursor . isvalid () ;
1evel2Cursor . setTONext ())

(
IContainerobj ect* 1evel20bj ect;
IMenultem level2Item =

menuBar . elementAt (1evel2Cursor) ;

138 Power GUI programming with visualAge for c++

if (1evel2Item.text() .length()>0)
level20bject = new IContainerobject (1evel2Item.text ()) ;

else if (1evel2Item.bitmap())
1evel20bject = new IContainerobject (`'Bitmap") ;

else if (1evel2Item.isseparator())
1evel20bject = new IContainerobject ("Separator") ;

else
level20bject = new IContainerobject (`'Unknown") ;

statusArea.addobject (1evel20bject,1evell0bject) ;
)

)
)

// Set the focus and show the application.
frame

. setclient (&statusArea)

. setFocus ()

. show () ;

IApplication : : current () . run () ;
)

Responding to Menu Events
Menu windows send messages to their owners when significant events occur in the menu. For
example, when a user selects an item, a command event is dispatched to the owner window.
Open Class Library provides three general-purpose handler classes to deal with menu events:
ICon\mandHandler, IMenuHandler, and IMenuDrawltemHandler. Usually, you must attach these
handlers to the owner of the menu for them to function correctly. Table 6-4 lists and describes
the event-handling functions of these handlers.

Processing Commands
To respond to a user choosing a menu item, create a class derived from ICommandHandler and
override either the command or systemcommand function. Override systemcommand if the menu
item is in the system menu or for the OS/2 operating system, if it has the
IMenultem: : postsystemcolinlnand (MIS_SYSCOMMAND) style. Identify the menu item selected by
calling the function ICormandEvent: : commandld. The text pop-up menu example earlier in
this chapter demonstrates the typical use of a command handler. See Chapter 17, "Reusable
Handlers," for more information on command handlers.

System Commands
L

Typically you do not need to process system commands. The value of using system commands
is to achieve the default system behavior for actions such as close, move, or hide. You process
system command events similar to the way you process regular application command events.
However, to process the event you override ICommandHander: : systemcommand instead of
ICommandHander: :colnmand. If a user selects a menu item from the system menu and the
numeric identifier of the item matches one of the system commands, the operating system
intercepts the menu selection and invokes its default behavior. The constants listed in
Table 6-1 are the menu item identifiers assigned to the predefined system menu items.

Cfoapfer 6 Menus and KeyboardAccelerators 139

Table 6-4. Menu Event Handler Support

Handler Event Handler Function Purpose
ICommandHandler::command Override either of these functions to respond to a user
ICommandHandler::systemcommand selecting a menu item. The event is sent to the

systemcommand function if the item is in the system
menu. In the OS/2 operating system, the event is also
sent if the item has a postsystemcommand
(MIS_SYSCOMMAND) style.

IMenuHandler::makepopupMenu Override this function to create and show a pop-up
menu when a user presses mouse button 2, or the
appropriate keys to request a pop-up menu.

IMenuHandler: :menus elected Override this function to process the movement of the
cursor to an item.

IMenuHandler::menushowing Override these functions to process the showing or
IMenuHandler::menuEnded hiding of a submenu such as a pull-down or cascade

menu.

IMenuDrawltemHandler::setsize Override these functions to draw an item in a submenu.
IMenuDrawltemHandler: : draw The setsize functiontsets the size of the coordinates of
IMenuDrawltemHandler::highlight the item. The draw function is called when the item
IMenuDrawltemHandler::unhighlight must be redrawn completely. The highlight function is

called when a user moves the cursor to an item. The
unhighlight function is called when a user moves the
cursor off the item.

Mimicking a Menu Command
You can code your application so that it emulates a user selecting a menu item. You do this
with the IMenu: :selectltem function. This function causes the menu window to post a
command event to its owner, which dispatches either a command or systemcommand event to an
ICommandHandler attached to the owner.

Dynamic Submenus
With Open Class Library, you can modify items in a submenu before it is shown and restore the
changes after it is removed. Thus, you can alter your submenus before showing them without
having to query the state of the items on the submenus to determine the changes you need to
make. Prior to showing the submenus, assume that they are in a known state. You can achieve
similar behavior by creating the submenus when you need them and deleting them after they
are shown. However, having your program create the submenus once optimizes your use of
submenus by minimizing their creation and destruction.

The ISubmenu class works with the menushowing and menuEnded functions of IMenuHandler to
handle dynamically created submenus. IMenuHandler calls its menushowing function just
before a submenu is displayed. It provides an ISubmenu object that you can use to alter the
items. If your menushowing function returns true, any changes you made with the ISubmenu

140 Power GUI programming with visualAge for c++

object will be undone when the menu is dismissed and IMenuHandler calls its menuEnded
function. The following code shows how to use submenus to disable the items dynamically on
the Edit submenu when they are not valid:

Using ISubmenu Objects -menus\dynsubmn\dynsubmn.cpp
#include
#include
#include
#include
#include
#include
#include

= i app . hpp i
<icmchdr.hpp>
< i f rame . hpp>
< imenuhdr . hpp>
=imle . hpp=
<isubmenu.hpp>" dyssubrm . h "

// Menu handler dynamically modifies a drop-down menu.
class MenuHandler : public IMenuHandler
(
public:

MenuHandler (IMultiLineEdit& editwnd)
: editwindow(editwnd) {}

protected:virtual Boolean
menushowing (IMenuEvent& menuEvent ,

ISubmenu& submenuAboutToshow) ;

private :
IMul tiLineEdi t .
&editwindow;

);

// Command handler captures menu commands.
class CommandHandler : public ICommandHandler
(
public:

CommandHandler (IMultiLineEdit& status)
: astatus(status) {}

protected:virtual Boolean
cormand

private :IMultiLineEdit
&astatus;

);

(ICommandEvent& event) ;

void main ()
(
// Create a frame window with a menu bar
// loaded from a resource file.
IFramewindow

frame("Pop-Up Menu Example", MAIN_MENI,
IFramewindow: :defaultstyle () I IFramewindow: :menuBar) ;

// Create an edit area in the client and a
// command handler to write in it.
IMultiLineEdit

editArea(ID_EDIT, &frame, &frame) ;
CommandHandler

commandHandler (editArea) ;

// Add the command handler to the frame so
// that it handles the menu messages sent.
commandHandler

. handleEventsFor (&frame) ;

Cfeapfe7. 6 Menus and KeyboardAccelerators 141

// Add a menu handler to dynamically alter the menu.
MenuHandler

editMenuHandler (editArea) ;
edi tMenuHandler . handleEventsFor (&frame) ;

// Set the focus and show the application.
editArea . setFocus () ;
frame

. setclient (&editArea)

. show () ;
IApplication : : current () . run () ;
)

IBase : :Boolean MenuHandler : :menushowing (IMenuEvent& event,
ISubmenu& submenu)

(
// Enable and disable the appropriate `'Edit" flags.
Boolean modified = false;
if (submenu.id() == MI_EDIT)
(

if (! editwindow. hasselectedText ())
(

submenu . disableltem (MI_COPY) ;
submenu . disableltem (MI_CUT) ;
modified = true;

(! editwindow. iswriteable ())
submenu . disableltem (MI_CUT) ;
submenu . disableltem (MI_PASTE) ;
submenu . disableltem (MI_READONLY) ;
modified = true;

)
else
(

submenu . di sabl el tern (MI_READWRITE) ;
modified = true;

)
if (! editwindow. clipboardllasTextFormat ())
(

submenu . disableltem (MI_PASTE) ;
modified = true;

)
)
return modif led;

)

Drawing a Custom Menu Item
You can customize the appearance of a menu item by setting the IMenultem: :drawltem
(MFT_OENERDRAW/MIS_OWNERDRAW) style for the item. If you set this style, the menu sends
messages to its owner to determine the size of the item and to paint, highlight, and unhighlight
the item. IMenuDrawltemHandler provides event-handling functions to handle these events.
The IMenuDrawltemllandler object calls its setsize function to determine the size of the menu
item, its draw function to paint the item, its highlight function to draw highlight emphasis,
and its unhighlight function to remove highlight emphasis. Attach the handler to the owner
of the menu with the menu item that needs custom drawing.

The following example demonstrates how to draw a customized menu item, Draw Item, which
has a larger font than normal. The item also turns red when a user selects it.

142 Power GUI programming with visualAge for c++

Drawing a Custom Menu - menus\drawmenu\drawmenu.cpp
#include <iapp.hpp>
#include <icmdhdr.hpp>
#include <ifralne.hpp>
#include <istattxt.hpp>
#include <ifont.hpp>
#include <imenubar. hpp>
#include <imndihdr.hpp>
#include <irect.hpp>
#include <istring.hpp>
#include <igrafctx.hpp>
#include <igstring.hpp>
#include "drawmenu.h"

// Menu handler captures draw item requests.
class MenuDrawHandler : public IMenuDrawltemllandler
(
public :

MenuDrawHandler ()
: font(`'Ths Rmn", 24) {}

protected:virtual Boolean
setsize
draw
highlight
unhighlight
drawText

(IMenuDrawltemEvent& event,
Isize& newsize) ,

(IMenuDrawltemEvent& event,
DrawFlag& flag) ,

(IMenuDrawltemEvent& event) ,
(IMenuDrawltemEvent& event) ,
(IMenuDrawltemEvent& event,

Boolean highlight) ;

private :IFont
font;

);

// Command handler captures menu commands.
class CommandHandler : public ICommandl.Iandler
(
public:

CommandHandler (IstaticText& status)
: astatus(status) {}

protected:virtual Boolean
command (ICommandEvent& event) ;

private :IstaticText
&astatus ;

);

void main ()
(
IFramewindow

frame ("Draw Item Example") ;

// Add the menu bar from a resource file.
IMenuBar

menuBar (MAIN_MENU, &frame) ;
// Associate a bitmap resource with the menu item.
menuBar. setBitmap (MI_BITMAP, MI_BITMAP) ;

// Change a menu item to the drawltem style.
IMenultem drawltem = menuBar.menultem (MI_DRAWITEM)
drawltem. setDrawltem () ;
menuBar . setl tern (drawl tern) ;

Cfe¢pfer 6 Menus and KeyboardAccelerators 143

// Create a status area in the client and a
// command handler to write in it. Add the
// command handler to the frame to handle
// menu commands.IstaticText

statusArea (ID_STATUS, &frame, &frame) ;
CormandHandler

cormandHandler (statusArea) ;
commandHandler

. handleEventsFor (&frame) ;

// Add a MenuDrawHandler to the frame.
MenuDrawHandler

drawHandler;
drawHandler

. handleEventsFor (&fralne) ;

// Set the focus and show the application.
frame

. setclient (&statusArea)

. setFocus ()
' show () ;

IApplication : : current () . run () ;
)

IBase: :Boolean MenuDrawHandler : : setsize (IMenuDrawltemEvent& event,
Isize& newsize)

(
// Because text is unknown, set menu item width large
// enough for 5 Ws and height to character height plus a pad.
newsize . setwidth (font . textwidth ("WWWWW"))

. setHeight (font .maxcharHeight () +5) ;
return true;

)

IBase : :Boolean MenuDrawHandler : : highlight (IMenuDrawltemEvent& event)
(

return drawText (event, true) ;
)+

IBase : : Boolean MenuDrawHandler : : unhighlight (IMenuDrawltemEvent& event)
(

return drawI`ext (event, false) ;
)

IBase : :Boolean MenuDrawHandler : : draw(IMenuDrawltemEvent& event,
DrawFlag& flag)
(

return drawText (event, false) ;
)
IBase : :Boolean MenuDrawHandler : : drawText (IMenuDrawltemEvent& event,

Boolean highlight)
i

// This routine is based on the drawing being for text items
// whose text is contained in a STRINGTABLE resource with an
// ID that is the salne as the item ID.
Istring str = IApplication: :current() .userResourceLibrary()

.1oadstring (event . itemld ()) ;
// Add pad to the left of the item text.
str - " "+str;
// Get the point to draw at, vertically center it, and provide
// a wrapper for the graphic context for drawing use.
IPoint point(event.itemRect() .minxMinY()) ;
point.setY(point.y() + 2);
IGraphiccontext gc (event . itempresspaceHandle ()) ;

144 Power GUI programming with visualAge for c++

// If we highlight this, change the color to red.
if (highlight)

gc.setpencolor(IColor: :red) ;
// Otherwise, use the default menu text color.
else

gc . setpencolor (IGUIColor (IGUIColor : :menuText)) ;

// Create a graphic string starting at the point with the
// text and font requested.
IGstring text(str, point, font);
text->drawon(gc) ;

return true;
)
IBase: :Boolean CommandHandler: : command(ICommandEvent& event)
(

switch (event . commandld ())
(

(try(
astatus . setText (event . commandld ()) ;

) catch (...) ()return true;
)

)return false;
)

Figure 6-5 displays the results of this program.

Figure 6-5. Menu Draw Item Example.

Chapter 7

Controls

• Describes the characteristics of all control classes in open class Library
• Describes the Icontrol class
• Read chapter 4 before reading this chapter.
• Chapters 5, 8-18, and 26 coverrelatedmaterial.

Generally, a coJ®£roJ is a specialized window-one that provides a well-defined and general-
purpose interface, which makes it a highly reusable visual component. Both the OS/2 and
Windows operating systems provide a robust set of controls, ranging from simple text prompts
to complex controls for implementing notebooks and containers. These controls are the
building blocks for constructing graphical user interfaces.

Open Class Library has control classes that you can use to exploit the controls that the
operating system provides. With these classes, you can use these controls in an object-oriented
manner in your applications. Figure 3-4 shows the hierarchy of control classes that Open Class
Library provides. IControl is the base control class, and derives from Iwindow.

These control classes represent all but a few of the public controls that the Windows and OS/2
operating systems supply. Table 7-1 shows the control that corresponds to each class derived
from IControl. Controls that are not represented by an IControl class appear at the end of the
table. The table lists the operating system controls in terms of their 14;I.#dow cJczsF 7®cz773es,
which is a precise way of identifying a type of control and its window procedure, class styles,
and other associated attributes. Because Open Class Library represents some operating system
controls with more than one class, a particular window style used by the control becomes the
determining factor. These styles appear in parentheses in the table.

Open Class Library also goes beyond what the operating system provides by supplying
additional control classes. These classes provide functionality you would not otherwise have
without a substantial amount of work. Table 7-1 also identifies these classes by listing them
with unmatched controls on one or both operating systems. For example, Icircularslider
has no corresponding control in the Windows operating system; IToolBar has no match in the
OS/2 operating system; and IMulticellcanvas is unique to both.

In the Windows operating system, IContainercontrol, INotebook, Iprogresslndicator,
Islider, INumericspinButton, and ITextspinButton also give you a choice. You can use
these classes to create controls with a Windows look and feel, or controls that preserve the
functionality, as well as the look and feel, of controls that the OS/2 operating system provides.

145

146 Power GUI programming with visualAge for c++

Table 7-1 (Part 1 of 3). Mapping of Open Class Library to Operating System Controls

Open Class Library Class Operating System Window Class Name

Windows Platform OS/2 Platform
13StatecheckBox Button (BS_3STATE, WC_BUTTON (BS_3STATE,

BS_AUT03STATE) BS_AUT03STATE)

IAnimatedButton None Like WC_GRAPHICBUTTON

IBitmapcontrol Static (SS_BITMAP) WC_STATIC (SS_BITMAP)

Icanvas None None

IcheckBox Button (BS_CHECKBOX, WC_BUTTON
BS_AUTOCHECKBOX) (BS_CHECKBOX,BS_AUTOCHECKBOX)

Icircularslider None WC_CIRCULARSLIDER

ICollectionviewcomboBox Like ComboBox Like wc_COMB OB OX

ICollectionviewListBox Like ListBox Like wc_LISTB 0X

IComboBox ComboBox WC_COMBOBOX

IContainercontrol SysListview32, SysTreeview32 WC_CONTAINER

ICustomButton Button (B S_OWNERDRAW) WC_BUTTON(BS_USERBUTTON)

IDrawingcanvas None None

IEntryField Edit (without ES_MULTILINE) WC_ENTRYFIELD

IFlyText tooltips_class32 None

IGraphicpushButton Like Button (B S_OWNERDRAW) Like WC_BUTTON(BS_BITMAP,BS_ICON)

IGroupBox Button (B S_GROUPBOX) WC_STATIC (SS_GROUPB OX)

IIconcontrol Static (SS_ICON) WC_STATIC (SS_ICON,SS_SYSICON)

IInfoArea Like msctls_statusbar32 None

IListBox ListBox WC_LISTBOX

IMMplayerpanel None None

IMulticellcanvas None None

IMultiLineEdit Edit (ES_MULTILINE) WC_MLE

Cfeapfer7 Controls 147

Table 7-1 (Part 2 of 3). Mapping of Open class Library to Operating System Controls

Open Class Library class Operating System Window class Name

Windows platform OS/2 Platform
INotebook Like a property sheet (but imple-mentedwithSysTabcontrol32) WC_NOTEBOOK

INumericspinButton Combination of Edit and WC_SPINBUTTON
msctls_updown32

IOutlineBox Static (SS_BLACKFRAME, WC_STATIC (S S_FGNDFRAME,
SS_GRAYFRAME, SS_HALFTONEFRAME,
SS_WHITEFRAME) SS_BKGNDFRAME)

Iprogresslndicator Like msctls_progress32 (but WC_SLIDER
implemented withmsctls_trackbar32) (SLS_READONLY)

IPushButton Button (BS_PUSHBUTTON, WC_BUTTON
BS_DEFPUSHBUTTON) (BS_PUSHBUTTON,BS_DEFAULT)

IRadioButton Button (BS_RADIOBUTTON, WC BUTTON
BS_AUTORADIOBUTTON) (BS_RADIOBUTTON,BS_AUTORADIOBUTTON)

IScrollBar ScrollBar WC_SCROLLBAR

Isetcanvas None None

Islider msctls_trackbar32 WC_SLIDER (notSLS_READONLY)

ISplitcanvas None None

IstaticText Static WC_STATIC (S S_TEXT,SS_BKGNDRECT)

ITextspinButton Combination of Edit and WC_SPINBUTTON
msctls_updown32

ITitle None WC_TITLEBAR

IToolBar Like Toolbarwindow32 None

IToolBarButton Like the TBBUTTON structurepassedtoaToolbarwindow32control None

IToolBarcontainer None None

Iview None None

Iviewport None None

148 Power GUI programming with visualAge for c++

Table 7-1 (Part 3 of 3). Mapping of Open Class Library to Operating System Controls

Open Class Library Class
J'Operating System Window Class Name

Windows platform OS/2 Platform
None SysAnimate32 N/A

None msctls_hotkey32 N/A

None RichEdit N/A

None SysHeader32 N/A

None N/A WC_PENxxx

None N/A WC_VALUESET

For the former, the classes use controls that the operating system provides; for the latter, they
use controls that Open Class Library provides. The chapters describing these classes list the
trade-offs involved.

Although the control classes of Open Class Library are diverse, as a group they share funda-
mental design points. This chapter describes characteristics that apply to many or all of these
control classes. Subsequent chapters describe usage considerations that are specific to a
particular control class. We refer to those chapters as appropriate.

In this and following chapters, the term "window" includes controls.

Constructors
Almost all control classes provide two types of constructors: one that creates an operating
system window and one that does not. Both types create a C++ object that represents an
operating system window. Whether the constructor then creates the window itself or not
(because the window already exists), differentiates the two types of constructors.

To understand the difference between the control constructors, you must distinguish between
the lifetime of an operating system window and its corresponding C++ object. Whereas the
lifetime of the two may be the same (you can make them the same using techniques described
in Chapter 4, "Windows, Handlers, and Events"), they may also have independent lifetimes.

This discussion of constructors does not include tbe base control classes: IControl,
ITextcontrol, IButton, and IsettingButton, IBasecomboBox, and IBasespinButton. You
cannot construct objects of these classes because they have protected constructors or a pure
virtual function. As a result, their constructors need little discussion. The purpose of these
classes is to provide a common interface for their derived classes, common implementation for
derived classes, or both.

Cfoa!pfer 7 Controls 149

Note that you do not need to construct C++ objects for all controls on a dialog box or a frame
window displayed using Apls of the operating system. You only need an Iwindow object to call
C++ functions for the control (for example, to set or query its text) or to modify the behavior
of the control by attaching an event handler to its C++ object.

Coustructor That Creates an Operating System Window
The first type of constructor creates an operating system window. By default, the window is
destroyed when the C++ object is destructed. This type of constructor is perhaps the type you
use most often. Because of the number of arguments it supports, this type of constructor is also
the most complex. Some arguments are optional, however, because they have default values.
Generally, the samples in this book take advantage of these default values.

Following is the IEntryField constructor that creates an operating system window:
IEntryField (unsigned long windowldentifier,

Iwindow* parent ,
Iwindow* owner ,
const IRectangle& initial = IRectangle() ,
const Style& style = defaultstyle()) ;

This IEntryField constructor uses the same arguments that all constructors of this type
typically use. Although Chapter 4, "Windows, Handlers, and Events," covers the basics for
these standard arguments, you find more information in the following topics.

+

Window Identifier
The window identifier argument is the identifier for the operating system window you create
with this constructor. Although this argument is of type unsigned long, for portability
purposes only use values in the range from 0 through 65535 (OxFFFF). For example, various
Win32s and OS/2 Apls honor only the low-order word (two bytes) of this double-word (four-
byte) value.

Despite its name, however, a window identifier does not uniquely identify a window; a window
handle does this. Neither Open Class Library nor the operating system prevents you from
assigning the same window identifier to multiple windows.

The following scenarios require that a window be uniquely identified by the combination of its
window identifier and parent window or its window identifier and owner window:

• You call Iwindow::windowwithparent, Iwindow::handlewithparent,
Iwindow: :windowwithov\m.er, the Windows API GetDlgltem, or the OS/2 API
WinwindowFromlD to locate the window.

• The window has an event handler attached to it or its owner window, and the handler

processes an IControlEvent object or an object of a class derived from IControlEvent.
Examples of such handlers are IselectHandler, IpageHandler, and IcnrDrawHandler.

• The window is a scroll bar with an IscrollHandler attached to its owner window.

• You call tbe second type of control constructor that requires a parent window and
window identifier.

150 Power GUI programming with visualAge for c++

Additionally, the following scenarios require that a window be uniquely identified by its
window identifier:

• You want to display unique contextual help information for a control using help tables.
Because a help table maps window identifiers to help panel identifiers, the identifiers of
all windows that accept input focus, such as entry fields and buttons, must be unique
across a frame window. If windows that accept input focus were to have the same
window identifier, they would display identical contextual help information.

As an alternative, however, you can assign a contextual help panel to a window using the
Iwindow: : setHelpld function. Help support through this function has no dependencies
on window identifiers, so a window does not require a unique identifier to display
unique contextual help. See Chapter 23, "Using Help," for details on providing help for
your application.

You are displaying fly-over help for individual elements of a window. Fly-o.vcr help
uses the identifier of the window underneath the mouse pointer to determine the appro-
priate help string to display.

Nevertheless, the safest way to program window identifiers is to use a unique one for each
window that you create in a given frame window. Assign the value IC_FRAME_CLIENT_ID,
which is defined in ICCONST . H, to all Client windows and avoid using it for anything other than
a client window. Call IFramewindow: : setclient to make a window the client window of the
frame. If the window identifier is not already IC_FRAME_CLIENT_ID, setclient changes it to
IC_FRAME_CLIENT_ID. As a result, any code that identifies the client window based on its
window identifier must use the IC_FRAME_CLIENT_ID value to work correctly. Thus, the reason
for assigning IC_FRAME_CLIENT_ID to all client windows is programming clarity. See
Chapter 5, "Frame Window Basics," for more details.

To assign unique window identifiers, avoid using values reserved by the operating system and
Open Class Library.

In the OS/2 operating system, for example, avoid using window identifiers reserved by the
operating system for special child windows of a frame window. These reserved identifiers
range from Ox8002 through Ox8013, and they are the FID_* values defined in the PMWIN.H file
of the Developer's Toolkit for OS/2. The OS/2 operating system uses these values as the
window identifiers for standard frame components, which it creates based on the frame
window styles you specify. One example is the title bar, which gets a window identifier value
of FID_TITLEBAR. FID_CLIENT is an exception to this rule, however, which is equivalent to the
IC_FRAME_CLIENT_ID value discussed previously.

The OS/2 operating system has other reserved window identifiers that it uses with certain
controls. For example, PMWIN.H also contains CBID_* values for the windows comprising a
combination box control. These values are Ox029A and Ox029B. Additionally, PMSTDDLG.H of
the Developer's Toolkit for OS/2 contains CID_* values for the windows comprising a
container control. These values range from Ox7FF0 through Ox7FFA.

Cfeapfe].7 Controls 151

Open Class Library also reserves specific window identifiers. These are defined in ICCONST . H,
and all have values greater than IC_ID_BASE (Ox7000). For example, an Iviewport object
creates child windows with window identifiers of IC_VIEWPORT_HORZSCROLLBAR,
I C_VI EWPORT_VERTSCROLLBzm, and IC_VI EWPORT_VI EmaECT.ANGLE.

Other window identifiers double as command identifiers. For example, the command that a
push button, graphic push button, custom button, or tool bar button generates has the same
identifier as the button' s window identifier. Therefore, avoid using these command identifiers
as window identifiers for any of these buttons unless you intend them to generate that
command.

Parent Window
The parent window argument identifies the parent window of the control you are constructing.
This argument is of type Iwindow*. The new control becomes a child window of this parent
window. Chapter 4, "Windows, Handlers, and Events," describes the most important roles of a
parent window.

All control windows must have a parent window. If you specify no parent window (by using an
Iwindow* value of 0), the control constructor you call typically throws an IInvalidparameter
exception. Although you can use the desktop window as the parent of a control by using the
value returned by Iwindow: : desktopwindow, this is not a typical usage.

You must construct the parent window before constructing its child windows. Otherwise, your
application might fail with a protection exception. If you have a class that includes window
objects as data members of a class, ensure that you list a parent window before any of its child
windows in the class declaration. The order in which data members appear in a class decla-
ration determines the order in which they are constructed, not their order in the initialization
list of a constructor. Incorrectly ordering window objects in a class declaration can cause your
application to fail.

Open Class Library also uses the parent window chain for processing help requests and accel-
erator keys. It passes unprocessed help requests to the parent window. As a result, a parent
window can handle help requests for its child windows. For example, if users press the Fl key
from a child window with no contextual help, a canvas displays the contextual help set using
Iwindow: :setHelpld. Similarly, a keystroke in an entry field can get translated into a
command or help request by an accelerator table assigned to a canvas or frame window in the
entry field's parent window chain. See Chapter 6, "Menus and Keyboard Accelerators," for
more information on accelerator tables.

It is sometimes useful to use an object window as a parent window. An object window hides its
child windows, and thus prevents users from clicking on them with the mouse or tabbing to
them with the keyboard. Calling the function Iwindow: :objectwindow returns a standard
object window. Chapter 4, "Windows, Handlers, and Events," provides more details on object
windows.

152 Power GUI programming with visualAge for c++

Owner Window
The owner window argument identifies the owner window of the control you are constructing.
This argument is of type Iwindow*. Generally, you use a control's parent window for its owner
window, but you can create a control without an owner window. To do this, use a value of 0 to
specify no owner. Using the value returned by Iwindow::desktopwindow or
Iwindow: : objectwindow is basically equivalent to using no owner, but not as efficient. As is
the case with a parent window, you must construct an owner window before constructing any
of the windows it owns.

The owner window for a control has three main uses. First, a window receives notification
events from controls it owns. These notification events include WM_CONTROL, WM_COMMAND,
"_SYSCOMMAND, "_MEASUREITEM, "_DRAWITEM, WM_HSCROLL, and WM_VSCROLL. Second, a
window receives keyboard and mouse events not processed by the controls it owns. Third,
controls inherit colors and fonts from their owner windows. The "Colors and Fonts" topic later
in this chapter discusses this.

The Windows operating system does not truly allow you to specify an owner window; instead,
it assigns an owner window based on the parent window you choose. See Chapter 4,
"Windows, Handlers, and Events," for more details. Open Class Library tries to simulate this

behavior for the owner window you specify. However, it does not call event handlers to
process owner notifications if the parent window does not have an Iwindow representing it.
This does not happen because the event-handling framework of Open Class Library does not
otherwise see the message received by the true owner window (the parent window of the
control). As a result, it cannot reroute the message back to the control or the owner window
you specify.

Some control classes have additional considerations for either their owner windows or for their
child windows. These are discussed in the chapters describing those classes. Also, some
features, such as changing the mouse pointer using IFramewindow: : setMousepointer and
fly-over help, may not work properly for controls whose owner chains do not lead to frame
windows.

Size and Position
The size and position argument allows you to provide an explicit size and position for the
window you are creating. This optional argument is of type const IRectangle&. Chapter 26,
"Data Types," further describes the IRectangle class. Both the position and size values are
treated as peJF or pz.xezs, which is the smallest unit addressable on a display screen. Restrict
the dimensions of the size to values from 0 through 65535.

Typically, a control has an optimal size for painting. If the control is too big, it does not effec-
tively use its entire rectangle. If too small, the contents of the control get clipped. For
example, a static text control may not be able to display all of its text in a small rectangle.

This argument defaults to a zero-sized rectangle. This default value is only useful if you place
the window into a context where it is sized by its parent window. In this case, any size and
position value you specify here is ignored as well.

Cfeapfe].7 Controls 153

A child window is sized by its parent window in the following situations:

• Whenitistheclientwindow

• Whenitis aframe extension ofaframe window

• Whenitis achildwindow ofmostcanvases

• In some cases, whenyou additas apage window ofanotebook.

Note that if you use the default rectangle and your window is not automatically sized, your
window has no size and therefore is not visible. You can find further details in Chapter 5,
"Frame Window Basics," Chapter 14, "Notebook Control," and Chapter 15, "Canvases."

Style
The style argument represents configuration options for the behavior or appearance of the
control you are constructing. This optional argument is of type const Style&, where Style is a
class nested within the declaration of the control class you are constructing. Chapter 26, "Data
Types," further describes these Style classes that derive from the IBitFlag class.

If you are already familiar with Windows or OS/2 programming, you can use the Style classes
to retain the programming style of creating controls with specific window styles. Each control
class provides a set of style values that you can combine using the bitwise OR operator. This is
similar to how you bitwise OR together Windows or OS/2 styles when calling the
CreatewindowEx or WincreatewindowApls. You can also combine control-specific styles with
Iwindow: : Style values, which are described in Chapter 4, "Windows, Handlers, and Events."
Generally, you can also combine Style values with the IControl::tabstop and
IControl : : group styles, which we describe later in this chapter.

The Style classes also identify syntactic errors at compile time. Because they provide type
safety, you cannot, for example, specify an IEntryField: : Style value when constructing an
IRadioButton object. You also receive a compiler error if you mistake the logical OR operator
for the bitwise oR operator. For example, the following expression does not compile:

IControl: :tabstop 11 IControl: :group // Error--Logical OR.
This correct expression does:

IControl: :tabstop I IControl: :group // OK--Bitwise OR.
Semantic errors, however, are only identified at run time. This means a control constructor
throws an exception when it detects a combination of incompatible styles. For example, the
IEntryField class throws an exception if you specify the following style:

IEntryField: : centerAlign I IEntryField: :rightAlign
You cannot align the text contents of an entry field in two different directions like this. The
semantics do not make sense.

Each control class also provides the static functions, defaultstyle and setDefaultstyle.
These functions query and set the default style that the class uses. By calling
setDefaultstyle, you can replace the default style value that Open Class Library provides. If
you never call setDefaultstyle, defaultstyle returns the static classDefaultstyle object

154 Power GUI programming with visualAge for c++

supplied by the control class. Even after calling setDefaultstyle, you can still retrieve the
original default value by using classDefaultstyle.

Looking at the IEntryField constructor declaration again, you see that the default value for
the constructor's style argument is the value returned by IEntryField: : defaultstyle. This is
the only way that the control classes use the defaultstyle function. As a result, the value it
returns is only used when a window is created. Changing the default style by calling the
setDefaultstyle function does not affect existing windows. Because any code in your appli-
cation can call setDefaultstyle (which changes the default style used by subsequent calls to
the constructor), you need to notify others who are developing your application about any call
you make to this function. In this way, everyone can evaluate the impact on any code that uses
the default style.

Instead of using Style classes when you construct a window object, you can construct your
window objects using default styles and then call member functions to change the settings of
individual styles. The control classes provide public member functions to query and change
the settings of most styles.

Although you cannot consider the use of the Style classes to be totally safe from errors
(remember that some style combinations cause errors that you see only at run time), you can
rely on the member functions to disallow the same semantic errors at compile time. Examples
of these style functions are alignment and setAligrment of IEntryField. setAligrment only
accepts an enumeration that represents a valid alignment. You cannot specify a semantically
incorrect value.

Even if you prefer the error-safe member functions to styles, you still cannot abandon the use
of styles entirely. You can only set the behavior of some controls through styles when you
create them. As an example, you cannot change the type of a combination box control after
you have created the window. Tbus, if you do not want the default type of combination box
(specified by the style IBasecomboBox: : simpleType), you must specify the IBasecomboBox
style dropDownType or readonlyDropDownType when you create the window.

Constructors That Represent an Existing Window
This type of constructor associates a C++ object with an existing window. It does not create a
new operating system window. As a result, you can consider this type of constructor as a
wrczpper for a control because it adds a C++ interface around the window without altering it.
Unlike the other type of constructor, the window is not destroyed by default when you delete
its C++ object. Because the C++ object did not create the window, it does not destroy it either.

If you mistakenly use the other type of constructor to represent an existing window, you create
a second window and interact with that new window, not the original window. If you create the
new window so that it is not visible (perhaps it has no size because you used the default
IRectangle value), you have no visual indication of what is wrong.

You have two ways to identify an existing window: by the combination of its window identifier
and parent window or by its window handle. Thus, most control classes supply two
constructors for providing a wrapper for an existing window.

Chapter7 Controls 155

Note that this type of constructor has restrictions on its use. First, you cannot create more than
one C++ object for any window. We discuss this further in the "Copying Controls" topic in this
chapter.

Second, ensure you match the type of the operating system window to the appropriate window
class of Open Class Library. For example, avoid constructing an INotebook object for a list
box control; instead, construct an IListBox object. Otherwise, unpredictable results can
OCcur.

Third, for any window that you want to provide a wrapper, your process, or application, must
have created it. If this is not the case, the startHandlingEventsFor function of Iwindow
throws an exception.

Window Identifier and Parent Window
You can usually identify a control by its window identifier and parent window. To use this
constructor successfully, ensure that only one child window of the specified parent has that
window identifier. Otherwise, unpredictable results can occur. The following is the corre-
sponding constructor for IEntryField:

IEntryField (unsigned long windowldentifier,
Iwindow* parent) ;

Use this type of constructor to provide a wrapper for controls on a dialog box because the
window identifiers of controls on a dialog are usually readily available. However, you don't
have to provide a wrapper for all child controls of a dialog box. You can use IFramewindow to
display a dialog box without constructing an object for any of its controls.

The parent window you pass to this constructor does not have to be a frame window; so, you
can also use this constructor in other situations. For example, consider the spin button control,
which is a co77cpos!.fe co7ef7ioJ with a child entry field component. A composite control is one
composed of more than one operating system window. You can construct an IEntryField
object as a wrapper for the child entry field by specifying the INumericspinButton or
ITextspinButton as the parent window and the window identifier of the entry field. The entry
field has the same window identifier as the spin button.

The following is an example of using this type of constructor. It includes a test to check if the
window is already represented by a C++ window object. In this case, spin is an
ITextspinButton object. If you try to provide a wrapper for a window that already has an
Iwindow object constructed for it, the constructor you call throws an IInvalidparameter
excepti.on.

Entry Field of a Spin Button - controls\ctors\ctors.cpp
// Construct an IEntryField for the existing window, the
// child window of the spin button. Find it based on its
// window identifier after first checking for an existing
// Iwindow object.
IEntryField*spinEF = (IEntryField*)

Iwindow: :windowwithparent(spin.id() , &spin) ;

156 Power GUI programming with visualAge for c++

if (! spinEF)
{ // Because the window object does not exist,

// construct a new one.
spinEF = new IEntryField(spin.id() , &spin) ;
spinEF->setAutoDeleteobject (true) ;

)

if (spinEF)
{ // Now change its background color.

// Note: For a window to retain a color change on the
// Windows operating system, Open Class Library requires
// that an Iwindow object exist for the window for as long
// as the color change is needed. As a result, we keep
// the IEntryField wrapper until the edit control is
// destroyed. We let Open Class Library manage the
// deletion of the IEntryField* for us.
// For the OS/2 operating system, we could simply delete
// the IEntryField* immediately after changing the edit
// control's color.
spinEF->setBackgroundcolor (IColor: : cyan) ;

)

Window Handle
A window is uniquely identified by its window handle. Following is the constructor for
IEntryField that takes a window handle:

IEntryField (const IwindowHandle& handle) ;
You might use this constructor when using Open Class Library to manipulate an operating
system window created outside of Open Class Library. You can also use this constructor to
create an Iwindow object from a window handle returned by the class Iwindow: : Childcursor.

Test for an existing C++ window object before you call this type of constructor by calling the
static Iwindow: :windowwithHandle function. This test is shown in the following code. It
provides a wrapper for the child entry field portion of a combination box control. We get the
window handle of the entry field by using its window identifier, Ox03E9 for the Windows
operating system (except for a CBS_DROPDOWNLIST type combination box, which has no child
entry field) and Ox029B for the OS/2 operating system (this is the value of CBID_EDIT, as
defined in PMWIN. H). If you try to provide a wrapper for a window that already has an Iwindow
object constructed for it, the constructor you call throws an IInvalidparameter exception.

Entry Field of a Combination Box - controls\ctors\ctors.cpp
// Construct an IEntryField for the existing window, the
// child entry field of the combo box. Find it based on its
// window handle after first checking for an existing
// Iwindow object.
IEntryField

*coinboEF = o;
IwindowHandle comboEFHwnd =

Iwindow: :handlewithparent (ID_COMBOBOX_EF, combo.handle ()) ;
if (comboEFHwnd)
(

// Note: In the Windows operating system, CBS_DROPDOWNLIST
//type of combo boxes do not have a child entry field.
comboEF = (IEntryField*)

Iwindow: :windowwithHandle (comboEFHwnd) ;
if (! comboEF)

Chapter7 Controls 151

){ // Because the window object does not exist,

// Construct a new one.
comboEF = new IEntryField(comboEFHwnd) ;
comboEF->setAutoDeleteobject (true) ;

)
// Else use the existing window object.

if (comboEF)
{ // Now change its background color.

// Note: For a window to retain a color change on the
// Windows operating system, Open Class Library requires
// that an Iwindow object exist for the window for as long
// as the color change is needed. As a result, we keep
// the IEntryField wrapper until the edit control is
// destroyed. We let Open Class Library manage the
// deletion of the IEntryField* for us.
// For the OS/2 operating system, we could simply delete
// the IEntryField* immediately after changing the edit
// control's color.
comboEF->setBackgroundcolor(IColor(255,127, 0)) ;

)

Copying Controls
You cannot create more than one object from the Iwindow hierarchy for the same operating
system window. The Iwindow: :startHandlingEvents function, called from all window
constructors, checks to ensure that a window is not already represented by another Iwindow
object.

Related to this, all classes derived from Iwindow have a private copy constructor and
assignment operator. Because these functions are inaccessible, you can neither duplicate an
Iwindow object by constructing it from another Iwindow object nor by using operator=. One
consequence is that you cannot create a collection of window objects using the collection
classes of Open Class Library. You can, however, create a collection of pointers to window
objects because you can freely copy pointers that reference the same window object.

Colors and Fonts
Both the Windows and OS/2 desktops enable users to con figure the system colors and fonts
used by all windows. In addition, the OS/2 operating system enables users to change the colors
and fonts of individual windows. Similarly, your application can use Open Class Library to set
and query the colors and fonts of individual windows. This topic describes colors and fonts
together because they work similarly.

Although assigning specialized colors and fonts to controls can have a large amount of visual
impact, you might want to avoid doing this. First, any windows that you tailor this way can
discourage or prevent users from choosing tbeir preferences in colors and fonts. Whereas OS/2
users can take the extra steps to open a Color Palette, Font Palette, or Scheme Palette window
and replace your colors or fonts with ones they like, Windows users do not have this option.
Setting the colors and fonts from an application does not leave the users in control. In the
worst case, you may choose colors that some users cannot distinguish between because of
display hardware or visual limitations such as color-blindness. Users may not be aware there

158 Power GUI programming with visualAge for c++

is text they cannot see. Presumably, users have con figured their system colors to avoid these
colors, but that is of no consequence if you bypass those system colors. If it is important for
your application to set colors or fonts, let users con figure these colors in a properties, or
settings, view.

Second, although you can set colors and fonts from your application, it is difficult to do so
with portable code. For example, in the Windows operating system, you can only use a limited
amount of customized colors in an application. Only the basic controls support this kind of
customizing and only for background and foreground colors. But, in the OS/2 operating
system, you can change the color of many of the individual parts of almost all controls (for
example, the color of the borders of a push button), so these color choices would not be
portable. Both operating systems provide a different set of system fonts and use different
default fonts and font sizes for their windows. Thus, you run the risk that the same font is not
available on both systems. Also, a font that is the proper size on one system can be the wrong
size on the other.

If you still need to control colors and fonts, the following discussion explains how.

Open Class Library modeled its` color and font support for the Windows platform based on the
model that the OS/2 operating system uses. As a result, it behaves as follows on both the
Windows and OS/2 operating systems:

• By default, a window uses the colors that users define for their systems.

• The application (or an os/2 user) can assign the colors that a window uses.

• Ifa window is assigned a color, ituses its assigned colors.

• If a window is not assigned a color, it uses the default colors. The default color is
determined in one of the following ways:

If a window somewhere in the owner chain has assigned colors, they become the
default colors for the owned window.

If a window in the owner chain does not have assigned colors, it uses the system
colors as its default.

So, when you change the colors of an owner window, that color propagates to the owned
windows and then to the windows they own and on down the chain. For example, you may call
Iwindow: : setForegroundcolor on a notebook to change the color of its status text. However,
this can also change the foreground color that all of the page windows of the notebook use
because they also get the new default color. Fonts work the same way as colors.

Some windows do not draw text or paint with all colors. For example, an outline box control
has no text, so it does not show its font when painting. Similarly, a frame window does not use
a foreground color during painting. Nonetheless, when you assign a color or font to a window,
it saves them. Even if that window does not use the color or font, the windows it owns can.

This leads to one last consideration about colors and fonts. Some controls do not require an
owner window, such as IstaticText. This control does not issue any owner notification
messages, and there is little need to catch its unprocessed keyboard and mouse events (except
to be able to change the mouse pointer when it is over the static text control). However, you

Chapter7 Controls 159

might give it an owner window just to support color changes. For example, if an IstaticText
object has no owner window, and you or the users change the background color of its parent
window, the background color of the text does not change to match the new background color
of the parent window. If the parent window of the IstaticText object were also its owner
window, the background color of the IstaticText object would change to match that of its
parent window.

Setting and Querying Colors
To change the color a window uses, call the window's setBackgroundcolor or
setForegroundcolor function. (More functions for setting different colors are available on
the OS/2 platform, such as Iwindow::setDisabledForegroundcolor and
Iwindow: : setBordercolor.) Iwindow also contains functions to query the colors of a window,
such as foregroundcolor, backgroundcolor, and bordercolor. The query and set functions
for colors all use IColor objects. Chapter 26, "Data Types," describes IColor and its derived
classes. For Windows 95 compliance, only set colors so that users can alter them through the
system settings. To do this, assign colors using IColor objects that you construct from an
IColor : : Systemcolor enumeration.

You can also remove a previously assigned color from a window by calling a function such as
Iwindow: :resetBackgroundcolor. Calling this function causes the window to use a default
background that is either inherited from its owner window chain or from the system.

Whenever the application or the users assign a window a new color, Open Class Library calls
the window object's setLayoutDistorted function. See Chapter 15, "Canvases," for further
details on this function.

In the Windows operating system, you need an Iwindow object for the window before it can
paint with a color. Thus, you cannot use a temporary Iwindow objectjust to set a color because
after the C++ object is deleted, the window cannot paint with any color you set through Open
Class Library. In the OS/2 operating system, Open Class Library stores colors as presentation
parameters within the operating system window, which the window can use during painting
with or without a C++ object.

Setting and Querying Fonts
To set the font a window uses, call the window's setFont function or IFont : : setwindowFont.
See Chapter 18, "Fonts and Views," for details on the IFont class. You query a window's font
by constructing an IFont object for the window, which contains complete information about
the current font as in this example:

IEntryField myEntryField (ID_MYENTRYFIELD, &parent, &owner) ;
IFont controlFont (&myEntryField) ;

You can also remove a previously assigned font from a window by calling
Iwindow: :resetFont. Calling this function causes the window to use a default font that is
either inherited from its owner window chain or from the system.

160 Power GUI programming with visualAge for c++

The Iwindow and the ITextcontrol classes also provide additional font-related functions. Use
Iwindow: : charactersize to determine the average width and maximum height of a character
in the current font of a window. ITextcontrol: :displaysize returns the size required to
show a specific text string on the screen given the control's current font. Both of these
functions are useful for determining the optimal size for a window with its current font. Also,
a window's setLayoutDistorted function is called whenever its font changes. See
Chapter 15, "Canvases," for further details on this function.

One problem in hardcoding the font for a window in your application is that not all fonts are
available on all machines. If a font is not available, a window may use a font that is very
different from what you intended. Another problem becomes apparent if you run your appli-
cation on the Japanese, Korean, or Chinese version of the OS/2 operating system. If you have
translated your application so it displays double-byte text but your hardcoded font does not
contain double-byte characters (as is the case with the Courier and Helvetica fonts), then the
window may not display any text at all.

Tabbing and Cursor Movement
With Open Class Library, you can define fab Sfops and g7io#ps to specify how users move the
cursor, or caret cursor, to change the control with input focus. Tab stops and groups determine
rules for tabbing and moving the cursor, using the arrow keys for child windows of a frame or
canvas window. No other window automatically provides keyboard navigation for its child
windows. See Chapter 15, "Canvases," for more details. The child windows of a frame
window can be a client window, frame extensions, or dialog-like controls for a frame window
without a client window.

The order in which both tabbing and moving the cursor with the arrow keys proceeds through
sibling windows is dictated by their sibling order, or z-order (as Windows and OS/2 Apls refer
to it). See Chapter 4, "Windows, Handlers, and Events," for more information on sibling order.

The IControl class provides support for defining tab stops and groups. IControl is the base
class for all control classes in Open Class Library. Although you often define tab stops and
groups for the same window, they operate independently.

Tabbing between Windows
Tabbing between windows is automatically supported for child windows of a frame window or
a canvas. In these cases, users presses the Tab key and the cursor moves to the next sibling
window marked with a tab stop. When they press Shift+Tab, a bczckfczb, the cursor moves to the
previous sibling marked with a tab stop. The search wraps from the last sibling to the first
when searching for the next sibling window and, similarly, from the first to the last when
searching for the previous one.

The window with input focus may pass input focus to another window. For example, a static
text control searches for another window to accept the cursor, a canvas moves the cursor to a
child window marked with a tab stop, a radio button moves the cursor to the selected button in
its group, and a combination box passes the input focus to its child entry field.

Cfe¢pfer7 Controls 161

Some controls can process a Tab key to provide navigation within that control. In this case, its
owner window does not receive the keystroke, and a canvas or frame window does not subse-
quently move input focus to another control. For example, a multiline edit control can
conditionally treat the Tab key as character data. The IMultiLineEdit: :ignoreTab style
controls this behavior. Your users cannot use the Tab key to leave such a control.

When you use the first type of control constructor to create a window, mark a window with a
tab stop by specifying the IControl: :tabstop style. This style is equivalent to the
WS_TABSTOP style that the Windows and OS/2 operating systems provide. You can query
whether a window is marked with a tab stop by calling the isTabstop function of IControl,
and you can add or remove a tab stop after the window has been created by calling
IControl : : enableTabstop or IControl : : disableTabstop.

Cursoring between Windows
Like tabbing, moving the cursor between windows using the arrow keys is automatically
supported for children of a frame window or a canvas. For these cases, users press the right or
down arrow key to move the cursor to the next sibling window in the current group that can
accept input focus. Users press the left or up arrow key to move the cursor to the previous
sibling in the current group that can accept input focus. The search wraps from the last sibling
to the first when searching for the next sibling. The opposite occurs when searching for the
previous one.

A g7ioz4p is defined by its first window and includes all sibling windows up to where the next
group starts. Therefore, all windows in a group must have the same parent window. Specify
where a group starts by using the first type of control constructor and the IControl : :group
style when you create its first window. This style is equivalent to the WS_GROUP system style.
You can query whether a control starts a group by calling IControl : : isGroup, and you can
split a group and combine groups by calling each control's enableGroup and disableGroup
functions. All sibling windows that precede the first group are part of the last group.

The definition of a group is also critical to some basic operations of buttons, such as single-
selection of a button within a group. See Chapter 10, "Button Controls," for more information.

Some controls process an arrow key to provide navigation within that control. In this case, an
owner canvas or frame window does not receive the keystroke and does not subsequently move
input focus to the next or previous control in the group. One example of this case is a list box.
The arrow keys move the cursor to the next or previous list box item.

Preventing Keyboard Access to a Control
You can use the above information on tabbing and cursor movement to prevent users from
using the keyboard to move to a control. To do this, do not mark the control with a tab stop.
When you do not give a control the IControl : : tabstop style, users cannot tab or backtab
to it. Also, place the control in its own group. When you give a control and the one
following it the IControl : : group style, users cannot use the arrow keys to move the cursor
to it because the arrow keys cannot cross groups.

Chapter 8

Static Controls

• Describes the read-only controls in the open class library, including the static text,
bitmap, icon, group box, and outline box control classes

• Describes the IstaticText, IBitmapcontrol, IIconcontrol, IGroupBox, and
IOutlineBox classes

• Read chapter 7 before reading this chapter.
• Chapters 15 and 24 coverrelated material.

The static control classes allow you to display text strings, group related information in boxes,
and show graphic images. This chapter describes the use of the static control classes, which
include IstaticText, IBitmapcontrol, IIconcontrol, IGroupBox, and I0utlineBox.
Figure 8-1 shows their class hierarchy. The IInfoArea class, which is also derived from
IstaticText, is described in Chapter 5, "Frame Window Basics."

These controls are termed s'fczfz.c in the sense that the user typically does not interact with them
using the keyboard or mouse. Generally, an application also does not need to change their
appearance on the screen, so visually they tend to be static or unchanging. Open Class Library

IIRE
Figure 8-1. Static Controls Class IHerarchy.

163

164 Power GUI programming with visualAge for c++

also does not provide any event handlers specifically for use with these control classes.
However, you can attach a general event handler, such as IpaintHandler, described in
Chapter 17, "Reusable Handlers," to a static control.

Static Text
You can use the IstaticText class to display a string of text or even a block of color with no
text. The text can be instructions for the window as a whole, a prompt for an entry field, a
heading for a list box, or a status area whose contents you change dynamically.

Displaying Text
Once you construct an IstaticText object, you can assign a text string to it by calling the
setText function. Unless the parent window of the IstaticText is an Isetcanvas or
IMulticellcanvas, you must manage the size of the control yourself. If the control is not
sized large enough to contain all of its text, it clips the text at its window boundaries. If its
size is larger than what is needed to display the text, it adds space around the text.
IstaticText provides alignment styles so you can control what part of the text is clipped and
where space is added. You can also use the member functions, alignment and setAligrment,
to query and change the alignment.

You can enable word wrczppz.7®g to cause the IstaticText object to write its text on multiple
lines when the text does not fit on a single line. Use this style only if you are aligning the text
to the top-left of the control. To see multiple lines of text, size the control tall enough so that it
can contain more than one line of text.

IstaticText also provides text-drawing styles and corresponding member functions to add
effects like underscore, -s-trike-cut, and halftone text.

You can define a 7„7®ermoJ®z.c for an IstaticText object the same as you can for buttons or
menus. This is useful when you use a static text field as a label for an entry field because it
allows you to define a fast path key to put the input focus in the entry field. This works
because the operating system moves the input focus to the first control that can be tabbed to
following the text field because the text field itself does not accept the input focus. If you
specify the style IstaticText: :mnemonic when constructing the IstaticText object, the
ampersand character (&) on the Windows operating system and the tilde character (i on the
OS/2 operating system identifies the character that follows as a mnemonic. Visually, the
mnemonic appears underlined and the tilde or ampersand is not shown, as you see in
Figure 8-2. Without this style, the ampersand or tilde character appears as part of the text
string. IstaticText has no corresponding member functions to set and query the mnemonic
style.

Figure 8-2 shows the visual effect of using most of the styles provided by IstaticText. The
code for this appears in the menus\textstyl example.

Cfe¢pfer8 Static controls 165

Figure 8-2. Effect of Static Text Styles.

Mnemonics Are Not Portable
The Windows and OS/2 operating systems use a different control character to specify a
mnemonic. Open Class Library does not attempt to automatically translate Windows
mnemonics to OS/2 mnemonics or vice versa. There are good reasons for this. Since the
mnemonic character is part of the control's data, the library would have to change the data
that you, the developer, told it to display. More than likely, the data would also have to be
translated when you query for the contents of the control's data so that it matches the text
you put into the control. The result of this is that both the ampersand and tilde characters
would be unavailable for normal use in the control. The need for these characters is not all
that uncommon.

Rather than imposing this restriction, Open Class Library requires you to specify the
correct mnemonic character for the platform. The recommended way to do this is to use
string resources that are different for the different platforms.

166 Power GUI programming with visualAge for c++

Displaying Color
You can create a block of color by simply not assigning the IstaticText object a text string to
display. In this case, IstaticText uses its /!.JJ color to paint its entire rectangle. In the
absence of a fill color, IstaticText uses the background color you assign. You can create a
separator or divider by using an IstaticText window as a thin block of color with either a fill
color or background color.

Of course, you can give an IstaticText object both color and text. By assigning either a fill
or background color, you can show text on a block of color. If you use both the fill and
background colors, IstaticText draws only the background of the text with the background
color. It uses the fill color to paint any remaining space. Note that if you do not use the
IstaticText: : fillBackground style, the space which would have been painted with the fill
color is not painted at all. The code example below illustrates most of these techniques.
Figure 8-3 shows the resulting window.

Static Text Color Example - static\textclr\textclr.cpp
#include <icolor.hpp>
#include <iframe.hpp>
#include <iapp.hpp>
#include <istattxt.hpp>
#include <icconst.h>
#include <icoordsy.hpp>
void main ()
(

// Set the coordinate system to upper-left on all platforms.
ICoordinatesystem : : setApplicationorientation (

ICoordinatesystem: : originupperLeft) ;
// Create the frame with a static text client.
IFralnewindow frame(`'Static Text Color Example") ;
IstaticText client(IC_FRAME_CLIENT_ID, &frame, &frame) ;
frame.setclient(&client) ;
client.setFillcolor(IColor: :green) ;
// Display cyan block on the left.
IstaticText left(1, &frame, &frame);
frame.addExtension (&left,

IFralnewindow: :1eftofclient,100) ;
left.setBackgroundcolor(IColor: :cyan) ;

// Display text at the top of the client.
IstaticText top(2, &fralne, &frame) ;
frame. addExtension (&top,

IFramewindow: :aboveclient, 30) ;
top.setFillcolor(IColor: :yellow)

.setForegroundcolor(IColor: :blue)

.setBackgroundcolor(IColor: :white) ;
top.setText(`'This is blue on white text.")

.setAlignment (IstaticText: :centercenter) ;
// Add red horizontal separators.
Isize screen(Iwindow: :desktopwindow()->size()) ,

separatorsize(screen.width() , 4) ;
IstaticText thinseparator(3, &client, &client) ;
thinseparator.setFillcolor(IColor: :red)

.movesizeTo(IRectangle(IPoint(0,10),
separatorsize)) ;

Cfe¢pfer8 Static controls 167

Figure 8-3. Static Text Color Usage.

IstaticText medseparator(4, &client, &client) ;
separatorsize.scaleBy(1, 2); // Double the thickness.
medseparator. setFillcolor(IColor: :red)

.movesizeTo(IRectangle(IPoint(0, 50),
separatorsize)) ;

IstaticText thickseparator(5, &client, &client) ;
separatorsize.scaleBy(1, 3); // Now triple the thickness.
thickseparator. setFillcolor(IColor: :red)

.movesizeTo(IRectangle(IPoint(0,110),
separatorsize)) ;

// Size and show the window now.
frame . setFocus ()

. show () ;
IApplication : : current () . run () ;

)

Canvas Usage Considerations
The examples thus far in this chapter make heavy use of frame extensions because a frame
window provides basic sizing and positioning of its extension windows. More likely, you will
use the Isetcanvas and IMulticellcanvas to automatically size and position static text
windows. These classes are described in Chapter 15, "Canvases." However, be aware of the
following three considerations when you use the IstaticText class with either a set canvas or
multicell canvas.

First, if you are implementing a status or message area using the IstaticText class, call its
setLimit function to indicate the minimum number of characters the field contains. If you do
not call this function, the minimum size returned by the calcMinimumsize function of
IstaticText determines the size needed by the control, based on its current text and font. If
you change the text string displayed by an IstaticText window, this calculation is inadequate.
Any change you make to the displayed text causes the canvas to flash as it updates all of its

168 Power GUI programming with visualAge for c++

child windows based on the changed minimum size. By calling setLimit, you instruct
calcMinimumsize to return a value based on how many characters the control must be big
enough to hold. New text that fits within this size does not cause the canvas to update its child
windows. See Chapter 15, "Canvases," for more details on the use of minimum sizes by the
Isetcanvas and IMulticellcanvas classes.

Second, IstaticText: :calcMinimumsize does not allow static text to be displayed on more
than one line. The value it returns is the size needed to display all of the control's text on a
single line. As a result, static text on an Isetcanvas or IMulticellcanvas is only displayed as
a single line of text, even if the IstaticText object uses word wrapping. To support word
wrapping, provide your own minimum size for a static text control. For example, you can
create a class derived from IstaticText that overrides the calcMinimumsize function. You
could implement this function using the minTextwidth and textLines functions of IFont.

Third, if you are using an IstaticText object as a fill box or separator, you must manage its
minimum size. This is necessary because IstaticText : : calcMinimumsize returns a minimum
size of (0, 0) if the control has no text to display. If the minimum size of the IstaticText
needs to be calculated dynamically, create a class derived from IstaticText that provides its
own implementation for calcMinimumsize. Otherwise, assign the static text control a
minimum size by calling its setMinimunsize function. The following example shows how you
can incorporate these canvas considerations into your code. Figure 8-4 shows the resulting
window.

Canvas Considerations for Static Text - static\textcv\textcv.cpp
#include <ifont.hpp>
#include <ifralne.hpp>
#include <iapp.hpp>
#include
#include
#include
#include
#include
#include

<imcelcv.hpp>
<iradiobt . hpp>
<iselhdr.hpp>
=istattxt.hpp=
=istring.hpp>
<iccons t . h>

// Objects of this class support writing their text across
// multiple lines when they are made a child window of a
// multicell or set canvas. The text is wrapped to fit in a
// percentage of the parent window's width. Because this class
// relies on the function IFont: :textLines, it does not support
// double-byte characters.
class MultiLinestaticText : public IstaticText {
public :MultiLinestaticText (unsigned long id,

Iwindow* parent,
Iwindow* owner,
IstaticText: :Style style =

IstaticText: :defaultstyle())
: IstaticText(id, parent, owner, IRectangle(), style),

parentFraction(0.5)
(

this->disableMinimumsizecaching () ;
this->setAlignment (IstaticText: : topLeftwrapped) ;

)virtual MultiLinestaticText
&setFraction (double fraction)

(
parentFraction = (fraction > 1) ? 1 : fraction;return *this;

)

Cfe¢pfe7.8 Static controls 169

Figure 8-4. Static Text on a Canvas.

virtual double
fraction () const
{ return parentFraction; }

protected:virtual Isize
calcMinimumsize
(

() const

unsigned long recommendedwidth =
(unsigned long) (this->parent()->size() .width() *

this->fraction ()) ;

// Get the current font information to see what size the
// text needs to be.
IFont font(this);
unsigned long minwidth = font.minTextwidth(this->text()) ;

// At least show the longest word.
if (recommendedwidth < minwidth)

recolnmendedwidth = minwidth;

unsigned long lines =
font.textLines (this->text() , recommendedwidth) ;

return Isize (recommendedwidth,
lines * font.maxcharHeight()) ;

170 Power GUI programming with visualAge for c++

private :double
parentFraction;

MultiLinestaticText (const MultiLinestaticText&) ;
MultiLinestaticText& operator= (const MultiLinestaticText&) ;
);

// This class is used to dynamically change the text of a
// static text control to help illustrate the benefits of
// using the IstaticText: :setLimit function.
class HumptyDumptyselectHandler : public IselectHandler {
public :

HumptyDumptyselectHandler (IstaticText* outputArea)
{ output = outputArea; }

protected:virtual Boolean
selected
(

(IControlEvent& event)
char* text = " `'.
switch (event.c6ntrolwindow()->id())
(

case 1:
text =
break;

case 2:
text =
break;

case 3:
text =

"Humpty Dumpty sat on a wall.";

"Humpty Dumpty had a great fall.";

"All the King's horses and all the King's men,";
break;

case 4:
text = "Couldn't put Humpty together again.";
break;

default:
break;

(Output)

output->setText(text) ;
)return false;

)
private :IstaticText*Output;
);

void main ()
(

IFramewindow frame("Static Text and Canvas Example") ;
IMulticellcanvas client(IC_FRAIffl_CLIENT_ID, &frame, &frame) ;
frame.setclient(&client) ;
// Create child windows.
IstaticText

output (10, &client, &client),
separator(11, &client, &client) ;

output.setLimit(45) ;
separator

.setFillcolor(IColor: :black)

.setMinimumsize(Isize(10, 2));

IMulticellcanvas
headings(14, &client, &client);

MultiLinestaticText
headingl(12, &headings, &headings) ,
heading2(13, &headings, &headings) ;

Cfeapfe7.8 Static controls 171

headingl
.setFraction(0.4)
.setText("Select a radio button from the group below.") ;

heading2
.setFraction(0.4)
.setText(`'This text consists of several words and may"

+ Istring(" wrap across several lines."));
headings

.addTocell (&headingl,

.addTocell (&heading2 ,
headings

setcolumnwidth
setcolumnwidth
setcolumnwidth

IRadioButton
nonefirst
secondthird
fourth

none
.setText(`'None")
. enableTabstop ()
. enableGroup () ;

first.setText(''First") ;
second.setText(`'Second")
third.setText(`'Third") ;
fourth.setText("Fourth")
client

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (

. addTocell (
client

&headings ,
&none ,
&first'
&second,
&third'
&fourth,
&separator,
&Output,

.setcolumnwidth(3, 0, true)

.setcolumnwidth(4,
IMulticellcanvas: :defaultcell () .width()) ;

unsigned long defaultHeight =
IMulticellcanvas : : defaultcell () . height () ;

client
.setRowHeight(1, defaultHeight, true)
.setRowHeighL(3, defaultHeight, true)
.setRowHeight(13, defaultHeight, true)
.setRowHeight(16, defaultHeight, true) ;

HumptyDumptyselectHandler selHdr (&output) ;
selHdr.handleEventsFor(&client) ;

// Size and show the window now.
frame

.movesizeToclient(IRectangle(IPoint(50, 50) ,
client.minimumsize()))

. setFocus ()

. show () ;

IApplication : : current () . run () ;

172 Power GUI programming with visualAge for c++

Bitmap and Icon Controls
With the IBitmapcontrol and IIconcontrol classes, you can display a graphical image. The
image can be either a bitmap or icon. You can store the bitmap in a resource library or bind it
to the executable program. The bitmap can also be a system-provided bitmap or one your
application has already loaded. Your sources for an icon are similar. You can store the icon in
a resource library or bind it to the executable program. It can also be a system-provided icon
or one that your application has already loaded.

You can display a bitmap using the IBitmapcontrol class. Because IIconcontrol derives
from IBitmapcontrol, you can use IIconcontrol to display either an icon or a bitmap.

Showing a Graphical Image
When you create a bitmap control, you can provide it a bitmap to display. Once you have,
constructed an IBitmapcontrol window, you can dynamically replace the original bitmap with
another by calling IBitmapcontrol : : setBitmap.

Likewise, when you create an icon control, you can provide it an icon to display. Once you
have constructed an IIconcontrol window, you can replace the original icon by calling either
the setBitmap or setlcon function. setBitmap assigns the IIconcontrol a bitmap to display.
setlcon assigns it an icon.

If you use an IIconcontrol to display an icon created with screen or inverse colors, do not use
the Iwindow: : clipchildren style on the parent window of the IIconcontrol. Otherwise, the
icon' s appearance is unpredictable because the display of screen or inverse colors is dependent
on what is on the screen when the icon is drawn. Iwindow: :clipchildren keeps the parent
window from painting the area where the icon appears.

Sizing the Graphical Image
As you change the size of an IBitmapcontrol or IIconcontrol window, it sizes its bitmap or
icon to fill its window boundaries. This means both IBitmapcontrol and IIconcontrol
automatically stretch and compress an image, as necessary, to fit it into its window rectangle.

In many cases, it is necessary to show a bitmap or icon in its actual size, that is, not distorted or
scaled through stretching or compression. You do this by sizing the IBitmapcontrol or
IIconcontrol to the actual size of the bitmap or icon, thus preventing the IBitmapcontrol or
IIconcontrol itself from growing or shrinking. You can get the actual size of the bitmap or
icon displayed by either of these classes by calling their calcMinimumsize function indirectly
through minimunsize. For example, you can size an IIconcontrol by using the following
code:

// Construct the IIconcontrol.
IIconcontrol icon(...);

// Size the icon to its true size.
icon.sizeTo(icon.minimumsize()) ;

Cfe¢pfer8 Static controls 173

You can also construct an IBitmapcontrol with the IBitmapcontrol : : sizeTOBitmap style, or
an IIconcontrol with the IIconcontrol: :sizeTolcon style. These styles direct the
IBitmapcontrol or IIconcontrol to size itself to the actual size of the respective bitmap or
icon each time you assign it a new bitmap or icon. However, these styles do not guarantee that
the size of the IBitmapcontrol or IIconcontrol cannot be changed. So, be sure to place the
IBitmapcontrol or IIconcontrol in a context where its size cannot be changed if you always
want to show the exact image of a bitmap or icon.

For example, perhaps you want to show a fixed-size bitmap or icon on an IMulticellcanvas.
If you cannot ensure that the row and column of the multicell canvas will not grow, add an
intermediate Isetcanvas object between the multicell canvas and the bitmap or icon control.
The Isetcanvas keeps any size changes that the multicell canvas tries to make on its child
windows from affecting the graphic image.

Showing Text
Because both IBitmapcontrol and IIconcontrol derive from IstaticText, you can show text
on top of the graphic image by calling setText. Be sure you do not use the
IstaticText: : fillBackground style. This erases the bitmap or icon when the text is drawn.
Assigning text also changes the minimum size of the object.

Processing User Interaction
Appropriately for a static control, IBitmapcontrol and IIconcontrol display bitmaps and
icons that the user is not intended to interact with. There are other means of creating a bitmap
or an icon that the user can interact with. Among these alternatives are the
IGraphicpushButton class (see Chapter 10, "Button Controls"), the IContainercontrol and
IContainerobject classes (see Chapter 13, "Container Control"), the IMouseHandler class to
detect mouse button clicks (see Chapter 17, "Reusable Handlers"), and drag and drop (see
Chapter 21, "Direct Manipulation").

Example
The following example code shows an icon and bitmap on an IMulticellcanvas. The
IIconcontrol displays the icon at its actual size. The IBitmapcontrol allows the canvas to
enlarge the bitmap along with the frame window. Figure 8-5 shows the resulting window.

Icon and Bitmap Example - static\iconbmp\iconbmp.cpp
#include <ibmpctl.hpp>
#include <ifralne.hpp>
#include <iapp.hpp>
#include <iiconctl.hpp>
#include <imcelcv.hpp>
#include <istattxt.hpp>
#include <icconst.h>
#include `'iconbmp.h"
void main ()
(

IFralnewindow fralne(`'Icon and Bitmap Example") ;

174 Power GUI programming with visualAge for c++

// Put the icons and bitmaps on an expandable canvas.
IMulticellcanvas client(IC_FRAME_CLIENT_ID, &frame, &frame) ;
frame.setclient(&client) ;
// Create the background bitmap.
IBitmapcontrol bmpl(1, &client, &client, ID_CPPBITMAP) ;

// Create labels for the graphic images.IstaticText
bmpHeadingr (0, &client, &client), '
iconHeading (0, &client, &client);

bmpHeading
.setText(''Bitmap -Sized by canvas")
.setAlignment (IstaticText: :centercenter)
. disableFillBackground () ;

iconHeading
.setText(`'Icon -Actual size")
.setAligrment (IstaticText: :centercenter)
. disableFillBackground () ;

// Create an icon.
IIconcontrol iconl(1, &client, &client,

ID_CPPICON, IRectangle () ,
IIconcontrol : : classDefaultstyle

I IIconcontrol: :sizeTolcon) ;

// Put the child windows in the multicell canvas.client
addTocell (&bmpl,
addTocell (&bmpHeading,
addTocell (&iconHeading,
addTocell (&iconl,

Figure 8-5. Icon and Bitmap.

Cfea!pfe7.8 Static controls 175

// Assign expandable columns and rows.client
setcolumnwidth
setcolulnnwidth
setcolumnwidth
setRowHeight (3
setRowHeight (6

// Show the window now.
frame . setFocus ()

. show () ;
IApplication : : current () . run () ;

)

Icon and Bitmap Resources - static\iconbmp\iconbmp.h
#def ine ID_CPPICON 1
#def ine ID_CPPBITMAP 1

Icon and Bitmap Constants - static\iconbmp\iconbmp.rc
#include "iconbmp.h"
#ifdef IC_PM /* OS/2 resources */
ICON ID_CPPICON . \os2 \cpp. ico
BITMAP ID_CPPBITMAP cpp.bmp

#else /* Windows resources */
ID_CPPICON ICON . \win\cpp. ico
ID_CPPBITMAP BITMAP cpp.bmp
#endif

Group Box and Outline Box
You may, at times, want to provide a stronger way to relate information logically than simply
by locating it together. The group box control offers a commonly used way to create a stronger
association than that. Visually, a group box draws a rectangular border just inside its window
boundaries; a text label forms part of its top border. You can use the group box to organize
information by placing related elements inside the borders of the group box. The IGroupBox
class represents a group box control.

An outline box gives you an easy way to draw a common graphic-a rectangular border. You
can use this control in the same manner as a group box, to group together logically related
information. An outline box draws its border just inside its window boundaries and has the
look of a group box without text. Figure 8-6 shows a group box and an outline box.

Usage Considerations
Neither a group nor outline box paints its entire screen area. Instead, each box only draws its
borders, and a group box draws its text. They do not paint over their interiors. As a result, you
can create a group or outline box that visually contains sibling windows by positioning and
sizing the group or outline box around them.

176 Power GUI programming with visualAge for c++

Figure 8i6. Group Box and Outline Box.

You can get the same visual effect by making the windows contained by a group box or outline
box the child windows of those controls. However, if you do this, you lose automatic
processing of the Tab and cursor arrow keys to move the input focus among these child
windows. Dialog-box behavior, like cursor movement, is provided only to child windows of a
frame window or a canvas. In the OS/2 operating system, another drawback of using a group
or outline box as a parent window is its effect on the mouse. Child windows stop receiving
mouse clicks and do not change the appearance of the mouse pointer.

When you size an IGroupBox window, make it large enough to contain its text, its surrounding
border, and the windows it encloses. A group box only displays a single line of text, which can
be clipped if the window is too narrow to display it all. So, try to limit the amount of text you
assign to a group box. You assign text using the setText function.

Do not confuse a group box with the effect of using the IControl : :group style. A group box
only gives visual effects. Also, due to the problems in using an IGroupBox as the child window
of an Isetcanvas, Isetcanvas provides an alternate way to get the visual effect of a group
box. See Chapter 15, "Canvases," for details.

Example
The following code displays the window shown in Figure 8-6. Three radio buttons are sized
and positioned to appear within the border of the group box. Static text is sized and positioned
to appear within the border of the outline box. All the controls are sibling windows.

Cfeapfer8 Static controls 177

Group Box and Outline Box Example - static\boxes\boxes.cpp
#include <icanvas.hpp>
#include <iframe.hpp>
#include <iapp.hpp>
#include <igroupbx.hpp>
#include <ioutlbox.hpp>
#include <iradiobt.hpp>
#include <istattxt.hpp>
#include <icconst.h>
#include <icoordsy. hpp>
void main ()
(

// Set the coordinate system to upper-left on all platforlns.
ICoordinatesystem: : setApplicationorientation (

ICoordinatesystem: : originupperLeft) ;
IFramewindow frame("Group Box and Outline Box Example") ;
Icanvas client (IC_FRApffi_CLIENT_ID, &frame, &frame,

IRectangle(IPoint(), Isize(390, 200)));
frame.setclient(&client) ;

// Create a group box with radio buttons.
IGroupBox group(1, &client, &client,

IRectangle(IPoint(30,10),
Isize(150,170)));

group.setText("Group box") ;
Isize buttonsize(130, 30);
IRadioButton

first (2, &client, &client,
IRectangle(IPoint(40, 40), buttonsize)),

second(3, &client, &client,
IRectangle(IPoint(40, 90), buttonsize)),

third (4, &client, &client,
IRectangle(IPoint(40,140), buttonsize));first

.setText(''First")

. enableTabstop ()

. enableGroup () ;
second.setText("Second") ;
third.setText(`'Third") ;

// Create an outline box with text.
IOutlineBox outline(5, &client, &client,

IRectangle(IPoint(210,10),
Isize(150,170)));

IstaticText text(6, &client, &client,
IRectangle(IPoint(220, 20),

Isize(130,150)));
text

. setAlignment (IstaticText: : topLeftwrapped)

.setText(`'Text in an outline box.") ;

// Size and show the window now.
frame

.movesizeToclient(IRectangle(IPoint(50, 30) ,
client.size()))

. setFocus ()

. show () ;
IApplication : : current () . run () ;

)

Chapter 9

Edit Controls

• Describes the edit control classes in open class Library
• Describes the ITextcontrol, IEntryField, IMultiLineEdit and IEditHandler classes
• Read chapters 4 and 7 before reading this chapter.
• Chapters 11,15 and 17 coverrelatedmaterial.

This chapter describes the entry field and multiline edit control classes supported by Open
Class Library. You use these controls to collect character input from the user and to present
text for users to edit or view. It also describes the abstract text control class from which the
edit controls and other text-based controls derive their basic behavior. These controls work
with character text and are enabled to support double-byte character data.

The Edit Classes
Figure 9-1 shows the classes in Open Class Library that you use with edit controls.
IEntryField and IMultiLineEdit create edit controls and set and select text from the
controls. These classes derive their base functional behavior from ITextcontrol, their
common base class.

ITextcontrol provides a small base set of functions that are common to all text-based controls
in Open Class Library. These functions enable you to set and query the text within the control,
as well as to query for other specific information about the text and related items. You can set
the text of the control using two different forms of ITextcontrol : : setText. The first form
enables you to specify the string directly; the second form enables you.to set the text indirectly
by specifying the resource identifier of an item in a string table. Use ITextcontrol : : text to
query for the current string set in the text control and ITextcontrol : : textLength to get the
length of that current string in bytes.

IEntryField represents an edit control that enables only a single line of text and is used to
prompt and collect information from the user. IMultiLineEdit also represents an edit control
but one that enables more than one line of text and contains enough editing capabilities to
enable you to use it as a simple text editor.

179

180 Power GUI programming with visualAge for c++

Figure 9-1. Edit Controls and Related Handlers and Events.

The following code fragment shows the derived text functions applied to IEntryField and
IMultiLineEditobjects:

Basic Text Functions - editctls\simple\simple.cpp -
// Set the text of the entry field.
myEntryField.setText (`'Common Text Operations") ;

// Query the text of the entry field.
Istring text = myEntryField.text() ;
// Find the length of the text in the entry field.
int length = myEntryField. textLength() ;
// Now apply the same functions to an ELE.
myMLE.setText("Common Text Operations") ;
text = myMLE.text() ;
length = myMLE.textLength() ;

In addition to the basic functions listed above, ITextcontrol also provides a couple of helper
functions that are useful in edit operations and control layout. Call clipboardHasTextFormat
to determine whether a paste operation is valid for the text control. This function checks the
clipboard for the existence of a text string from a prior cut or copy operation. You can retrieve
the size of the rectangle needed to display the current string with the current font for the
window using ITextcontrol : : displaysize.

Cfeapfer9 Editcontrols 181

Common Text Operations
You can create an IEntryField or IMultiLineEdit object using the standard constructors
described in Chapter 7, "Controls." Both classes share many common interfaces beyond the
common set of functions they derive from ITextcontrol.

Selected Text Operations
Selected text operations are another common set of functions. Both classes support the
capability to select text and query selected text. Additional functions also act on selected text.
Generally, you let the users select the text by swiping it with the mouse with the selection
button pressed or by holding down the Shift key and moving the cursor using the keyboard.
However, you can select text with selectRange by specifying the start and end points. If you
do not specify parameters, selectRange selects all of the text in the edit control. Use
selectedRange to retrieve the range selected and selectedTextLength and selectedText to
get the size of the selected text and the actual text selected, respectively.

Additional selected text functions include clear and discard. The differences between the
clear and discard operations are that clear replaces the selected text with blanks and discard
deletes the selected text. Both functions throw an exception if the control does not have any
selected text. You can test for this condition by calling hasselectedText.

Don't Forget to Prompt Your User
Because many operations are only valid for selected text, your applications need to provide
visual clues to your users about these operations. Menu items representing selected text
actions need to be disabled when no text is selected and enabled when text is selected. See
an example of this in Chapter 6, "Menus and Keyboard Accelerators." It uses IMenuHandler
to dynamically modify a submenu.

Clipboard Operations
Open Class Library supports clipboard operations for edit controls. Both IEntryField and
IMultiLineEdit classes provide cut, copy, and paste functions to transfer data to and from
the clipboard. Users must select the text to use cut and copy, and the clipboard must contain
text to use paste. Otherwise, the function you call throws an exception. Use
hasselectedText as a check prior to using cut or copy and clipboardHasTextFormat as a
check prior to paste. The cut function removes the selected text and puts the data in the
clipboard. The copy function only copies the data to the clipboard. The class Iclipboard also
has functions for storing data and testing the type of data in the clipboard.

182 Power GUI programming with visualAge for c++

Additional Common Interfaces
Common interfaces declared by IEntryField and IMultiLineEdit classes include the
following ones:

• setLimit and limit, whichyouuse to set and query the textlimit

• hasTextchanged, setTextchanged, and resetTextchanged, which you use to set, reset,
and query to determine if the text in the control was modified since you last checked it

setcursorposition and cursorposi.tion, which you use to set and query the position of
the cursor

enableDataupdate, disableDataupdate, and iswriteable, which you use to set, reset,
and query to determine if the user can modify the text in the control

removeAl1, which you use to delete the entire contents of the edit control

The Hntry Field Control
An entry field's window styles determine its behavior. These styles are set when you create
the control. IEntryField provides functions to enable and disable some of these styles after
the edit window is created, but most of these are supported only in the OS/2 operating system.
The Windows operating system does not support dynamic modification of styles for their
native controls, including entry fields. Therefore, functions such as enableAutoTab,
disableMargin, and setAlignment only work in the OS/2 operating system, so avoid them in
portable code. We discuss a few of the entry field styles here.

You can prevent users from entering text into an entry field by making it read-only. Specify
this using the IEntryField: :readonly style. This is the only edit control style that you can
modify dynamically on the Windows operating system; you can change it by using
enableDataupdate and disableDataupdate.

Entry Field Styles
To justify text within an entry field control, use the styles IEntryField: :1eftAlign,
IEntryField: : centerAlign, and IEntryField: :rightAlign. These styles do not automati-
cally remove leading or trailing blanks from the text. Use the Istring member functions
strip, stripLeading, and stripTrailing to do that.

Use the IEntryField: : autoscroll style to determine whether the text in an entry field scrolls
to show the current typing point.

If you remove the IEntryField: :margin style, the entry field does not draw the border. Note
that drawing a border does not change the size of the text or edit region of the entry field. The
text or edit region containing the text determines the size and position of an entry field. The
border, if present, is drawn around the text region. You can use another style,
IEntryField: :border3D, to specify a three-dimensional border instead of a solid line. This

Cfeapfer9 Editcontrols 183

style affects only 32-bit Windows programs; it has no effect in the OS/2 or Windows 3.1
operating systems.

Use the IEntryField: :unreadable style to create an entry field that accepts a password.
Instead of displaying tbe user's actual input, the entry field displays asterisks to protect the
password. In the Windows operating system, this style always provides left alignment of the
text, ignoring any alignment styles set.

The IEntryField: :autoTab entry field style causes the cursor to move to the next control
when a user enters the last character of the text limit. The text limit is the maximum number of
characters that a user can enter into the control. The default text limit is 32 bytes. You can
change the text limit with the setTextLimit member function. The text limit also determines
the minimum size of the entry field in an Isetcanvas or IMulticellcanvas window. Note that
the auto tab behavior is only supported in the OS/2 operating system. Specifying this style in
the Windows operating systems has no effect.

You set a style to enable double-byte character input. Two defined styles accept a mixture of
single and double-byte characters: mixedData and dbcsData. Use mixedData when you want
the text limit to include shift-out and shift-in characters, which are needed to convert the value
to an EBCDIC code page. Open Class Library supports double-byte, immediate conversion,
and input mode. Note that these styles are not necessary on the Windows operating system and
have no effect.

If you size an entry field too short vertically for its font, the Windows operating system may
not show the text in the entry field, and the user cannot change focus to the control. To correct
this problem, either size the entry field taller or change its font.

The Multiline Edit Control
Like entry fields, the multiline edit control's window styles define its behavior. Also like
entry fields, you must set these styles when you create the control if you want portable code.
The Windows operating system restricts these styles. We discuss a few of the multiline edit
styles here.

Use IMultiLineEdit : :wordwrap to cause the edit control to start a new line when text exceeds
the horizontal size of the control instead of scrolling the text. Specify
IMultiLineEdit: :horizontalscroll or IMultiLineEdit: :verticalscroll to add the
respective scroll bars to the control.

Both edit control classes have several common styles. You can make the multiline edit control
read-only by specifying the IMultiLineEdit : : readonly style. To add a border around the text
region, use the IMultiLineEdit : : border style. Note that the default style for IMultiLineEdit
enables word-wrapping and provides a vertical scroll bar and a border. In the 32-bit Windows
operating systems, you can also create a multiline edit control with 3D borders by specifying
IMultiLineEdit : : border3D style.

184 Power GUI programming with visualAge for c++

In the OS/2 operating system, you can also change the behavior of the Tab key. When you use
the IMultiLineEdit: : ignoreTab style, the cursor does not skip to the next control when the
user presses the Tab or backtab key. This enables users to tab inside the multiline edit window.
It is also the default behavior in the Windows operating system, and you cannot change it.
When the edit control processes tab keys, you can specify the locations of the tab stops using
the setTab function.

The multiline edit control performs best for text under 4KB and fastest for text up to 32KB.
Anything greater than that may cause the performance to degrade unacceptably. Although you
can use the multiline edit control for large files, a maximum size limit exists on some
platforms. For both the Windows 95 and Windows 3.1 operating systems, the maximum
amount of text that you can place in the control is less than 64K.

When using an IMultiLineEdit in an Isetcanvas or IMulticellcanvas window, define its
minimum size. The default for Open Class Library is 100 by 100 pixels.

Simple Text Editor
The multiline edit control is often referred to as a simple text editor. The typing and editing
functions are part of the multiline edit control; your program does not have to provide them.

IMultiLineEdit provides functions to insert text from a data buffer or file into the window,
and to save the contents in the window to a file. You can insert text at the current position
(add), at the end of the contents of the window (addASLast) or at a specific position
(addAtof fset). By default, these functions insert up to the first null character in the specified
text. If you want to insert a string that contains more than one null character, you must specify
its buffer size.

The importFromFile function inserts the contents of a data file into the window at the current
position of the cursor. You can export all of the `contents using exportTOFile or just the
selected text using exportselectedTextTOFile.

When inserting and saving text, you specify an end-of-line character format. Table 9-1 lists
the formats you can use.

Line operations are a feature of multiline edit controls not found in entry fields. You can insert
a specific line of text or remove a specific line of text. The addLineASLast function appends a
new line of text to the end. You insert a line of text at a specific line number with the addLine
function. The line number is the number of lines from the beginning of the edit control as the
lines would be displayed, which is based on the control size and word-wrapping. The
carriage-return and line-feed, line-break sequence is ignored and the number is zero-based.
You remove a line of text using the removeLine function. In addition to the common cursor
operations listed previously, IMultiLineEdit also provides setcursorLineposition to set the
cursor to the beginning of a specific line number and cursorLineposition to query the
specific line number location of the cursor. Use numberofLines to retrieve the total number of
lines in the control and visibleLines to retrieve the number of visible lines. Both of these
functions return an incorrect value unless the multiline edit window is visible. You can scroll

Cfeapfer9 Editcontrols 185

Table 911. Endlof-Line Character Formats

EOLFormatEnumerator Description

cfText Uses carriage-return (CR) and line-feed (LF) characters to end a line. The tab
characters separate words within a line. A null character signals the end of the
data. This is the default format.

noTran Uses a LF character to end a line. noTran guarantees that any text imported into
the multiline edit control in this format can be recovered in exactly the same
form when it is exported. This format is supported only in the OS/2 operating
system.

MLEFormat Uses CR-LF characters to end a line. During importing, MLEFormat ignores
the character sequence of CR-CR-LF, but it denotes word-wrapping during
exporting.

the text vertically to place a line at the top of the window using setTop, and you can retrieve
the line number of the topmost line using top.

IMultiLineEdit also provides the ability to restore the contents in the control to the state they
were in before the last change. Not all actions can be undone. Call isundoable to check
whether you can undo any actions performed before you invoke the undo function.

The multiline edit control has some restrictions. They are as follows:

• Currently, the OS/2 operating system limits the multiline edit control to accept only
bitmap fonts.

• In certain situations, overrunning the text limit causes an alarm, but the character is
added, anyway. This happens if you create the multiline edit control with undo disabled.
Open Class Library does not support this style, but you may encounter controls created
with it. For example, a container in the details view displays a multiline edit window
that exhibits this behavior to support direct editing.

Hvent Handlers
Open Class Library provides three handler classes for you to use with these edit control
Objects:

• IEditHandler, which you use to validate nonkeyboard input, such as text copied from
the clipboard. IEditHandler calls its edit virtual function whenever the contents of an
edit control change. This handler is called after the control has been visibly updated
with the change. You can attach tbis handler to either the edit control or its owner
window.

186 Power GUI programming with visualAge for c++

IKeyboardHandler, which you use to capture keystrokes, typically to validate input.
Attach this handler to the edit control. See Chapter 17, "Reusable Handlers," for more
details on IKeyboardHandler.

IFocusHandler, which you use for handling focus change events. These occur when a
control gains or loses the input focus, such as when the user tabs to and from the control.
You can attach this handler to either the edit control or its owner window. Note that you
cannot change the window with the input focus by using the gotFocus or lostFocus
virtual functions. One way around this restriction is to post a user message from the
focus handler. You can then implement a handler for the user message to change the
window with the input focus. This strategy, however, may not work. The control itself
may be implementing the same behavior (for example, a combination box control in the
OS/2 operating system), and its posted message may get processed after yours.

The following code is an example of IEditHandler being used to ensure only alphabetic
characters are typed into an entry field:

IEditHandler implementation - editctls\logon\logon.cpp
// Edit handler that checks password for alphabetic characters.
class PasswordHandler : public IEditHandler
(
public:

Passwordllandler(IEntryField* ef, IPushButton* pb)
: entrypw(ef) , OkButton(pb) {}

protected:virtual Boolean
edit (IControlEvent& evt)
(

// Get the password contents on each update.
password = entrypw->text() ;
// If the user enters a nonalphabetic key, disable the OK
// push button so that the dialog cannot be dismissed.
if (! (password. isAlphabetic ()))

OkButton->disable () ;
else

OkButton->enable () ;
return true;

)
private :IEntryField*entrypw;
IPushButton*OkButton;
);

Chapter 10

Button Controls

• Describes the various button control classes in open class Library
• Describes the IpushButton, IGraphicpushButton, IsettingButton, IcheckBox,

13StatecheckB ox, IRadioButton, and IselectHandler classes
• Read chapter 7 before reading this chapter.
• Chapter 16 covers the specialized button classes IcustomButton, IToolBarButton,

and IAnimatedpushButton. Chapter 17 covers related material.

This chapter describes most of the classes in Open Class Library that you use to add buttons to
your applications. Buttons are controls that users press to select a choice or to initiate an
immediate action. The classes in Open Class Library that allow users to initiate an action
inherit from the class IPushbutton; IPushButton itself is the primary class that provides this
behavior. However, the classes in Open Class Library that allow users to select a choice
inherit from the abstract class IsettingButton. Open Class Library also provides button
classes that replace the default drawing for push buttons. We describe these ICustomButton
derived classes, including IToolbarButton and IAnimatedpushButton, in Chapter 16, "Tool
Bars, Fly-Over Help, and Custom Buttons." Figure 10-1 displays the button control class
hierarchy.

Common Button Behavior
It is hard to discuss the behavior of the button classes as a whole because the button controls
do not always behave alike even though they look alike. The button classes have more
similarities because of their common Iwindow, IControl, and ITextcontrol inheritance than
because they inherit from IButton. Buttons also function as members of a group, and in
several button classes, it is this group characteristic that dominates the behavior of the button.
For these reasons, it is more informative to discuss the buttons in terms of their individual
characteristics. However, all buttons exhibit the following behavior:

• You can simulate a press of the button by calling the function IButton: :click. Note
that if you have an IselectHandler object attached to the button object and call
IButton: : click, the IselectHandler: : selected virtual function is called. This is not
the case, however, when you call the similar IsettingButton : : select function.

187

188 Power GUI programming with visualAge for c++

Figure 10-1. Button Classes.

• You can set or query the highlighted state of a button by calling the functions
. IButton: :unhighlight, IButton: :highlight, and IButton: :isHighlighted. The

presentatiori system normally only displays the highlighted state of a button when users
select the button either by pressing mouse button 1 or by pressing the space bar when
focus is on the button. It removes the highlighted state when users release the mouse
button or space bar. If you call highlight, the button remains in the highlighted state
until you call unhighlight or users select the button manually.

• You can create the button with the style IButton: :nopointerFocus. The presentation
system does not transfer focus to a button that you created with this style when users
press the button. However, this style does not disable the use of the keyboard to transfer
focus to the button. You can use this style for any button class, but it is not very useful
on buttons other than push buttons. See the topic "Help Push Buttons" later in this
chapter for its primary use in push buttons.

Push Buttons
When users select them, push buttons cause an immediate action. Use them, then, to start or
cancel an action, request help, or display an action view or a settings view. In response to a
button press, Open Class Library dispatches an ICommandEvent to the owner of the button with
the command-event identifier set to the identifier of the button. This behavior is similar to the
behavior of menus, and this similarity means you can process an action choice that occurs from
a menu or push button in the same way.

Cfea!pfcrJ0 Button controls 189

On the OS/2 operating system, you can create push buttons with or without a border. Create a
push button without a border by using the IPushbutton : :noBorder style or remove the border
later by calling IPushbutton: :removeBorder after creating tbe button. The Windows
operating system ignores both of these requests.

System Command Push Buttons
Also, as with menus, you can change the ICommandHandler callback from command to
systemcommand. You can do this because Open Class Library calls ICommandHandler in
response to a button press. To change a push button to send a system command notification in
this manner, create it with the style IPushButton::systemcommand, or call
IPushButton : : enablesystemcommand after you create the push button.

The value of changing a push button to generate a system command is that the presentation
system works for you. It executes the default behavior for system commands without your
writing any additional code. The window identifier of the push button is the command
identifier in the command event. To generate a system command that the presentation system
recognizes, you must assign the button one of the system command identifiers defined in
IsystemMenu. See the topic "Push Button Example" in this chapter for an example that uses
system command push buttons.

Help Push Buttons
Again, as with menus, you can change the notification that the push button sends when a user
presses it to a help request. Changing a push button to a help button initiates an attempt to find
and display the help information for the control with input focus. To change a push button to a
help button, either create the button with the IPushButton::help style or call
IPushButton : : enableHelp after you create the push button.

By default, the presentation system changes input focus to the push button when a user presses
it. If you create the button with the IPushButton : : help style, the presentation system displays
help for the push button itself. To add a push button to display co7®£ex£-se#siz.£z.1;e feeJp (help for
the control with input focus), add the IButton: :nopointerFocus style. With this style, the
operating system leaves input focus on the control that had it before the user selected the push
button with the mouse. Thus, a user can request help for any control in the view with input
focus by using the mouse to select a help push button.

In the OS/2 operating system only, if you create buttons as part of a dialog template, you can
add the systemcommand, help, and nopointerFocus styles using the Presentation Manager
styles, BS_SYSCOMMAND, BS_HELP, and BS_NOPOINTERFOCUS.

The Default Push Button
A de/czz{Jf pz4Sfe bz4#o# is a button that is automatically selected when a user presses the Enter
key-even when input focus is #of on a push button. The default push button is useful because
it allows your users to type in fields on the view and press Enter to process the data without
having to move the cursor to a specific button. To make a push button a default button, either

190 Power GUI programming with visualAge for c++

create it with the IPushButton: :defaultButton style, or call IPushButton: : enableDefault
after you create the push button.

When you add the defaultButton style to a push button, the push button displays a thick
border and temporarily becomes the default push button. A user can change the default push
button by using the Tab key to put input focus into a group of push buttons and then use the left
and right arrow keys to move input focus, along with the default style, to another push button.
When the user moves to a control tbat is not a push button, the push button that you specified
to be the default becomes the default push button again.

Create only one push button with the defaultButton style for each frame window. This button
must be a child of the frame or a child of a canvas window.

If you create your buttons as part of a dialog template, you can create a default button by using
the control type DEFPUSHBUTTON instead of PUSHBUTTON.

The Group Behavior of Push Buttons
Ensure that the first (usually the left-most or top-most) push button in a set has a style of
IControl : :group and IControl : : tabstop. A push button with the group style becomes the
first button in a group of buttons. A push button with the tabstop style receives input focus
when the user tabs to the control. Add the group style to only one button in a set of push
buttons. If you add the group style to more than one push button, you create more than one
logical group; the left and right cursor keys no longer allow your users to move among all of
the push buttons. To add the group style to a push button, create it with the IControl : : group
style or call IControl: :enableGroup. If the group style is already added to a button, call
IControl : : disableGroup to r`emove it.

Although only one push button in a set should have the group style, you can add tabbing
behavior to more than one push button by creating it with the IControl : : tabstop style or by
calling IControl : :enableTabstop. The Tab key moves focus to every push button with the
tabstop style.

If you create your buttons as part of a dialog template, the tabstop style is the default. You
remove it using the NOT WS_TABSTOP style. Add the group style using the presentation system' s
WS_GROUP style.

Graphic Push Buttons
Use the IGraphicpushButton class to add a bitmap or icon image to a push button. You can
also add text to the graphic push buttons because this class inherits from IPushButton. The
graphic push button displays the text on top of the graphic image. And, it behaves identically
to a normal push button.

You can use the IGraphicpushbutton: : sizeTOGraphic style to cause the graphic push button
to size itself to the size of the graphic image. Use this style especially if you are putting the
graphic push button into one of the canvas classes. If you do not use this style, you are

Cfeapfe7.J0 Button controls 191

responsible for creating the graphic push button in the correct size to contain the graphic
image.

If you do not use an icon that uses screen or inverse colors, add the Iwindow: : clipchildren
style to the graphic push button to optimize the drawing of the push button.

Push Button Handlers
Open Class Library does not provide specialized handlers for the push button classes but it
does use its own specialized handers internally on the Windows platforms to simulate the
IPushButton styles systemcommand, help, and nopointerFocus.

You cannot use an IselectHandler to capture the selection of a push button because Open
Class Library does not call IselectHandler: :select when a user presses a button. Instead
you use an ICommandHandler to capture button presses as command events.

Push Button Example
The following example demonstrates our recommended approach for adding push buttons to an
action view. The client area of the action view contains a multicell canvas. Inside the
multicell canvas is a set canvas with both normal and graphic push buttons. The set canvas is
the best approach for displaying buttons because it relieves you of calculating the size and
position of the buttons, regardless of the font you use to display text on the buttons or the size
you use for the graphic images.

The first push button, with the text OK, contains the tabstop and group styles. Thus, users
can tab to the push buttons as a group and then move the cursor among them with the left and
right arrow keys. The OK push button also contains the defaultButton style, so it is activated
when users press the Enter key. The last push button, with the text Help, contains the help and
nopointerFocus styles. When users press it, they can see context-sensitive help for the other
controls in the frame window, such as other push buttons. The Cancel push button is a system
command push button with the identifier IsystemMenu: : idclose. Therefore, it acts the same
as Close on the system menu.

Push Button Example - buttons\pushbut\pushbut.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

< i f rare . hpp>
< ipushbut . hpp>
<igraphbt.hpp=
<imcelcv.hpp>
=isetcv.hpp=
= i app . hpp=
< ihandl e . hpp>
<iccons t . h>
< i sysmenu . hpp>"pushbut . h"

192 Power GUI programming with visualAge for c++

void main ()

/ Create a frame window with a multicell canvas
/ as the client window.

IFranewindow
frame (`'Push Button Example") ;

IMulticellcanvas
client (IC_FRAME_CLIENT_ID, &frame, &frame) ;

// Create a set canvas to hold the push buttons.
Isetcanvas

buttons (ID_BUTTONS, &client, &client) ;

// Create the push buttons in the set canvas.
IPushButton ,

ok(ID_OK, &buttons, &buttons) ,
cancel (IsystemMenu: :idclose, &buttons, &buttons) ;

IGraphicpushButton
bitmap (ID_BITMAPBUTTON, &buttons, &buttons ,

IsystemBitmapHandle (IsystemBitmapHandle : : program)) ,
icon (ID_ICONBUTTON, &buttons, &buttons ,

IsystempointerHandle (IsystempointerHandle : : folder))
IPushButton

help(ID_HELP, &buttons, &buttons, IRectangle() ,
IPushButton: :defaultstyle () I
IPushButton : : nopointerFocus) ;

// Indicate that the bitmap button should base its size on
// the size of the bitmap.
bitmap . enablesizeTOGraphic () ;

// Set default button to ''OK" and make this
// button the first of the group.
ok

. enableDefault ()

. setText (''OK")

. enableTabstop ()

. enableGroup () ;

// Make the Cancel button a `'Close" system comlnand so
// the application closes when it is pressed. Note
// that we created the button with the id
// IsystemMenu: : idclos-e.
cancel

. enablesys temcommand ()

. setText (''Cancel ") ;

// Make the Help button show help when pressed (in
// this application, we have not defined any help
// to display) .
help

. enableHelp ()

. setText (''Help") ;

// Add the controls to the multicell canvas.client
.addTocell(&buttons, 2, 6, 3,1);

// Allow for some growth in the canvas.client
.setRowHeight (1, 20, true) ;

Cfe¢pfe7.J0 Button controls 193

// Put the canvas in the client and show the window.
frame

. setclient (&client)

. setFocus ()

. show () ;

IApplication : : current () . run () ;
)

Figure 10-2 displays shows the output of this program.

Figure 10-2. Push Button Example.

Setting Buttons
As Figure 10-1 shows, Open Class Library provides three classes of settings buttons:
IRadioButton, IcheckBox, and 13StateBox. Whereas you use push buttons to initiate an
immediate action, you use settings buttons to display settings or state information.
IsettingButton adds the interface to enable you to select, deselect, and query the selection
state with the functions select, deselect, and isselected. IsettingButton also adds the
interface to allow you to enable and disable auto-selection and to query the state of auto-
selection with the functions enableAutoselect, disableAutoselect, and isAutoselect.

Radio Buttons
You use radio buttons to allow your users to choose from a small list of mutually exclusive
items. Radio buttons function like the radio buttons on a car-only one button can be selected
at a time. When users select a radio button, the selection emphasis is removed from the previ-
ously selected radio button. If you have a large list of mutually exclusive choices, use a single
selection list box instead of radio buttons to display the choices.

194 Power GUI programming with visualAge for c++

The Group Behavior of Radio Buttons
Ensure that you put each set of radio buttons into a single group by adding the group style to
the first radio button. To add the group style, either create the radio button with the
IControl : : group style or call IControl : : enableGroup after you create the radio button.

As you learned in Chapter 4, "Windows, Handlers, and Events," the sibling order determines
the order in which windows are visited when users press the cursor arrow keys. The radio
button's position in the sibling order also determines the value returned from
IRadioButton: : selectedlndex. If you create your radio buttons from top (with the group
style) to bottom, the top radio button is assigned an index of 0, the second is 1, and so on. If a
user does not select a radio button, the function returns -1. You can call this function on any
radio button in the group to find the index of the currently selected radio button. Be aware that
any nonbutton siblings of your buttons can cause the indexes to be nonsequential because the
nonbutton siblings also have indexes. Therefore, create all radio buttons in a single group with
no intervening controls.

Selection of Radio Buttons
IRadioButton has two styles that affect a user's ability to select radio buttons:
IRadioButton: :autoselect and IRadioButton: :nocursorselect. By default, you create
radio buttons with the IRadioButton: : autoselect style. This style causes the radio button to
be selected when a user clicks on the button with the mouse. If you remove this style, you must
select the radio button because the user is no longer able to select it. Also, without the
IRadioButton: :autoselect style, an IselectHandler attached to the radio button does not
call IselectHandler : : selected.

By default, users just move the cursor to the radio button to select it. However, cursor
selection only works if the radio button is a child window of a frame window or a canvas
window. To turn off this behavior, create the radio buttons with the
IRadioButton : :nocursorselect style or call IRadioButton: : disablecursorselect after you
create each button. When you create a radio button with this style, the button is not selected
when input focus is moved to the button using the cursor. The user selects the radio button by
using the mouse or by pressing the space bar when the button has input focus.

Radio Button Handlers
If you need to perform an action when a user selects a radio button, you can add an
IselectHandler to the radio button. You might add such a handler to enable or disable other
choices in the view when the user selects a particular radio button.

Do not use the function IselectHandler: :enter unless you want to treat a double-click as
something other than another single-click. By default, IselectHandler: :enter calls
IselectHandler::selected when a user presses a button. Normally, you override
IselectHandler : : selected to process radio button selections.

Cfe¢pfe7.JO Button controls 195

Radio Button Example
We have modeled the following example after the OS/2 Desktop Settings dialog for changing
the background of the desktop. The example demonstrates the use of an IselectHandler to
capture a select event of a radio button and perform an action. When you select the Color
radio button, we disable Isetcanvas for Image and its child windows that display the image
data. When you select the Image radio button, we enable these windows. Figure 10-3 displays
the results of this example.

Radio Button Select Handler - buttons\radio\radio.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

< i f rare . hpp>
< iradiobt . hpp>
<imcelcv.hpp>
= i s tattxt . hpp=
<icolhoobx.hpp>
< ipushbut . hpp>
=isetcv.hpp=
=iapp.hpp=
<iselhdr.hpp>
<iccons t . h>"radio.h"

// Declare the radio button select handler
class SelectHandler : public IselectHandler
(
public :

SelectHandler (Isetcanvas& canvas)
: _canvas (canvas) {}

protected:virtual Boolean
selected (IControlEvent& event) ;

private :Isetcanvas
&_canvas ;

SelectHandler& operator= (const SelectHandler&) ;
);

void main ()
(
IFranewindow

frame ("Radio Button Select Handler Example") ;
IMulticellcanvas

client (IC_FRAME_CLIENT_ID, &frame, &frame) ;

// Set 1 for radio buttons; set 2 for bitmap nalne.
Isetcanvas

setl(ID_SET1, &client, &client) ,
set2 (ID_SET2, &client, &client) ;

// Add the set 1 buttons.
IRadioButton

image(ID_IMAGE, &setl, &setl) ,
color(ID_COLOR, &setl, &setl) ;

IPushButton
changecolor (ID_CIIANGECOLOR, &setl, &set2) ;

setl . setText (`'Background type") ;
set2 . setText (" Image") ;

196 Power GUI programming with visualAge for c++

Figure 10-3. Radio Button Select Handler.

// Add text to the buttons. Note that
// mnemonics are platform-sensitive.
#ifdef IC_PM

image . setText ("~Image") ;
color . setText ("C~olor") ;
changecolor . setText ("C~hange Color . . . ") ;

#else
image . setText (`'&Image") ;
color . setText (`'C&olor") ;
changecolor . setText ("C&hange Color . . . ") ;

#endif
// Add the set 2 text and combination box.IstaticText

fileLeader (ID_FILESTATIC, &set2, &set2) ;
IComboBox

fileName (ID_FILENAME, &set2, &set2, IRectangle(0,0,0,0) ,
IComboBox: :dropDownType I Iwindow: :visible) ;

f ileLeader . setText ("File : ") ;
fileName . setText ("os2 . bmp") ;

// Enable tab stops.
image . enableTabstop () ;
fileName . enableTabstop () ;

// Select the color choice.
image . select () ;

image . disableAutoselect () ;
color . disablecursorselect () ;
// Add the sets to the client canvas.client

.addTocell(&setl, 2, 2)

.addTocell(&set2, 2, 3);

// Allow for some growth in the canvas.client
.setRowHeight (4,10, true) ;

Cfea!pferJ0 Button controls 197

// Create and add select handler.
SelectHandler selectHandler (set2) ;
selectHandler . handleEventsFor (&setl) ;

// Put the canvas in the client and show the application.
frame

. setclient (&client)

. setFocus ()

. show () j

IApplication : : current () . run () ;
)

IBase: :Boolean SelectHandler: :selected (IControlEvent& event)
(

switch (event . controlld ())
(

case ID_IMAGE :
case ID_COLOR :
(

// Test to see if we should enable or disable
Boolean enable = (event.controlld() == ID_IMAGE) ;

// If image button is selected, Enable the canvas and
// its children; otherwise, disable the canvas and its
// children. Although disabling the canvas disables
// the children, they don't look disabled unless
// we explicitly disable them.
IRadioButton* button =

(IRadioButton*) event . controlwindow () ;
if (button && button->isselected())
(

_canvas . enable (enable) ;
Iwindow: :Childcursor cursor (_canvas) ;
for (cursor . seLTOFirst () ;

cursor . isvalid () ;
cursor . setTONext ())

(
Iwindow* child = Iwindow: :windowwithHandle (

_canvas . childAt (cursor)) ;
child->enable (enable) ;

)
)
break;

)
)return false;

)

Check Boxes
A cfeeck box is a button control that contains a small box with a text string to the right of it. In
objects of the class IcheckBox, this square can be in one of two states: checked or unchecked.
Each time users select the check box, it toggles from one state to the other.

You can use check boxes in two ways: To allow users to choose from a small list of items that
are not mutually exclusive or to represent the on and off state of a single item. Using them as a
small list of items is similar to using a multiple-selection list box. In fact, if you have a large
list of items, consider using a multiple-selection list box instead.

198 Power GUI programming with visualAge for c++

Also, use check boxes to represent the on or off state of a single item. For example, the Sort
page of the OS/2 Desktop Settings has a check box labeled, "Always maintain sort order." If
you check this box, the OS/2 Desktop maintains the sort order; otherwise, it does not.

The 13StatecheckBox and IcheckBox classes are similar except that the three-state check box
has three possible states. Besides the checked and nonchecked states of the check box, the
three-state check box has a halftone state. Each time users select the three-state check box, it
toggles to one of these states.

The desktop publishing system we used to prepare most of this manuscript uses three-state
check boxes effectively in its style sheets. We create these style sheets in a hierarchy. For
certain attributes of these style sheets, we indicate that we explicitly want the behavior by
checking a box, explicitly do not want the behavior by unchecking the box, or want the
behavior of an inherited style sheet by leaving the box in its halftone state.

The Group Behavior of Check Boxes
To put check boxes that are used together into a single group, create the first check box in the
group with the IControl : : group style or call IControl : : enableGroup on the first check box
after you create it. Also, add the IControl : : tabstop style to the first check box so that users
can tab to the check boxes as a group.

Selection of Check Boxes
Like the IRadioButton class, the IcheckBox and 13StatecheckBox classes support an auto-
select style called IcheckBox: :autoselect or 13StatecheckBox: :autoselect. By default,
you create check boxes with the auto-select style. This style causes a check box to be selected
or deselected, depending upon its state at the time, when a user clicks on it. If you remove this
style, your must explicitly select the check boxes because the user is no longer able to do so.

Check Box Handlers
You can add an IselectHandler to a check box to determine when the check box is checked,
not checked, or halftone.

Only use a select handler if you need immediate processing when the check box is checked or
unchecked (for example, to enable or disable other choices). Otherwise, simply query its
selection state when you need it. When you use a select handler, be aware that
IselectHandler calls its selected function when your users select and deselect the button
(and make it halftone). Query the check box directly if you need to distinguish these states.

Chapter 11

List Controls

Describes the control classes you can use to display lists of items in Open Class
Library
Describes the IBaseListBox, IListBox, ICollectionviewListBox, IBasecomboBox,
IComboB ox, ICollectionviewcomboBox, IB asespinButton, INumericspinButton,
ITextspinB utton, Is electHandler, IEditHandler, IFocusHandler, IshowListHandler,
IListB oxDrawltemHandler, IListB oxDrawltemEvent, and ISpinHandler classes
Read Chapter 7 before reading this chapter.
Chapters 9,13, and 17 cover related material.

This chapter describes three controls that display items in a list: list box, combination box, and
spin button. Figure 11-1 displays the Open Class Library classes that support these controls
and their associated handler and event classes.

The container, described in Chapter 13, "Container Control," is another control that displays
its items in a list. If you need to display many items or require more than a simple layout of
the data, the container may be a better choice.

You create list controls using the same types of constructors that almost all classes derived
from IControl support. See Chapter 7, "Controls," for details of these constructors.

The List Box
A Jz.ff box is a rectangular window that displays a scrollable list of read-only items. Associated
with each item in the list box is a text string and a handle. Without any action on your part, the
list box displays the text string for each item. However, you can use the item handle to display
a bitmap or other information for the item. Doing this requires you to draw the items in the list
box. See the "Custom List Box Example" topic later in this chapter for more information.

Open Class Library provides two classes for creating list boxes. IListBox is the original Open
Class Library list box class. ICollectionviewListBox is a template class that displays items
from an Open Class Library collection class object in a list box. Because you can modify the
contents of the list box only by changing the collection, ICollectionviewListBox provides a
level of model-view separation. The Vz.Sz{czJ Bz4z.Jder that ships with VisualAge for C++
typically generates objects of this class instead of IListBox. IListBox and

199

200 Power GUI programming with visualAge for c++

I Ivease I
I

I

I masesplINITeIEListB

INotifier il±±
IBasecomboBox::Cursor I I ITextspiriButton::Cursor I

Iwindow
I maseListBox::Cursor I

IControl

I I

inButton IericspinButton IxtspinButtonI IIICombo ITextcontrol I maseListBox IIListBox IICollectionviewListBox ItionviewcomboBoxI

IEntryHeld

IBasecomhoBox

Box I [IConec

I

I IHandler I IEvent

I rmtHandler IselectHandler IIshowListHandlerIISpinHandlerI IControHEvent

I IFocusHandler IDrawltemEvent

xDrawltenmandler IListBomrawltemEvent I

Figure 11-1. The Window, Handler, and Event Classes for Lists.

ICollectionviewListBox derive from IBaseListBox, which is an abstract class that contains
the functions common to its derived classes.

A list box always contains a vertical scroll bar that it enables when it contains more items than
it can display in its visible region. If it can display all the items, it disables the scroll bar. To
display items wider than the visible area of the list box you add a horizontal scroll bar using
the style IBaseListbox: :horizontalscroll. Like the vertical scroll bar, the list box enables
the horizontal scroll bar to scroll items that do not fit in its visible region.

CfeapferJJ Listcontrols 201

By default the list box automatically shrinks its height so it does not display a partial bottom
row. Add the style IBaseListBox: :noAdjustposition to stop the list box from adjusting its
height. Do not use this style if the list box is the child of an IMulticellcanvas, Isetcanvas,
or ISplitcanvas because it can cause the screen at the bottom of the list box to remain
unpainted.

In 32-bit Windows operating systems, you can get a 3-D border around the list box by speci-
fying the style IBaseListBox: :border3D. This style has no effect in other platforms.

Selecting List Box Items
The list box supports three forms of selection: single, multiple, and extended. Create multiple
and extended selection list boxes by constructing them with the IBaseListBox
multipleselect or extendedselect styles. You create a single-selection list box if you do not
specify one of these styles.

In a s'z.7®gJe-seJec£}.o# Zz.sf box a user can select only one item at a time. Selecting an item
always deselects any previously selected item. Although you can display a single-selection
list box without a selected item, one always becomes selected once a user interacts with the list
box. A user selects an item by clicking it with the mouse or by moving the selection cursor
onto an item and pressing the space bar. The only way to deselect an item is to select another
item.

With a mz4Jfz.pJe-s'eJecfz.o7® Zz.s'£ bo:*, you can select 0, one, or many items at a time. A user
selects items by clicking them with the mouse or by moving the selection cursor onto an item
and pressing the space bar. If you select an already selected item, the list box deselects the
item. You can also select noncontiguous ranges of items in a multiple-selection list box.

An exfe#ded-FeJecfz.o# Jz.Sf box is an enhanced form of a single-selection list box. Extended
selection is appropriate for situations in which a user usually wants to select only one item, but
occasionally wants to select more than one. Users can select multiple items by dragging the
mouse across them. They can also select multiple items using the mouse or up and down arrow
keys with the Shift key or Ctrl key pressed. They use the Shift key to select ranges of items.
And, if they press the Ctrl key they can select noncontiguous items. If they select an
unselected item without the Shift key or Ctrl key pressed, the list box first deselects all previ-
ously selected items.

All list boxes move the selection cursor to an item if a user types the first character of an item.
In a single-selection list box, this produces the effect of first character selection.

Handling List Box Events
As Figure 11-1 shows, you can use several handler and event classes to process events for a list
control. Of these you can use IListBoxDrawltemllandler, IselectHander, and IFocusHandler
(and their associated event classes) with a list box.

202 Power GUI programming with visualAge for c++

IselectHandler calls its selected function when a user selects an item in the list box, and it
calls its enter function when a user presses the Enter key or double-clicks the mouse on an
item. Each of these functions receives an IControlEvent object with information about the
event. (The Enter key can also select a default push button, which causes a command handler
to be called.)

IFocusHandler calls its gotFocus function when the list box receives the keyboard focus and it
calls its lostFocus function when it loses the keyboard focus. Do not change the window with
the input focus in either of these functions. This rule applies regardless of the kind of control
IFocusHandler is processing events for.

IListBoxDrawltemHandler provides the event-handling functions that you can override to
replace the default drawing of list box items. The IListBoxDrawltemEvent class provides the
information you need to draw the list box items and to draw selection emphasis. You only use
these classes if you want to draw the items with special effects, such as icons or bitmaps. The
list box automatically draws text items for you. An example described later in this chapter
shows how to use these two classes.

The Combination Box
A co77®bz.#¢£z.o# box combines the behavior of an entry field with that of a list box. The value of
a combination box is the value displayed in the entry field. Selecting a value from the list box
places that value in the entry field. A user can type text in the entry field or select an item in
the list box to fill the entry field unless the combination box is a read-only drop-down type. A
read-only drop-down combination box forces its value to be one of the items in its list box.
There are three different types of combination boxes:

simple

This type of combination box always displays its list box. Create this type of combi-
nation box with the simpleType style. This is the default.

drop-down

The visibility of the list box is under the control of the user for this type of combination
box. Create this type of combination box with the dropDownType style.

read-only drop-down

This type of combination box is a read-only version of the drop-down combination box.
Create this type of combination box with the readonlyDropDownType style.

Open Class Library provides two classes for creating combination boxes. IComboBox is the
original Open Class Library combination box class. ICollectionviewcomboBox is a template
class that displays items from an Open Class Library collection class object in a combination
box. Because you can modify the contents of the combination box only by changing the
collection, ICollectionviewcomboBox provides model-view separation. The Visual Builder
that ships with VisualAge for C++ typically generates objects of this class instead of

CfoapferJJ Listcontrols 203

IComboBox. IComboBox and ICollectionviewcomboBox derive from IBasecomboBox, which is
an abstract class that contains the functions common to its derived classes.

A simple combination box always displays its list box below the entry field. A drop-down
combination box normally does not display its list box. The combination box provides a
button, called a drop-dow7® bz4#o7®, next to its entry field. When a user selects the drop-down
button, the combination box displays its list box if it is hidden and removes it if it is visible.
The read-only drop-down combination box is nothing more than a read-only version of the
drop-down combination box, meaning you cannot type in the entry field. You cannot change
the type of the combination box after creating the control.

In 32-bit Windows operating systems, you can get a 3-D border by specifying
IBasecomboBox: :border3D. This style has no affect in other platforms.

A combination box is a composite control made up of an entry field and a list box. To process
keystrokes in the combination box, attach a keyboard handler to the entry field portion of the
combination box. To do this, first create an IEntryField wrapper for the entry field using the
constructor that takes a window identifier and parent window. CBID_EDIT, which is defined in
PMWIN.H, is the identifier for the entry field in the OS/2 operating system. In the Windows
operating system, the window identifier is Ox03E9. The parent window of the entry field is the
combination box for both operating systems. In the Windows operating system, a read-only
drop-down combination box does not have a child entry field to wrap, but there is normally no
reason to attach a keyboard handler to a read-only control.

There are additional considerations when you use an IComboBox object in an
IMulticellcanvas object. See Chapter 15, "Canvases," for information on how to correctly
use IComboBox with IMulticellcanvas.

Selecting Combination Box Items
The list box portion of the combination box only supports single selection because its sole
purpose is to aid the entering of data in the entry field of the combination box. When a user
types the first letter in the entry field, the list box scrolls the list of items so it displays the
items that begin with the character. The simple and drop-down combination boxes do not
restrict what a user can type into the entry field to those items in its list box because this is the
role of the read-only drop-down combination box.

Handling Combination Box Events
Of the handler classes displayed in Figure 11-1, you can use IshowListHandler,
IEditHandler, IselectHandler, and IFocusHandler with a combination box.

IshowListHandler calls its listshown function when the combination box is about to display
its list box. This occurs when a user presses the drop-down button on a drop-down combi-
nation box. However, because a user can use the up and down arrow keys to scroll the list
inside the entry field without ever displaying the list box, you cannot use this handler to
initialize the contents of the list box.

204 Power GUI programming with visualAge for c++

IEditHandler calls its edit function when a user or your program changes the contents of the
combination box entry field. IselectHandler calls its selected function when a user selects
an item in the list box. See Chapter 9, "Edit Controls," for more information on IEditHandler
and IselectHandler.

You can use IFocusHandler to detect when a combination box gains or loses focus. In the
Windows operating system, attach the handler to either the IComboBox object or to its owner
window. IControlEvent: :controlwindow identifies the IComboBox object. In the OS/2
operating system, a focus handler attached to a read-only drop-down combination box or the
owner of an IComboBox object is never called. You must attach the focus handler to a simple or
drop-down combination box because the handler actually detects focus-change events for the
child entry field of the combination box. As a result, IControlEvent: :controlwindow
identifies the entry field (it returns 0 if an IEntryField wrapper object does not exist), rather
than the IComboBox.

List Box and Combination Box Items
Once you have constructed a list control you need to add items to it. The IListBox and
IComboBox classes provide similar functions for operations, such as adding and removing
items. ICollectionviewListBox and ICollectionviewcomboBox require you to make all
additions, removals, and changes to the list box items through their associated collection
object. IBaseListBox and IBasecomboBox provide similar functions for selecting items.
Because of these similarities, we describe the behavior of the list box and combination classes
together.

Adding and Removing Items
IListBox and IComboBox provide functions to add items by passing a character string or
resource identifier. You can use them as follows:

• By specifying the position to add an item in the list as a 0-based index using the add
function

• By adding an item at the top or bottom of the list using the addASFirst and addASLast
functions

• By adding an item in ascending or descending alphabetical order in the list using the
addDescending and addAscending functions

• By adding anitemrelativeto acursor

The code to add list box items from the list box example described in a later topic follows:

Adding List Box Items - listctls\drawlist\drawlist.cpp
// Add the items to the list box by creating an
// Istring from the item data address.
for(int i=0; i< sizeof(items)/sizeof(Listltem); i++)
(

list.add(i, Istring((unsigned long)&items[i])) ;
)

Cfea!pferJZ List controls 205

You can remove all items in a list or an item at a 0-based index position.

Selecting Items
When a user selects an item in a list box, the list box highlights the item. When a user selects
an item in a combination box, it highlights the item and moves the value of the item to its entry
field. You can also select an item in a list box or combination box programmatically. To select
a single item in the list, use the select function, which requires a 0-based index of the item as
an argument. If you do not know the index of an item, use the locateText function to retrieve
the index based on the text of the item.

For the combination box and single-selection list box, selecting an item deselects any previ-
ously selected item. Because a multiple-selection list box enables users to select more than a
single item, they must explicitly deselect items to remove the selection emphasis. No matter
what type the list box or combination box is, you can deselect all items by calling
deselectAll.

Obtain the index of the selected item in the list by calling the selection function or test if an
item at an index position is selected by calling the isselected function. With a multiple-
selection list box, you can query the number of selected items by calling the
numberofselections function. Use a cursor to get the selected items.

Finding Items Using Cursors
A coJJecfz.o7e cz6rsior is a standard mechanism in Open Class Library for moving through the
elements of a collection. Because the list box and the combination box are collections of
items, both of these classes provide a nested class to iterate their items. These cursor classes,
IBaseListBox: :Cursor and IBasecomboBox: :Cursor, have the standard functions of all
cursors: setTOFirst, setTONext, setToprevious, setTOLast, isvalid, and invalidate.
Because a multiple-selection list box can have multiple items selected, you can also create a
cursor to iterate just the selected items in the list box.

Custom List Box Hxample
The custom list box example simulates the behavior of a class-hierarchy browser to show you
how to replace the default drawing of items in a list box. This includes drawing both bitmaps
and text for the list box items, and drawing the highlight state of each item. Figure 11-2 shows
the running example.

Besides demonstrating how to draw list box items, we also demonstrate an alternative to
storing handles for the list box items. First, you must store the data necessary to draw an item
in an object. Then, you can convert the address of this object to a text string and use it as the
item's text. When it is time to draw an item, you can use the functions of Istring to convert
the text string back into an address to the object, retrieve the actual text string of the item, and
display it in the list box. This is the technique we use in the list box custom-drawing example.

206 Power GUI programming with visualAge for c++

E IBa§e
E] IUBa§e

E] INotifier

E I§tandardNotifier
E Iwindow

E] IControL
E] IBa§eLi§tBox

IC:ollectionuiewLi§tBox

E IBa§e§pinButton

Figure 11-2. Custom List Box Drawing.

One note about this technique: Because the item text in the list box is not the actual text,
first-character selection does not work correctly.

The Spin Button
The xpz.73 bz/ffo73 is a visual control that displays a collection of items, one at a time, in the entry
field, also called the xpz.72/I.eJd, portion of the spin button. The collection itself is an ordered
collection, the ends of which connect to form a complete ring of items. The spin button
displays up and down arrow buttons, called xpz.7® ¢77iows, that allow users to use the mouse to
scroll, or spin, the contents of the spin button within its entry field. They can also scroll the
contents using the keyboard up and down arrow keys.

Open Class Library provides two classes for creating spin buttons, INumericspinButton and
ITextspinButton. Both derive from IBasespinButton, which is an abstract class that contains
the functions common to its derived classes. A numeric spin button contains a contiguous
range of integers. A text spin button contains an array of text strings and, therefore, you can
use one to display a noncontiguous collection of numbers as text strings.

Using Spin Button Styles
The spin button supports multiple entry fields controlled by a single set of spin arrows. You
accomplish this by building one spin button with the style IBasespinButton: :master and one
or more spin buttons with the style IBasespinButton: :servant. The master spin button
contains the spin arrows that control the scrolling of both the master and servant spin fields.
The spin arrows control the spin field with the focus. After constructing a servant spin button,
call the function IBasespinButton: : setMaster to identify the master spin button. A typical
example for a set of master and servant spin buttons is an editable date display containing
individual month, day, and year fields. We use this as an example in this chapter.

CfoapferJJ List controls 207

IBasespinButton: :pmcompatible is only available in the Windows platform. Specifying this
style gives you a spin button with the same look and feel as the OS/2 operating system spin
button. Set the same pmcompatible style for all associated master and servant spin buttons. In
32-bit Windows operating systems, you can get a 3-D border around a spin button created
without the IBasespinButton::pmcompatible style by specifying the style
IBasespinButtonx : : border3D. This style has no effect in other platforms.

There are several other styles that you can specify when you create a spin button. You can
change any of the following styles dynamically using functions provided in IBasespinButton:

• Build a read-only spin button by adding the IBasespinButton: :readonly style. A
read-only spin button limits the choices that your users can make to those in the spin
button's collection. Without this style, you must validate the data that a user types.

• Increase the rate that the spin button spins the data in the spin field by adding
IBasespinButton: : fastspin. With this style, the spin button skips some entries. If you
use the ISpinHandler class (described in the next topic) to synchronize the movement of
master and servant spin buttons, do not use this style. The spin button omits scrolling to
some items in the spin button's collection to speed up scrolling. If your spin handler
depends on being notified when a user scrolls past these skipped items, it will not work
correctly with this style.

Justify the data in the entry field using one of the IBasespinButton styles: 1ef tAlign,
centerAlign, or rightAlign.

All of the spin button styles have accessors for determining the style' s current setting.

Handling Spin Button Events
Of the handler classes displayed in Figure 11-1, you can use IEditHandler, ISpinHandler,
IFocusHandler, and IKeyboardHandler with a spin button. IEditHandler calls the edit
function when a user or your program changes the contents of the spin button' s entry field.

ISpinHandler enables you to process the events relating to the use of the spin arrow or the
keyboard arrow keys. ISpinHandler calls the arrowup function when a user clicks on the up
arrow button or presses the up arrow key. Similarly, it calls the arrowDown function when a
user clicks on the down arrow button or presses the down arrow key. Finally, it calls the
spinEnded function when a user releases a spin arrow or arrow key.

IFocusHandler calls the gotFocus function when the spin button receives the input focus, and
it calls the lostFocus function when it loses the input focus. Do not change the window with
the input focus in either of these functions.

You can also use an IKeyboardHandler with an ITextspinButton or INumericspinButton
object, but you must attach it to the entry field portion of the spin button. Create an
IEntryField wrapper for the entry field portion of the spin button using the constructor
requiring a window identifier and parent window. The parent window of the entry field is the
spin button and the ID is the same as that of the spin button.

208 Power GUI programming with visualAge for c++

Spin Button Items
You can restrict the number of characters or numbers displayed in the spin button using the
IBasespinButton::setLimit function. To check the current limit use the
IBasespinButton : : limit function.

Adding and Removing Items
The only way to add items to a numeric spin button is with the function
INumericspinButton: :setRange. This does not stop your users from entering a number
outside this range, but they are unable to scroll to a number outside this range using the spin
arrows or arrow keys. If you call setRange while a numeric value outside the specified range
is in the spin field, the spin button spins to the nearest valid value in the range. If you want to
keep this out-of-bounds value in the spin field when you change the range, you can do so by
passing true as the second parameter to the setRange function. There is no function to remove
values in the middle of the range that you specify on the setRange function. You can only
specify a new range of values. The range function returns the current range.

There are many functions provided for adding, removing, and replacing items in a text spin
button. The ITextspinButton: :Cursor class is one mechanism that you can use to work with
the collection of items. This cursor class has the standard function of all cursors in Open Class
Library: setTOFirst, setTONext, setToprevious, setTOLast, isvalid, and invalidate.

ITextspinButton provides the following ways to add items:

• Specify the text or string resource identifier and position for each new item. The

position is specified as a 0-based index or using a cursor.

Specify an array of text strings, a 0-based index for the position to add the array at, and
the number of strings in the array.

Specify the text or string resource identifier of the new item that you want to insert at the
top or bottom of the list using addASFirst and addASLast.

The following code is from the date control example provided with this chapter, and it demon-
strates how to add the months of the year to a month spin button:

Adding Spin Button Items - listctls\spinbut\datectrl.cpp
®,®

// Load the Month spin button
for (int i=1;

i < 13;
i++)

(
month () . addASLast (IDate : :monthName ((IDate : :Month) i)) ;

)
®,,

You can remove all items from the spin button or only the item at a cursor position. You can
also replace an item at a cursor position by specifying the text or string resource identifier.

Cfea!pferJJ List controls 209

Finding Items
You might want to determine if a particular string is contained in a text spin button. Although
no function does this directly, you can accomplish this by iterating through the spin button
collection. ITextspinButton provides two overloaded versions of elementAt to retrieve items
from the spin button collection. The first takes a 0-based index, and the second takes an
ITextspinButton : : Cursor object.

Spinning to an Item
You can use the IBasespinButton : : spinup and IBasespinButton : : spinDown functions to spin
a text or numeric spin button the specified number of times. The default is to spin the button
one time.

Use the INumericspinButton: : spinTo function when you are not sure if the number that you
want to spin to is in the current range. This function takes a value to spin to and a Boolean for
specifying the behavior you prefer when the specified number is outside the range. If you
specify true, the button spins to the closest limit of the range. The default is false, which
causes the function to throw an IInvalidparameter exception if the number is not in the
range.

ITextspinbutton provides three overloaded versions of spinTo for complete flexibility in
spinning to an item. The simplest version takes a 0-based index. The second version takes a
character string and an optional Boolean, which indicates whether case-sensitivity matters
when searching for a match. The default is false, which means to ignore the case. The last
version takes an ITextspinButton : : Cursor object.

Setting and Validating the Current Value
INunericspinButton: : setvalue is the only function that sets the current value of a numeric
spin button to a number outside of the current range. You can also use this function to set the
value to a number in the range. Be aware that setvalue does not extend the range to include
the specified number. The INumericspinButton: :value function returns the current value
displayed in the spin field. To determine if the currently displayed number is in the range, use
the INumericspinButton : : isspinFieldvalid function. The Boolean argument is not used for
numeric spin buttons.

ITextspinButton: : setText sets a text spin button's current value to a string not contained in
its collection. You can also use it to set the value to one of the items in the collection. This
string is not added to the collection of spin button items. Use ITextspinButton: :text to
retrieve the current value in the spin field. You can use the
ITextspinButton: : isspinFieldvalid function to determine if the current text displayed in
the spin field is contained in the spin button collection. This function takes a Boolean
argument, which indicates if case-sensitivity matters. If you specify true, the text must match
a value in the collection exactly. This argument defaults to false. There is no function to
clear a spin button's current value. Use the setText function to set the current value to a space
or a 0-length string.

210 Power GUI programming with visualAge for c++

Master and Servant Date Control Example
The spin button example demonstrates how to use master and servant spin buttons to create a
control that enables a user to edit the month, day, and year fields of a date. The class
Datecontrol inherits from IMulticellcanvas and on construction creates the spin buttons to
show and edit the individual fields of a date. Datecontrol also creates the ISpinHandler-
derived class DatespinHandler to capture the spin events of its spin buttons. This handler
updates the month and year fields when the day and month fields exceed their range.

The following code sets the spin buttons to the current date. It also associates the servant spin
buttons with the master spin button so that the spin arrows control all of the spin buttons.

Setting up the Spin Buttons - listctls\spinbut\datectrl.cpp
year ()

. setRange (aYearRange)

. setLimit (4) ;
year ()

. spinTo (aDate . year ()) ;

month ()
. setMaster (year ())
. setLimit (12) ;

month ()
. setText (aDate . monthName ()) ;

day ()
. setRange (IRange (1, 3 2))
. setMaster (year ())
. setLimit (2) ;

day ()
. spinTo (aDate . dayofMonth ()) ;

Figure 11-3 shows the running example.

FTiiE
[EE Date S[]in Button Exam[}le

-,--;7'-_-i-7'''J''''--'---I---*''-''-'''--
Servant spin buttons Master spin button with spin arrows

Figure 11-3. Spin Button Date Control.

Chapter 12

Slider Controls

• Describes the classes provided by open class Library for using a progress indicator
or slider

• Describes the Iprogresslndicator, Islider, Icircularslider, IsliderArmHandler, and
IsliderDrawHandler classes

• Read chapter 7 before reading this chapter.
• Chapters 9,11, and 17 coverrelatedmaterial.

Open Class Library provides three control classes for displaying and selecting a value from a
range in addition to those described iri Chapter 11, "List Controls." These classes are
Iprogresslndicator, Islider, and Icircularslider. This chapter describes these classes,
which you can use to create and manipulate progress indicator and slider controls. It also
describes the specialized event handler classes for these controls: IsliderArmllandler and
IsliderDrawHandler. Figure 12-1 shows the hierarchy for these classes.

I IVB ase I

I

dler IIISHderDr!wHandier IINotifler IHan

Iwindow
I IsliderArmHandler I

IControl

niiiiiiiiiEE
mogresshidicator ITextcontrol

Isfider Icircularslider

Figure 12-1. class merarchy for Slider-Related Classes.

211

212 Power GUI programming with visualAge for c++

A Jz.7®eclr sJz.der displays a value through the position of its arm. A user can modify that value
by sliding the arm back and forth along the slider shaft. Typically, you use a slider in cases
where the value is a numeric quantity in a continuous range of possible values. The values
could be in units of feet, meters, decibels, or percentages, for example. You can provide a
scale next to the slider shaft to allow a user to easily match the position of the arm to a value.

Whereas a cz.rcz4J¢r siJ!.der has similar use to a linear slider, it has a different appearance. The
model for a circular slider is a twistable knob (or dial), such as you use to control the volume
on a radio or stereo receiver. Multimedia applications often use circul;r sliders.

Figure 12-2 shows an example of each of these three types of controls.

By using the IsliderArmllandler class, you can detect when the value of any of these three
controls changes; whereas by using the IsliderDrawHandler class, you can provide custom
painting for a progress indicator or linear slider. However, IsliderDrawHandler is not
available for all types of an Iprogresslndicator or Islider object in the Windows operating
system (see the "Custom Painting" topic). Note that although you can also use the
IEditHandler and IFocusHandler classes with these controls (as well as with other control
classes such as IEntryField), we do not describe these event handler classes in this chapter.
IsliderArmHandler is better suited for the slider classes than IEditHandler because
IEditHandler does not provide a virtual function equivalent to IsliderArmHandler : :moving.

Figure 12-2. Progress indicator, Linear Slider, and Circular Slider.

Cfeapfe7.J2 Slider`Controls 213

Progress Indicator
Applications must stay responsive to user interaction, even while performing time-consuming
operations. To be user-friendly, they also must provide feedback to the user on the status of
long-running tasks. Chapter 20, "Applications and Threads," discusses the use of the IThread
class for creating multithreaded applications to address the first requirement; this section
describes the Iprogresslndicator class for addressing the second.

Use the Iprogresslndicator class to create and manipulate progress indicator controls. You
can use progress indicators to display status graphically. Figure 12-3 shows a progress
indicator. Note that Iprogresslndicator does not give you a complete window, only a
progress indicator control. To use this class, you must still place the control within a frame
window and, optionally, add static text and push buttons to the window as shown in the figure.

Figure 12-3. Progress Indicator Example.

The following definitions apply to progress indicators, as well as linear sliders. These areas of
a progress indicator are labeled in Figure 12-3 and in Figure 12-4 for a linear slider.

Arm

The arm represents the current value of the control. To provide a visual indicator of its
value, a progress indicator uses its arm to size its rz.bbo73 ffrz.p (see definition in this list).
Users cannot move the arm of a progress indicator using the keyboard or mouse, as they
can with a slider. Only the application can change the arm position such as by calling
Iprogresslndicator: :moveArmTOTick. See the topic, "Progress Indicator Arm
Operations," for more details.

214 Power GUI programming with visualAge for c++

Shaft

The horizontal or vertical track that the arm moves along. The shaft represents the
control' s entire range of possible values.

Home position

The end of the shaft that serves as the starting or base location for the arm.

Ribbon strip

The area of the shaft between the home position and the arm. When you specify the
Iprogresslndicator : : ribbonstrip style, the control paints this area a different color
than the rest of the shaft.

Tick

An incremental value along the shaft. Progress indicators and sliders position their ticks
evenly along their shafts. A tick is not visible, but it can have a tick mark and tick text
that are.

Tick mark

An optional mark identifying the position of a tick.

Tick text

An optional label indicating the value that a tick represents. The tick text is centered on
the tick.

Scale

The area along the shaft occupied by tick marks and tick text. The scale shows the range
of values represented by the control.

Creating a Progress Indicator
Iprogresslndicator has the same standard constructors that almost all control classes
provide. Chapter 7, "Controls," describes these constructors and their common parameters.
However, in its constructors for creating an operating system window, Iprogresslndicator
provides arguments for defining the number of ticks in a scale and the space between ticks.

The tickspacing parameter sets the number of pixels, or pels, between each tick on the scale.
Be careful when you use this parameter because if you specify a value other than 0, you fix the
length of the shaft and scale at that value multiplied by one less than the number of ticks. This
can cause strange painting problems if you or the user makes the progress indicator window
shorter than this fixed length. If you use the default value of 0 for tick spacing, the progress
indicator calculates the length of the shaft to best fit within the size of the progress indicator.
The progress indicator continues to calculate the length for the shaft and scale whenever you
change the number of ticks or whenever you or the user changes the size of the progress
indicator. We recommend that you specify 0 for tick spacing unless you must have complete
control over the length of the shaft. Sizing a progress indicator can be problematic, however,

CfeapferJ2 Slidercontrols 215

even when using the default value for tick spacing. See the topic "Sizing a Progress Indicator"
for more information.

Iprogresslndicator provides styles for customizing the appearance and behavior of a
progress indicator. You use these styles with the constructors that create an operating system
window. The only styles you cannot change after constructing a progress indicator are those
that control the following:

• The horizontal or vertical orientation of the control

The styles Iprogresslndicator: :horizontal and Iprogresslndicator: :vertical
control the orientation.

• The location of the shaft within the progress indicator

Use the Iprogresslndicator alignment styles (Iprogresslndicator: : aligncentered,
Iprogresslndicator: :alignTop, Iprogresslndicator: :alignBottom,
Iprogresslndicator: :alignLeft, and Iprogresslndicator: :alignRight) to control
how white space is added above and below a horizontal shaft and left and right of a
vertical shaft. This white space creates space for the scale. See the topic "Sizing a
Progress Indicator" for related information.

You can override the alignment style by manually positioning the shaft using
Iprogresslndicator: : setshaftposition. This function, however, is not available in
the Windows platform if you do not use the style Iprogresslndicator : : pmcompatible.

• The portability between objects of the windows and os/2 versions of the class

The controlling style, Iprogresslndicator: :pmcompatible, is only available on the
Windows platform. We refer to an object created with this style as a PM-co#3pczfz.bJe
control. The code you write for this object is highly portable between the OS/2 and
Windows operating systems both functionally and visually. However, the resulting
window is a control that Open Class Library provides rather than a control that the
Windows operating system provides.

If you do not use this style in the Windows operating system, the object uses the track
bar control, a control the operating system provides. If the Windows operating system
updates the look of this control, the look of an Iprogresslndicator window automati-
cally gets the same look. We refer to this version of a progress indicator, or slider, as the
7®czfz.1;e-Wz.73dows' version of the class. Such an object does not support all functions of the
class, however. For example, you cannot customize tick marks and color or provide
specialized painting, because the Windows track bar control does not offer such support.
See the topics "Setting Up a Progress Indicator" and "Custom Painting" for more details.

For most people, the use of native visuals is a higher priority than the availability of all
functions. As a result, most applications will not likely build a progress indicator using
the Iprogresslndicator : :pmcompatible style.

A border around the control

The controlling style, Iprogresslndicator: :border3D, has an affect only in 32-bit
Windows operating systems.

216 Power GUI programming with visualAge for c++

With Iprogresslndicator, you can also modify other elements of a progress indicator,
including characteristics associated with other Iprogresslndicator : : Style values (see the
next topic) .

Following is an example of constructing an Iprogresslndicator object as a data member of a
class. The constructor creates an operating system window with five ticks and specifies a
tick-spacing value of 0.

Constructing a Progress Indicator - slider\progind\progind.cpp
progresslndicator(100, &canvasclient, &canvasclient,

IRectangle(), 5, 0,
(Iprogresslndicator: :defaultstyle ()

& ~Iprogresslndicator: :aligncentered)
I Iprogresslndicator: :alignBottom) ,

Setting Up a Progress Indicator
By default, a progress indicator has a horizontal shaft centered in the window, a scale above
the shaft, the home position at the left end of the shaft, and a ribbon strip. The home position
is the starting point for numbering ticks and calculating offsets used by functions such as
armTickof fset. Give the progress indicator a ribbon strip; otherwise, the user cannot see the
value of the control (depending on the operating system and your use of the
Iprogresslndicator : : pmcompatible style).

Although you can specify ticks and tick spacing for two scales, you can only use one scale, the
prz.mclry Sc¢Je, at any time. A progress indicator paints the tick marks and tick text for the
primary scale only. And, any calls to tick-related functions, such as setTickLength,
setTickText, and moveArmTOTick, also apply to the primary scale only. Because you can
dynamically change which scale is the primary scale using
Iprogresslndicator: : setprimaryscale, this function causes ticks and tick marks to move
from one side of the shaft to the other. Construct the Iprogresslndicator object with the
aligncentered style to prevent one of its scales from being clipped. Or, change the ticks and
tick marks in the scale by replacing the definition of the primary scale. Do this by calling
setTicks, setTickLength, and setTickText. Either technique, however, can cause the length
of the shaft to change if you change the number of ticks or the tick spacing.

By default, the tick marks of a progress indicator have a length of 0 (except for the native-
Windows version, which always draws tick marks for the first and last ticks). Because a
progress indicator does not paint tick marks unless they have a nonzero length, call
setTickLength with a nonzero length to make them visible. The setTickLength function is
overloaded. Thus, you can assign all tick marks the same zero or nonzero length with one call,
or you can set the length of each tick mark individually. For the native-Windows version of
the control, any nonzero value you pass to setTickLength causes the tick mark to be drawn
with a predetermined length. The exact value you specify is not used. In the OS/2 platform
and in the Windows platform when you use the style Iprogresslndicator : :pmcompatible, the
value you pass sets the length of the tick mark in pixels.

To add text to the scale, use setTickText. Both setTickLength and setTickText identify a
tick using a 0-based index from the home position. Both throw an exception if you specify an
invalid index.

CfoapfeJ.Z2 Slidercontrols 217

The following code sets the tick marks and tick text for the progress indicator shown in
Figure 12-3. This example uses few ticks in the scale because a large number of ticks can lead
to painting and sizing problems. See the next two topics for more details.

Setting Tick Marks and Tick Text - slider\progind\progind.cpp
// Set the length of the tick marks and define the tick text for
// the progress indicator. We minimize the number of ticks to
// avoid sizing problems and to avoid clipping or overlapping
// the tick text.
progresslndicator

.setTickLength(10) ;
for (int i = 0; i <= 4; i++)
(

progresslndicator
.setTickText(i, Istring(i * 25));

// Label ticks with "0," "25," "50," "75," "100".
)

Finally, you can customize a progress indicator by changing its colors. Use
setBackgroundcolor to set the background and setForegroundcolor to set the color of the
tick marks and tick text. The native-Windows version has limited color support because the
Windows track bar control does not support customizing colors. For this version, you can
change the color of only the tick marks and the area surrounding the track bar control.

Additionally, only the OS/2 and PM-compatible versions allow you to customize the color of
the ribbon strip or shaft, but they require you to use the IsliderDrawHandler class to do this.
See the topic "Custom Painting" for details.

Sizing a Progress Indicator
Sizing a progress indicator is difficult because you have to consider the following factors:

• Orientation
• Number of ticks andtickspacing
• Shaftposition andbreadth
• Lengths oftickmarks
• Ticktext size based onthe current font

As an indication of how difficult this is, Iprogresslndicator currently uses only one of these
factors in its calcMinimumsize routine. This function returns a fixed value of approximately
Isize (100 , 3 0) or Isize (3 0 ,100) based on the orientation of the control.

Sizing the length of a progress indicator is difficult because you can only indirectly size the
length of its shaft and scale. The number of ticks determines how the shaft and scale spread
out. Any pixels that cannot be evenly divided between all ticks become white space at the ends
of the shaft and scale. As a result, using a large number of ticks, N, can potentially result in a
large amount of white space at each end of the shaft: (N/2)-1 pixels in the worst case.
Reducing the number of ticks reduces the amount of potential white space. See the next topic,
"Progress Indicator Arm Operations," for information on this technique. In the OS/2 platform

and in the Windows platform when you use the Iprogresslndicator : : pmcompatible style, the
control may not paint the shaft if you size the control so small that the shaft does not have at
least one pixel for each tick.

218 Power GUI programming with visualAge for c++

One reason to indirectly size the length of the shaft is to control the amount of white space
around the ends of the shaft. Only the boundary of the control clips tick text, so tick text for
the first and last ticks could be clipped if the first and last ticks are too close to the edge of the
control (because tick text is centered on a tick). To prevent this tick text from being clipped,
you must prevent the shaft from extending to the edges of the control. By creating white space
at the ends of the shaft, you are creating room for the tick text at the ends of the shaft. For tick
text not at the ends of the shaft, if the scale is not wide or tall enough, depending on the orien-
tation of the control, the tick text can overlap adjacent tick text. Minimizing the number of
ticks with tick text and limiting the length of tick text for a horizontal progress indicator helps
to prevent this overlap.

Sizing the other dimension of a progress indicator (the height when using a horizontal shaft or
width when using a vertical shaft) is only slightly less difficult. To avoid extra white space
around the breadth of the shaft, do not use the Iprogresslndicator: :aligncentered style.
(The two exceptions are: you are changing the primary scale at run time, or you need the white
space for better esthetics for the optional border on 32-bit Windows platforms). Because the
control centers only the shaft when you use this style, rather than the combination of the shaft
and scale, you must size the control larger than you think you would need to fit the scale.
Otherwise, what you see is a large amount of white space on the side of the shaft not occupied
by the primary scale.

Progress Indicator Arm Operations
Iprogresslndicator provides two functions for moving the arm along the shaft. The first is
moveAr]nTOTick, which does not require you to know the number of pixels between ticks. When
calling this function, you identify the tick with its 0-based index from the home position. The
second function is moveArmTopixel.

Use moveArmTopixel when you need greater precision in positioning the arm than ticks allow,
such as minimizing the number of ticks to avoid some of the sizing problems described in the
previous topic. Do not create a progress indicator with the snapTOTickMark style if you are
using this function because this style prevents you from placing its arm between ticks. If
necessary, you can convert ticks to pixels or pixels to ticks by using the member functions
tickspacing, armRange, and numberofTicks. tickspacing returns the number of pixels
between ticks; armRange returns the number of pixels in the scale (the length of the scale in
pixels is one less than this value); numberofTicks returns the number of ticks in the scale. The
following example calls armRange and moveArmTopixel to move the arm to a percentage of the
total shaft length, as specified by the percentTouse variable. This code works regardless of
the number of ticks in the scale and the size of the progress indicator.

Setting the Arm Position - slider\progind\progind.cpp
unsigned long

totalpixels = progresslndicator.armRange() -1,
newArmoffset = totalpixels * percentTouse / 100;

progresslndicator
.moveArmTopixel (newArmoffset) ;

CfeapferJ2 Slider controls 219

The Underlying Operating System Window
Open Class Library implements the native-Windows version of both Iprogresslndicator
and Islider as co77®posz.fe co#froJS, controls that are composed of several windows. Both
use a surrounding window that contains a TRACKBAR_CLASS control. This implementation is
used to add tick text, which the TRACKBAR_CLASS does not support, as well as scroll buttons
in the case of Islider. This implementation does not prevent you from sending TBM_*
Windows messages to the window handle returned by the handle function of an
Iprogresslndicator or Islider object, however. The surrounding window, whose window
handle is actually returned, routes TBM_* messages that it receives to the TRACKBAR_CLASS
control. Such code is not portable to the OS/2 operating system.

The OS/2 operating system does not provide separate progress indicator and linear slider
controls. Both are implemented with the WC_SLIDER control class, and a style differentiates
the two. Open Class Library provides both an Iprogresslndicator class and an Islider
class. It does this for two reasons: the visual appearance of a progress indicator and typical
linear slider differ significantly, and the WC_SLIDER control class supports functions that do
not apply to a progress indicator.

In the OS/2 operating system and in the Windows operating system when you use the style
Iprogresslndicator : :pmcompatible, calling moveArmTOTick or moveArmTopixel to initially
position the arm to its initial position. Either specify a value for tick spacing or ensure that the
progress indicator has a size before you move the arm. Otherwise, Open Class Library throws
an exception because the shaft has no length. If you do not set tick spacing, you must either
ensure that the layout routine for the parent canvas gets run or that you set the size of the
progress indicator window before you move the arm.

We discuss the query functions armTickof fset and armpixelof fset in the next section on
linear sliders, because they are most useful for finding the position of the arm after the user has
moved it.

Linear Slider
The Islider class creates and manipulates a linear slider control. Islider is derived from
Iprogresslndicator and, therefore, inherits all of the capability that Iprogresslndicator
provides. As a result, the previous topics that describe Iprogresslndicator apply to Islider
objects as well. Also, because sliders are not read-only, Islider has additional styles and
functions to support user interaction. Figure 12-4 shows a typical linear slider.

Visually, the biggest difference between a progress indicator and linear slider is in their arms.
For a slider, the arm is clearly visible and the user can drag it with the mouse to change the
value of the control. Although a linear slider supports a ribbon strip, its arm is the primary
visual indicator for its value. Linear sliders also support the following optional user interface
elements:

220 Power GUI programming with visualAge for c++

Slider buttons

Buttons at one end of the shaft. When you select a slider button with the mouse, the
slider arm moves one increment (tick spacing) in the indicated direction. One conse-
quence of minimizing the number of ticks to improve the sizing of a slider (as
recommended in the topic "Sizing a Progress Indicator") is that users have a coarser
level of control over the movement of the arm when they use the slider buttons.

Detent

A user-selectable mark on the scale supported on the OS/2 platform and on the Windows
platform when you use the Iprogresslndicator: :pmcompatible style. You can place a
detent anywhere along the scale; it does not have to be placed at a tick position.
Selecting a detent with the mouse moves the arm to the detent (or the closest tick if you
are using the Iprogresslndicator: :snapTOTickMark style). See the topic "Adding
Detents" for more information.

A linear slider thus gives a user several ways of moving the arm. For example, you can use the
mouse to drag the slider arm, select the shaft on either side of the arm, select a slider button, or
select a detent. When the slider has the input focus you can also use the keyboard to move the
slider arm by pressing the arrow keys, Home key, or End key.

Figure 12-4. Linear Slider Example.

Creating a Slider
Islider provides constructors identical to those that Iprogresslndicator provides. As a
result, the information and recommendations given earlier in this chapter for constructing
Iprogresslndicator objects also applies to Islider objects. Especially note the recommen-
dations for the tickspacing parameter.

CfeapferJ2 Slider controls 221

To add slider buttons, specify one of the four button styles (for example,
Islider: :buttonsLeft) on the constructor. Islider provides no functions for later adding or
moving the buttons. For horizontal sliders, add the buttons to the left or right of the slider
shaft. For vertical sliders, add the buttons above or below the slider shaft. You can also create
a slider without buttons by not using any of the button styles.

Finding the Position of the Arm
The armTickof fset and armpixelof f set functions of Iprogresslndicator are essential for
sliders because the user can move the arm. These functions return the location of the arm.
armTickof fset returns the number of ticks from the home position of the scale to the tick
closest to the arm. armpixelof f set returns the number of pixels from the home position to the
arm position. If your slider does not use the style Iprogresslndicator: :snapTOTickMark,
which allows the user to drag the arm between ticks, query the arm position using
armpixelof f set. Then, map it to an application value using the total pixels in the scale, which
is available from the Iprogresslndicator : : armRange function.

The following code uses armpixelof f set to update a static text control with the new value of
the slider, as done for Figure 12-4. It demonstrates the use of armpixelof fset and armRange to
determine where the user has moved the arm.

Querying the Arm Position - slider\slider\tempview.cpp
Islider *slider = (Islider*) event.controlwindow() ;

// We need to deal with pixel offsets instead of ticks because
// we have only 29 ticks but need to appear to support 281.
unsigned long

totalpixels = slider->armRange() -1,
armoffset = slider->armpixeloffset () ;

long temperature =
armoffset * (281 - 1) / totalpixels - 40;

temperatureText->setText(Istring("Temperature is ")
+ Istring(temperature));

Adding Detents
You can use detents to mark special values on the slider scale. Detents are similar to tick
marks, except you can place them anywhere along the slider scale, and users can select a
detent with the mouse. Selecting a detent moves the arm directly to the detent position. Users
can also move the arm to the previous or next detent by holding down the Shift key and
pressing the left or right arrow key. The native-Windows version of the linear slider, however,
does not support detents. Also, do not add detents to a slider whose size can change because
Islider does not attempt to adjust the position of a detent.

The following code adds detents at 32 degrees and 212 degrees on the Fahrenheit slider in
Figure 12-4. The detents mark the freezing and boiling points on this temperature scale. Use
the addDetent function to add a detent at a pixel offset, which is measured from the home
position on the slider. addDetent returns a unique detent identifier, which the detentposition
and removeDetent functions require to identify a detent. Note that the tickposition function
returns the offset of a tick from the left edge of the linear slider window, not from its home

222 Power GUI programming with visualAge for c++

position. As a result, before you can pass this value to addDetent, you must convert it to the
number of pixels from the home position. Do this by subtracting the position of tick 0, which
is located at the home position, from your value. Because the slider in the example does not
have ticks where we want the detents, we instead convert degrees to pixels and avoid ticks
altogether.

Adding Detents - slider\slider\tempview.cpp
// Force the canvas to size the slider, and size the frame
// window around the client so the slider does not resize.
Isize

clientMinimumsize (canvasclient.minimumsize ()) ;
(* thi s)
.movesizeToclient(IRectangle(IPoint(50, 50) ,

clientMinimumsize)) ;

// Translate degrees to pixel offsets from tick 0.
// The total number of pixels spans 280 degrees (-40 to 240) .
unsigned long

totalpixels = farenheitslider.armRange() -1;
unsigned long

pixelsTOFreezing = (32 + 40) * totalpixels / 280 + 1,
pixelsTOBoiling = (212 + 40) * totalpixels / 280 + 1;

// Add detents for freezing and boiling temperatures using
// the above pixel offsets.farenheitslider

.addDetent (pixelsTOFreezing) ;
farenheitslider

.addDetent (pixelsTOBoiling) ;

Circular Slider
A circular slider is similar functionally to a linear slider, although it looks quite different. A
circular slider uses many of the same elements used by a linear slider, such as an arm, ticks,
tick marks, and buttons. However, its most important feature is its dial. Users change the
value of a circular slider by turning the dial, which moves the arm. They can do this by direct
manipulation with the mouse, by selecting the new arm position with the mouse, by selecting
the increment or decrement slider button with the mouse, or by pressing the left or right arrow
keys. These elements are labeled in Figure 12-5. Unlike a linear slider, a circular slider does
not have tick text, detents, multiple scales, or a ribbon strip.

Although the Windows operating system does not provide a control equivalent to the
WC_CIRCULARSLIDER control available in the OS/2 operating system, Open Class Library offers
one through the class Icircularslider.

Constructing a Circular Slider
Icircularslider provides the standard constructors described in Chapter 7, "Controls.''
However, because the Windows operating system does not provide a circular slider control,
you do not have a way to create a circular slider without using the Icircularslider
constructor that creates a window. As a result, in the Windows operating system you have little
opportunity to use the constructors that wrapper an existing circular slider control.

Cfe¢pferJ2 Slidercontrols 223

Figure 12-5. Circular Slider Example

Icircularslider provides no functions for changing the setting of any of its style values
following construction. So, you must decide the look that you want your circular slider to have
and specify the appropriate Icircularslider: :Style values to get that look when you
construct the object. A number of the styles affect the working of other styles or functions.
These relationships are shown in Table 12-1.

The calls to construct the two circular slider objects in Figure 12-5 follow. The two circular
sliders, brightnessslider and redGreenslider, are data members of another class.

Circular Slider Example - slider\cslider\cslider.cpp
brightnessslider (ID_BRIGHTNESS_CSLIDER,

&slidercanvas, &slidercanvas, IRectangle () ,
Icircularslider : : buttons

I Icircularslider: :displayvalue
I Icircularslider: :].umpTopointer
I Icircularslider: :label
I Icircularslider: :midpoint• I Icircularslider: :proportionalTicks
I IControl: :tabstop
I Iwindow::visible) ,

redGreenslider (ID_REDGREEN_CSLIDER,
&slidercanvas, &slidercanvas, IRectangle () ,
Icircularslider : : circularArm

I Icircularslider: : jumpTopointer
I Icircularslider: :label
I Icircularslider: :noTicks
I IControl: :tabstop
I Iwindow: :visible) ,

224 Power GUI programming with visualAge for c++

Table 12-1. Icircularslider: :Style Dependencies

Style Effect

Icircularslider::buttons If not set, calls to Icircularslider: :setlncrementBitmaps and
Icircularslider: : setDecrementBitmaps are ignored.

Icircularslider::full360 If set, the styles Icircularslider: :displayvalue and Icircularslider: :buttons
are ignored.

Icircularslider::label If not specified, the control does not display text specified via
ITextcontrol::setText.

Icircularslider::noTicks If specified, the styles Icircularslider: :midpoint and
Icircularslider: :proportionalTicks are ignored.

Using a Circular Slider
Programming a circular slider differs from using a linear slider. Icircularslider derives
from ITextcontrol, so it is separate from Islider in the class hierarchy. Calling
ITextcontrol : : text and ITextcontrol : : setText queries and sets an optional label below the
dial of the circular slider rather than the value indicated by the dial. To make this label visible,
create the circular slider object with the style Icircularslider : : label.

To access the value of the control, use Icircularslider: :value. This function returns a
numeric value that you can optionally display in the dial by using the style
Icircularslider: :displayvalue. The value is always within the range of values that you
pass to Icircularslider: :setArmRange (similar to how you set up an IScrollBar). As a
result, you can work directly with application values in contrast to mapping from application
values to ticks and pixel offsets when you use the Islider class. To set the value of a circular
slider, call Icircularslider : : setvalue. This function moves the arm by turning the dial, and
it changes the text that the control optionally displays in the dial.

You indirectly set the number of ticks through the setArmRange and setTickspacing
functions. Unlike tick spacing in a linear slider, which is the number of pixels between ticks
on the scale, tick spacing in a circular slider is the amount of the range between tick marks as
well as the amount the arm is moved when the user selects a slider button or presses the left or
right arrow keys. A circular slider gives you no way to label ticks.

The following code shows how we set up the circular sliders in Figure 12-5.

Circular Slider Example - slider\cslider\cslider.cpp
// Set up the circular sliders. .brightnessslider

. setBackgroundcolor (slidercanvas.backgroundcolor ())

.setMinimumsize(Isize(50, 50));
brightnessslider

.setArmRange(IRange(0, 100))

.setTickspacing(1)

.setText("Brightness")

. enableTabstop ()

. enableGroup () ;

Cfeapfe7.J2 Slider controls 225

redGreenslider
. setBackgroundcolor (slidercanvas.backgroundcolor ())
.setMinimulnsize(Isize(50, 50));

redGreenslider
.setArmRange(IRange(0, 255))
.setTickspacing(10)
.setText("Red Green")
. enableTabstop ()
. enableGroup () ;

Monitoring Value Changes
You can detect changes to the values of a progress indicator, linear slider, or circular slider
using the IsliderArmHandler class. This handler lets you process changes to the arm position
(made by a user or the application) as they are made. Open Class Library also supports the
IEditHandler class for these controls. The IEditHandler: :edit function is equivalent to
IsliderArmllandler : :positionchanged. However, IEditHandler has no function that corre-
sponds to IsliderArmllandler : :moving, which is called when the user drags the arm of a linear
slider or the dial of a circular slider with the mouse. You can attach eitber handler to the
control you are monitoring or to its owner window. Regardless of where the handler is
attached, IControlEvent : : controlwindow returns a pointer to the progress indicator or slider
you are monitoring. IControlEvent : : dispatchingwindow returns a pointer to the window to
which the handler is attached.

You should have few occasions to need to monitor changes to an Iprogresslndicator because
it relies on your application to change its value (a user has no way to move its arm). For a
linear slider or circular slider, you need an IsliderArmHandler or IEditHandler only if you
need to process a value change before the user dismisses the window, such as to adjust the
volume of a sound recording as it plays. To process changes to the value of a slider, create a
class derived from IsliderArriandler and override positionchanged, moving, or both virtual
functions. Generally, you will want to process both virtual functions in the same manner. One
way of doing this is to implement both to call a common function.

The following example shows the use of a class derived from IsliderArmllandler that
monitors changes to a circular slider. The nested ArmHandler class overrides the
positionchanged and moving functions of IsliderArmHandler. Both functions call a
valuechange virtual function. As a result, this handler class processes all changes to the
position of the arm through a single function (valuechange). An object of this class is attached
to each of the circular sliders shown in Figure 12-5, and it updates the color displayed above
the circular sliders as users turn their dials.

Icircularslider Example - slider\cslider\cslider.hpp

;i;ss ArmHandler : public IsliderArmllandler{
public :

ArmHandler (Colorwindow* window) ;
protected:virtual Boolean

positionchanged (IControlEvent& event)
{ return this->valuechange(event) ; }virtual Boolean
moving (IControlEvent& event)
{ return this->valuechange(event) ; }

226 Power GUI programming with visualAge for c++

virtual Boolean
valuechange (IControlEvent& event) ;

private :
Colorwindow*colorwindow;
} ; // Colorwindow: :A]rmllandler

®®®

IsliderArmHandler Example - slider\cslider\cslider.cpp

66iorwindow: :ArmHandler: :ArmHandler (Colorwindow* window)
: IsliderA]rmllandler() ,

colorwindow(window)
()

IBase : : Boolean
Colorwindow: :ArmHandler: :valuechange (IControlEvent& event)

(Icircularslider*cslider = (Icircularslider*) event.controlwindow() ;
if (cslider->id() == ID_BRIGHTNESS_CSLIDER)
(

colorwindow->updateBrightness (cslider->value ()) ;
)
else if (cslider->id() == ID_REDGREEN_CSLIDER)
(

unsigned char
green = (unsigned char) (cslider->value()) ;

colorwindow->updatecolor((unsigned char) (255 -green) ,
green,
0);

)return false;
)

Custom painting .
The OS/2 and PM-compatible versions of Iprogresslndicator and Islider support
customized painting through the Iprogresslndicator: :handleDrawltem style and the
IsliderDrawHandler class. With this style and handler you can replace the default painting
otherwise provided for the background, shaft, ribbon strip, and arm. You can replace any or all
of this default painting by creating a class derived from IsliderDrawHandler and overriding
the appropriate virtual function or functions. You can attach your custom paint handler object
to either the Iprogresslndicator or Islider you are modifying, or to its owner window.
IDrawltemEvent : : itenRect returns only the portion of the window that the handler is respon-
sible for painting. Depending on your painting code, you may need to test for the control's
shaft orientation and home position.

The slider\sliddraw program on the examples disk illustrates custom painting of a progress
indicator using IsliderDrawHandler. The example provides implementations for the
drawBackground, drawRibbonstrip, and drawshaf t virtual functions in the derived class,
DrawHandler.

Although you can change the background color of a progress indicator or linear slider simply
by calling Iprogresslndicator : : setBackgroundcolor, you must use IsliderDrawHandler to
customize the color of a ribbon strip.

Chapter 13

Container Control

• Describes the primary classes you use to build container controls:
IContainercontrol, IContainerobj ect, and IContainercolumn

• Describes adding pop-up menus to containers using the class IcnrMenuHandler
• Describes iterating, sorting, and filtering containers using the

IContainercontrol: :Iterator, IContainercontrol: : CompareFn, and
IContainercontrol: :FilterFn classes

• Describes editing data in the container using the IcnrEditHandler, IcnrEditEvent,
IcnrB eginEditEvent, and IcnrEndEditEvent classes

• Describes custom drawing in the container using the IcnrDrawHandler,
IcnrDrawltemEvent, and IcnrDrawB ackgroundEvent classes

• Describes the implementation of the container classes on the windows and os/2
operating system native controls

• Read chapters 4 and 7 beforereading this chapter.
• Chapters 6, 9,16, 22, and 25 coverrelatedmaterial.

IContainercontrol and its related classes provide a rich set of capabilities for storing,
viewing, and manipulating objects in containers. These objects represent other containers of
objects or items such as programs, data files, and devices. Because Open Class Library
implements its containers using many classes and member functions, we provide a number of
samples to get you started building basic containers and other samples that demonstrate the
advanced features of the container. We also discuss the design of the container classes to help
you extend these classes with features of your own.

IContainercontrol uses the native container controls of each operating system to implement
much of its interface. Because the native controls are different ,between the Windows and
OS/2 operating systems, and because the native container on the OS/2 operating system has
more function than the Windows operating system container, Open Clas`s Library also provides
a separate implementation of the OS/2 container on the Windows operating system. To help
you choose the right implementation for your needs, we discuss the features that are not
portable using the native containers. Refer to the JEM Ope7® CJczs'f I,I.brczry Re/ere7ece for a
detailed description of the container restrictions on the Windows operating system.

Because objects stored in a container are not windows, they cannot participate in the normal
event-dispatching scheme in Open Class Library. However, Open Class Library does provide
special handler functions to connect objects in containers to many container window events.

227

228 Power GUI programming with visualAge for c++

These handlers, described later in this chapter, capture those presentation system messages
that occur over the objects in a container and call virtual functions on the objects.

The Container Model
For our purposes, a co#f¢z.#er is a control window that stores and displays non-window
elements called objects in one of several views. A container displays the same set of objects in
several different views, but only one view at a time. Each of these views displays the charac-
teristics of its objects in a different way. Some views, such as the name and text view, are
basic and using them is straightforward. Others, like the icon, tree, and details view, are rich
in function and require more understanding to use them effectively. Before you learn the
details of the container's views, you need to know the model that the container uses to store its
objects. This model determines the appearance of the objects in the various views of the
container.

The model of objects in the container is a combination of three different models-an ordered
list, a hierarchical tree, and a J#eSSy deSk. The container stores objects added at the root level
of the hierarchy in an ordered sequence. These root-level objects are visible in all views of the
container, and in several views the container displays objects in the same order that they exist
in the ordered list.

Although the container displays root-level objects in all views, it only displays descendants of
these objects in a tree view. In all other views, the container ignores these descendant objects.
If you want to display descendant objects in a view other than the tree view, create another
container and add these objects at the root level.

The messy desk, or icon view, allows you to specify an icon and its location within the
container for each root-level object. The icon view displays these icons along with the
object's text at the location you specify. Typically, you allow your users to control the
location of these icons so they can choose the location for these icons in the container.

Figure 13-1 demonstrates the relationship between the ordered list and the hierarchical model
of the container. In this figure, the root-level objects 1, 2, and 3 are visible in all container
views. The objects 11, 12, 21, and 211 are only visible in the tree view of the container
because they are descendent objects.

Constructing Containers
As you would expect of a class derived from IControl, you use IContainercontrol like the
other control classes in Open Class Library. Usually, you create a container as the client
window of a frame window. You can also use a container as a child of any canvas class
described in Chapter 15, "Canvases." Unlike other control classes, IContainercontrol does
not provide behavior to size itself in a canvas when its contents change.

Cfeapferz3 Container control 229

Ordered List Model Hierarchical Model

____ _ AV
\®

®
®E
E

®®
Hgure 13-1. The Ordered List and Hierarchical Tree Models of Objects in a Container.

IContainercontrol provides support for the control portion of a container, and it supports the
same basic three constructors provided by all classes that derive from IControl: one that
creates an operating system window and two that provide a wrapper for an existing operating
system window.

IContainercontrol (
unsigned long id,
Iwindow* parent ,
Iwindow* owner ,
const IRectangle& location = IRectangle() ,
const Style& style = defaultstyle() ,
const Attribute& attribute = defaultAttribute()) ;

IContainercontrol (
unsigned long id,
Iwindow* parentDialog) ;

IContainercontrol (
const IwindowHandle& handle) ;

The first constructor creates an operating system container. This constructor accepts a
numeric identifier for the container and an Iwindow* for its parent and owner windows.
Optionally, the constructor also accepts the position and size (as an IRectangle) and the styles
and attributes of the container. If you use the container as a client of a frame window, Open
Class Library ignores the position and size you specify on this constructor.

230 Power GUI programming with visualAge for c++

Use the second and third constructors to create an IContainercontrol wrapper for an existing
container by specifying the container's handle or the container's numeric identifier and the
Iwindow* of its parent and owner. Use the window handle constructor to connect a container
created independently of Open Class Library to the event-handling functions in Open Class
Library. Use the numeric identifier constructor as a wrapper for a container dialog resource.
The dialog constructor has limited usefulness in a container because you cannot specify the
objects for the container in the dialog template.

The following code creates a container as the client window of a frame window:

main ()
(

IFramewindow fralne (OxO100) ;
IContainercontrol cnr (OxO101,

&frame,
&frane) ;

frame . setclient (&cnr) ;
f rame . show () ;

)

Like all classes that inherit from Iwindow, you can call Iwindow: : setAutoDeleteobject on a
container allocated with operator new. This causes the Iwindow dispatcher to delete the
container object when the operating system destroys the container window. By default, an
IContainercontrol object does not delete itself when the operating system destroys the
container window.

Container Styles and Attributes
When you create a container using the constructor that creates the presentation window, you
can optionally specify a series of values for the nested classes IContainercontrol : : Style and
IContainercontrol: :Attribute. Styles and attributes map to the container styles and
attributes defined by the OS/2 native container. The intended difference between them is that
you cannot change styles after you construct the container, while you can change attributes. In
reality, you can change some container styles and all attributes after construction using various
IContainercontrol functions.

Besides the styles added from its inherited classes, Iwindow and IControl, you can construct
IContainercontrol with the following additional Style values:

IContainercontrol::readonly

Creates a container that prohibits the user from editing the text.

IContainercontrol::autoposition

Creates a container that automatically determines the location of icons in the icon view.
This style prevents users from moving icons to a new location.

IContainercontrol::singleselection

Creates a container that limits selection to one container item at a time. Call
IContainercontrol : : setsingleselection to enable single selection after you create
the container.

Cfe¢pferz3 Container control 231

This is the default style.

Single selection is the only selection type currently supported in the tree view.

IContainercontrol::multipleselection

Creates a container that allows users to select multiple items. Call
IContainercontrol : : setMultipleselection to enable multiple selection after you
create the container.

IContainercontrol::extendedselection

Creates a container with an enhanced version of single selection. Extended selection
allows users to select discontiguous sets of container items. Call
IContainercontrol : : setExtendedselection to enable extended selection after you
create the container. This style is only supported when you use it in conjunction with the
IContainercontrol : : pmcompatible style.

IContainercontrol::verifypointers

Verifies that an object exists in the container before using it. Use this style during
development, but because it imposes a performance penalty, remove the style when you
have finished debugging your application. When you use this style, the container fails
any request made using an invalid object by throwing a C++ exception (usually an
IAccessError). This style is only supported when you use it in conjunction with the
IContainercontrol : : pmcompatible style.

IContainercontrol::pmcompatible

Creates an OS/2 style container on the Windows operating system. This style is ignored
on the OS/2 operating system. See the topic "The IContainercontrol::pmcompatible
Style" later in this chapter for more details.

IContainercontrol::classDefaultstyle

Creates a container with default styles. The IContainercontrol default styles are
IContainercontrol : : singleselection and Iwindow: :visible.

The function IContainercontrol : : defaultstyle returns the value of the data member
IContainercontrol : : currentDefaultstyle. This member is initialized during static
object construction to the value IContainercontrol: :classDefaultstyle. Call the
static member IContainercontrol: :setDefaultstyle to change the value of
IContainercontrol : : currentDefaultstyle.

IContainercontrol::nosharedobjects

Improves container performance when you don't add the same objects to more than one
container. The performance benefit is highest during the deletion of a container or the
deletion of a large number of objects.

232 Power GUI programming with visualAge for c++

Use the following mutually exclusive attributes to set the initial view of the container:

IContainercontrol::textview

Displays objects in the text view. Call IContainercontrol : : showTextview to show the
text view after you construct the container.

IContainercontrol::iconview

Displays objects in the icon view. Call IContainercontrol : : showlconview to show the
icon view after you construct the container.

IContainercontrol::nameview

Displays objects in the name view. Call IContainercontrol : : showNameview to show
the name view after you construct the container.

IContainercontrol::detailsview

Displays objects in the details view. Call the IContainercontrol : : showDetailsview to
show the details view after you construct the container.

Add the following attribute to the text, icon, and name views:

IContainercontrol::treeview

Displays objects in one of the tree views. Call the IContainercontrol functions,
showTreelconview, showTreeNalneview, or showTreeTextview to show the tree view
after you construct the container. If you specify an attribute of
IContainercontrol: :treeview without also including one of the attributes
IContainercontrol : :nameview, IContainercontrol : : textview, or
IContainercontrol : : iconview, the container displays the tree icon view.

Add the following attribute to the text or name views:

IContainercontrol::flowedview

Causes the container to display its items in a series of vertical lists instead of a single
vertical scrollable list. Call the IContainercontrol functions showFlowedTextview or
showFlowedNalneview to show a flowed text or flowed name view after you construct the
container. If you create a container without the IContainercontrol : :pmcompatible
style on the Windows operating system, the container always flows container objects.

The container title is a text string that the container displays above the objects in the container.
The following attributes affect the title in the container:

IContainercontrol::readonlyTitle

Prohibits users and your program from editing the title. Call
IContainercontrol : : enableTitleupdate to allow users to edit of a container title after
you construct the container, or call IContainercontrol: :disableTitleupdate to
disable editing once you've enabled it.

Cfo¢pfei.Z3 Container control 233

IContainercontrol::titleseparator

Adds a horizontal separator line under the container title. Call
IContainercontrol: :showTitleseparator to show the title separator after you
construct the container.

IContainercontrol::detailsviewTitles

Adds a heading above each column in the details view. Call
IContainercontrol : : showDetailsviewTitles to show the details view titles after you
construct the container.

IContainercontrol::visibleTitle

Adds a title above the objects in the container if the title field contains text. Call
IContainercontrol: :showTitle to show the container title after you construct the
container.

Use the following mutually exclusive attributes to align the title:

IContainercontrol::alignTitlecentered

IContainercontrol::alignTitleLeft

IContainercontrol::alignTitleRight

Aligns the title. Call IContainercontrol: :setTitleAligrment with one of the
IContainercontrol: :TitleAligrment values left, right, centered to change the
alignment of the container title after you construct the container.

The following attributes enable you to custom draw either items in the container or the
background of the container. We describe custom drawing in more detail later in this chapter.

IContainercontrol::handleDrawltem

Allows you to draw each item in the container. This style causes the container to
dispatch an IcnrDrawltemEvent to an IcnrDrawHandler to draw each item in the
container. Call IContainercontrol: :enableDrawltem to cause this event to be
dispatched after you construct the container. This attribute is ignored on the Windows
operating system unless you create the container using the
IContainercontrol : : pmcompatible style.

IContainercontrol::handleDrawBackground

Allows you to draw the background of the container. This attribute causes the container
to dispatch an IcnrDrawBackgroundEvent to an IcnrDrawHandler to draw the
background of the container. Call IContainercontrol : :enableDrawBackground to
cause this event to be dispatched after you construct the container. This attribute is
ignored on the Windows operating system unless you create the container using the
IContainercontrol : : pmcompatible style.

234 Power GUI programming with visualAge for c++

The following attributes affect the type of emphasis used during direct manipulation. These
attributes do not affect the emphasis used in the icon view or the tree view.

IContainercontrol::orderedTargetEmphasis

Requests that the container draw a black line between container objects to show that the
target of a direct manipulation operation occurs between items. Call
IContainercontrol : : setorderedTargetEmphasis to set ordered target emphasis after
you construct the container.

IContainercontrol::mixedTargetEmphasis

Requests that the container draw a black line between container items or a solid border
around a container item. This shows that the target of a direct manipulation is between
container items or on top of a container item, depending upon the location of the drag
pointer. Call IContainercontrol: :setMixedTargetEmphasis to set mixed target
emphasis in the container after you construct the container.

The following attribute causes the container to draw lines to connect items in the tree view:

IContainercontrol::visibleTleeLine

Draws lines to connect items in the tree view. Call IContainercontrol : : showTreeLine
to show the tree line after you construct the container. When you create a container on
the Windows operating system without the style IContainercontrol : :pmcompatible,
the tree lines are always visible.

The following attribute causes the container to draw small icons instead of normal size icons
on its nontext views:

IContainercontrol::minilcons

Draws small icons on its nontext views. Call IContainercontrol : :showMinilcons to
show small icons after you construct the container.

The IContainercontrol : : pmcompatible Style
In the OS/2 operating system, IContainercontrol implements its behavior using the native
container control with the class name WC_CONTAINER. This same control, with all the functions
it supports, is available to you using VisualAge for C++ for Windows. When you create
containers on the Windows operating system using the IContainercontrol : :pmcompatible
style, the IContainercontrol class implements its behavior using a ported version of the
WC_CONTAINER control. Consider using this style if you build your application for both the
Windows and OS/2 operating systems and you require the additional function provided by the
WC_CONTAINER control.

In many cases, it is more important to build an application with the look and feel of the native
presentation system than it is to achieve easy portability. If you do not specify the
IContainercontrol::pmcompatible style on the Windows operating system,
IContainercontrol builds its containers using the Windows native container controls. If you
choose to create a container without this style, be aware that there are IContainercontrol

Cfe¢pferz3 Container control 235

functions that Open Class Library does not support due to limitations in the Windows native
container controls. These include the functions for filtering container objects and handling
draw-item events for container objects.

In the OS/2 operating system, the WC_CONTAINER control provides all of the views supported by
IContainercontrol. In the Windows operating system when you create a container without
the IContainercontrol : :pmcompatible style, the Windows list view control (SysListview32)
provides most of the views, including the text view, icon view, name view, and details view.
The Windows tree view control (SysTreeview32) provides the tree views. You can still switch
between all views on the Windows operating system just as you can on the OS/2 operating
system. You can do this because the IContainercontrol class creates the SysListview32 or
SysTreeview32 controls when necessary to support the current view. To avoid unnecessary
overhead, create your containers with the style that represents the view you intend to display.
This ensures that you do not get the overhead associated with the opposite view until your user
chooses to display this view. For example, if you create a container where the initial view is a
text view, icon view, name view, or details view, IContainercontrol does not create a
SysTreeview32 control. Conversely, if you create a container where the initial view is a tree
view, IContainercontrol does not create a SysListview32 control.

Creating Container Objects
The class IContainerobject is a required base class for all objects added to a container. You
are also required to allocate these objects using IContainerobject: :operator new. It is an
error to allocate an IContainerobj ect or a class derived from IContainerobject on the stack
or as instance data of another object. Open Class Library throws an IInvalidRequest
exception when it detects this condition. This is described in more detail when we discuss the
design of the container classes later in this chapter.

While there are no required parameters for constructing an IContainerobject, you usually
construct one using text and an icon. You can specify the text and icon pair directly as a string
and an icon handle or as resource identifiers. If you use resource identifiers, the container
loads the text and icons from the applications's resource library. Additionally, you can
construct container objects by making a copy of an existing object. The following examples
demonstrate several ways to construct container objects:

// Declare a pointer to an IContainerobject.
IContainerobject* ob].ect;
// Create an object using the default constructor with
// no icon or text.
object = new IContainerobject() ;

// Create a text-only object.
object = new |Containerobject("Just Text") ;
// Create an ob].ect by loading the text and icon from
// a resource file.
object = new IContainerob].ect (ID_OBTECTTEXT, ID_OBTECTICON) ;

// Create an object by making a copy of an existing object.
IContainerob].ect* object2 = new IContainerobject(*object) ;

236 Power GUI programming with visualAge for c++

Adding Objects to Containers
Once you create an object, you add it to a container as a root-level object in the ordered model
or as a descendant of another object in the hierarchical model. You use the functions
IContainercontrol : : addobject and IContainercontrol : : addobjectAfter to add an object
to both models. As we describe in the topic "Icon View," you can also position the icons for an
object in the messy desk model that the icon view uses.

By default, you add objects at the end of the container's ordered list. If you specify a parent
object, it is added as the last child of that parent object by default. Use
IContainercontrol : :addobjectAfter to add an object after a specified object at the root
level or at any descendant level. You can add an object first by specifying 0 for the
af terobj ect parameter.

Assume that we have already created the container cnr, and the objects rootl, root2, root3,
rootlchildl, rootlchild2, and rootlchild3. The following code adds these objects to a
container so that they appear in the tree view shown in Figure 13-2:

// Add the root objects.
cnr . addobj ect (rootl
cnr . addobj ect (root2
cnr . addobj ect (root3

// Add rootlchild2 and rootlchild3 under rootl.
cnr.addobject (rootlchild2, rootl) ;]
cnr.addobject (rootlchild3, rootl) ;
// Add rootlchildl as the first child of rootl.
cnr.addobjectAfter(rootlchildl, 0, rootl) ;

Notice that we used IContainercontrol : : addob]. ectAfter with a 0 afterobj ect parameter to
add rootlchildl as the first child of rootl.

Figure 13-2. Windows Oeft) and OS/2 (right) Container Tree Text View.

CfeapferJ3 Container control 237

The container control also supports adding the same object to more than one container. Wben
you update an object that exists in multiple containers, you update the object in all containers.
See "Container Object Attributes" later in this chapter for the details on using objects in
multiple containers.

For most of the container's views, you can use IContainerobject directly without deriving
from it. However, as you learn later, you must derive from IContainerobject to display data
in a details view or to process events routed to the object by the container's handlers.

If you add a large number of objects to the container, the amount of time needed to add the
objects to the container can become unacceptably long. See "Building Large Numbers of
Container Objects" for techniques to improve the time it takes to create and add objects to the
container.

Text View
The text view, the simplest of all views, displays a text string representation of all root-level
objects in a vertical list. Scroll bars move the text into view when necessary.

The flowed-text view is the same as the text view except it displays the text strings in multiple
columns instead of a single vertical list. Figure 13-3 displays the text view in the Windows
and OS/2 operating systems. As in all container text strings on the OS/2 operating system, you
can use a newline character (`\n') to cause the text to be displayed across multiple lines. The
native container in Windows does not support displaying text across multiple lines in this
manner.

.='`REE
Figure 13-3. Windows Oeft) and OS/2 (right) Text View Containers.

238 Power GUI programming with visualAge for c++

Name View
The name view, an extension of the text view, displays an icon representation of root-level
objects to the left of the text string. Similarly, the flowed-name view is a variation of the
flowed-text view that displays the icon and text string pairs in multiple columns instead of a
single vertical list. Figure 13-4 displays the name view in the Windows and OS/2 operating
Systems.

Figure 13-4. Windows Oeft) and OS/2 (right) Name View Containers.

Icon View
The icon view displays both an icon and text string representation of root-level objects in the
container. The container centers the text string below the icon. Unlike the other views, the
container displays the icon and text string pairs based on specific coordinates that it stores
with each object.

The Icon View Coordinate System
The easiest way to position icons in the icon view is to create the container with the style
IContainercontrol : :autoposition. This causes the container to calculate the location of
icons when the container is first displayed, anytime an object is added or removed, and
whenever the container window is sized. This result is often unsatisfactory because it doesn't
allow the user to reposition icons in the container. It is important to allow the user to decide
on the position of icons in the container by dragging them to a new location.

Cfea[pferz3 Container control 239

Positioning icons in a container icon-view window requires you to understand the relationship
between the container's wo7.ksp¢ce and the visible display area or w.ew porf into this
workspace. The container workspace is an independent coordinate system that the container
uses to position icons when you add objects to a container.

The visible area of the container is a view port into this workspace that a user can move with
the scroll bars, and that you can move under program control. The smallest rectangle that
encompasses all objects in the container defines the bounds of the workspace. These bounds
limit the movement of the view port on the workspace. When you first create the container, the
view port is located at the origin of the workspace (0,0).

Figure 13-5 displays the location of the container's bounded workspace in an actual view of
the objects in the icon view (the view port). We created this container by specifying a frame
window size just large enough to display all of the objects. We then called
IContainercontrol: :arrangelconview to position the icons. Finally, we sized the frame
window to include the top two icons. Because the origin of the container and the origin of the
workspace are at position (0,0), the nondisplayed objects are at a negative workspace coordi-
nate. The user can adjust the position of the view port on the workspace with the scroll bars, or
you can adjust it by calling a container scroll function. In neither case can you or the user
move the view port outside the bounded workspace of the container. This means the container

Figure 13-5. The Bounded Workspace of the Container.

240 Power GUI programming with visualAge for c++

in Figure 13-5 cannot be scrolled horizontally. This is obvious to the user because no
horizontal scroll bars are present; it is not so obvious when you try it in code.

When you add objects to a container created without the style
IContainercontrol : : autoposition, their location in the container is not consistently defined
on all operating systems. Containers on the OS/2 operating system and containers with the
style IContainercontrol: :pmcompatible on the Windows operating system place them at
workspace location (0,0). This means that without further action on your part, the icons appear
one on top of the other in the bottom left corner of the container window. To correct this
situation, call IContainercontrol : :arrangelconview. This has the same one-time effect as
using the IContainercontrol: :autoposition style, while still allowing you or the user to
reposition specific objects in the icon view. Containers on the Windows operating system
without the style IContainercontrol : :pmcompatible automatically arrange the icons when
you first put them in the container.

You can manually arrange the icons by calling IContainercontrol : :movelconTo on each
object. Following this, scroll the container to position the view port on the workspace. Be
aware that IContainercontrol : :movelconTo sets the position of the icon, regardless of any
text. Because the amount of text is variable, it can become quite difficult to position the icon
and text pairs so that they don't overlap.

To give your users maximum flexibility and yet keep your code simple, we recommend the
following actions:

• Call IContainercontrol: :arrangelconview after you have added objects for the first
time.

• Save the location of the icons in a profile when the user closes the application.

• When the user opens the application, check the profile for this data and use it to position
the icons.

• Provide an Arrange choice on the menu to allow the user to request automatic
arrangement of the icons.

Even when you include these, you still have the job of deciding where to add a new object
when the user hasn't told you where to place it. Depending on your strategy for solving this
problem, it can be quite difficult. You can call IContainercontrol: :objectunderpoint to
locate a place in the current view port that does not already contain an object. However, it is
easier to code, and probably more understandable for your users, if you position new objects in
a fixed location and let the users move them to their preferred location.

Position an object's icon in the workspace using workspace coordinates by calling
IContainercontrol : :movelconTo. However, when you query the location of an object's icon,
the container returns the result in container window coordinates. When necessary, call
IContainercontrol : : convertToworkspace to convert a rectangle in window coordinates to a
rectangle in workspace coordinates.

Cfeapfe7.J3 Container control 241

Thee View
As you learned earlier, the tree view displays the hierarchical model of the container. The
tree-text view displays this hierarchy using only the text string of the object. The tree-icon
view and the tree-name view display an icon with the text string to the right of the icon. In
addition to the icon and text pair, the tree-icon view also displays separate icons for expanding
and collapsing the branches of the tree. Figure 13-6 displays the three tree views of the
container in the native container of the Windows operating system.

The default expand icon in the tree-text view and the tree-name view is a plus sign (+) and the
collapse icon is a minus sign (-). Collapse and expand the branches of the tree-name view by
clicking the mouse on the parent object's icon. Single-click the icon on the OS/2 operating
system and double-click the icon on the Windows operating system. You also can collapse and
expand the branches of the tree using the keyboard + and - keys when input focus is on a parent
icon.

Figure 13-6. Tree Views in the Windows Operating System.

242 Power GUI programming with visualAge for c++

You can alter several features of a tree view as follows:

• To remove the line used to connect a child icon to its parent, call
IContainercontrol : :hideTreeLine, or construct the container without the attribute
IContainercontrol: :visibleTreeLine. To replace the line later, call
IContainercontrol : : showTreeLine.

• To change the thickness of the tree line, call IContainercontrol: :showTreeLine and
specify a thickness, in pels, for the treeLinepixelwidth parameter.

• To change the amount of space child icons are offset from their parent icon, call
IContainercontrol : : setTreeviewlndent.

• To replace the expand and collapse icons with your own custom icons, call
IContainercontrol : : setTreeltemlcons.

• To alter the size of the expand and collapse icons, call
IContainercontrol : : setExpandlconsize.

Details View
The details view of the container displays data for root-level objects in columns with optional
headings at the top of each column. Although the container displays many types of data, it
only supports user editing of text data. User editing of text is covered later in the topic
"Editing Container Text."

To use the details view, derive a class from IContainerobj ect and add whatever data you need
displayed as member data of the new class. Also, create an object of IContainercolunn for
each column of data and add these columns to the container. Because IContainercolunn is
tightly coupled to the data in your object, specify the type of the data and the offset of the data
in your object.

Building a Details View Object
The following class defines the minimum information that a Developer class needs for the
details view to display a developer's name, Compuserve identifiers as text strings, and an icon
to represent the developer' s role.

class Developer : public IContainerobject
(

public :
Developer (const Istring& name,

unsigned long iconld,
const Istring& compuserveld) ;

: IContainerobject(name, iconld) ,
fcompuserveld(compuserveld)

()

Cfo¢pfe7.J3 Container control 243

enurn Column {kNamecolumn, klconcolumn, kcompuserveldcolumn } ;
static IContainercolumn*createAndorphancolumnFor (IContainercontrol& container,

Column column) ;
static void

createAllColumnsFor (IContainercolumn& container) ;

private :Istring
fcompuserveld;

);

Notice that the Developer object only requires one new data member, an Istring, to store a
developer's Compuserve identifier. We can store the developer's name and an icon in the
iconviewText and icon fields of IContainerobj ect.

We have also added two static functions to create column objects for displaying the object in
the details view. The first function, createAndorphancolulnnFor, creates and adds a specific
IContainercolunn object to the argument container. You indicate which column you want
added to the container by specifying a value for the Column enumeration argument. When you
use this function, you must keep track of and delete any column objects that you request the
Developer object to build.

The second static function, Developer : : createAllColunnsFor, automatically builds a default
set of IContainercolumn objects and adds each to the argument container. It calls
Developer : : createAndorphancolurmFor for each column to create and add it to the container
and then it calls IContainercontrol : : setAutoDeletecolunns to cause the container to delete
the column objects when it is closed.

As the implementation of these functions shows in the following example, the creation of the
IContainercolunn objects requires the offset of the data in the container object. Here, the
macro offsetof, defined in STDDEF.H, returns the offset of the strcompuserveld field in the
Developer object.

IContainercolulnn*
Developer : : createAndorphancolumnFor (IContainercontrol& container,

Co lumn co lulnnTyp e)
(

IContainercolumn* newcolumn = 0;
if (columnType == Developer: : fNamecolumn)

newcolumn = new IContainercolumn (
IContainercolumn: : islconviewText) ;

else if (columnType == Developer: :flconcolulnn)
newcolulnn = new IContainercolumn (

IContainercolumn: :islcon) ;
else if colulnnType == Developer: : fcompuserveldcolumn)
(

unsigned long offset = offsetof (Developer, fcompuserveld) ;
newcolumn = new IContainercolulrm.(offset) ;

)
// Ensure that a new colulnn is created.
IASSERTSTATE (newcolumn != 0) ;

return newcolulnn;
)

244 Power GUI programming with visualAge for c++

Defining Column Objects
An object of the class IContainercolulm defines the characteristics of a single column of data
in the details view. Each column of data relates to one piece of data in the container object.
The column object includes the following characteristics:

• The type of data in the column. The container can display character strings, numbers,
dates, times, and an icon.

• The offset of the data within the container object. The container uses this information to
draw the data in the column.

• The data to be displayed in the column heading and its type. Column headings can
contain text or an icon.

• Any additional column formatting information, such as justification, or the use of
column separator lines.

You usually construct an IContainercolulm using the offset of the data displayed in the
column and, optionally, the style of the column heading and column data. By default, both the
column heading and the column data contain vertically centered, left-aligned, and read-only
text. In our Developer object, we added the static functions createAndorphancolunnsFor and
createcolumnFor to return IContainercolumn objects for the data in our object. This
approach has an advantage because it keeps the existence of data offsets out of your object's
interface.

Istring inplementation Note
You may have noticed we are using Istring instead of character pointers for our text data.
We can do this because the class Istring was designed to be used in read-only situations as
a replacement for a character array. It can do this because an instance of Istring is four
bytes long and contains only a pointer to the character data stored in the Istring. Thus, an
Istring is, by definition, binary-compatible with a character pointer. It is read-only,
because you must change the data of the Istring using Istring functions.

IContainercolumn has another constructor you can use to create a column that displays the
icon or iconviewText stored in the base portion of an IContainerobject. We use this
constructor in our Developer object to create a column object for the developer's name and
icon. This constructor does not require the offset of the data in the column because the
container calculates this information.

The columns for displaying our Developer object appear as follows:

IContainercolumn
name (IContainercolumn : : islconviewText) ;

IContainercolulnn
iconld (IContainercolumn : : islcon) ;

IContainercolumn
compuserveld (Developer : : compuserveldoffset ()) ;

CfeapferJ3 Container control 245

Pay attention to the following points when you build your objects and columns:

• The data type must match the actual type of data. If you indicate that the data is text, the
container uses the data as a pointer to a text string. You will likely get an access
violation if the types do not match.

You can put heterogeneous objects into a container, but you can create problems if you
are not careful. If you create a column object for data of a specific type at a specific
offset in an object, every object in the details view must have data of that type present at
that offset. This is not checked. It is your job to ensure that it is done. If you use
heterogeneous objects in a` container, create column objects only for data members that
exist in a common base class.

Adding Column Objects to the Container
After you create an IContainercolumn object, add it to a container using either
IContainercontrol : : addcolumn or IContainercontrol : : addcolumnAt. Use addcolumn to
add the column after an existing column; if you don't provide a reference column, the
container adds the column as the last column. Use addcolumnAt to add the column using an
IContainercontrol : : Columncursor; the container adds the column after the column pointed
to by the cursor. Unlike container objects, you can only add column objects to a single
container.

In the OS/2 operating system and in the Windows operating system for containers with the
style IContainercontrol : :pmcompatible, you can display icons, text, numbers, dates, and
times in the data of the columns. You can also display icons and text in the column's heading.
However, there are a number of restrictions to consider if you use native containers in the
Windows operating system. Because these restrictions are well documented in the Ope# CJ¢ss
Lz.br¢ry Re/ereJ3ce under the IContainercolulrm class description, you can read them there. To
build details-view containers that work well as native containers on both operating systems,
follow these guidelines:

• Create an IContainercolumn object using the constructor that takes a Datasource
enumeration with the value IContainercolumn : : islcon and add it as the first column in
the container using default values for both the Headingstyle and Datastyle parameters.
Call IContainercolurm: : setHeadingText if you want a beading above the icon in the
OS/2 operating system; this text is not used for the Windows native container.

• Create a second IContainercolulm object using the same constructor with the value
IContainercolumn: : islconviewText and add it as the second column in the container.
Call IContainercolulnn : : setHeadingText to add the heading text used for the icon-view
text in the OS/2 operating system and for the combined icon and icon-text column for the
Windows native container.

Do not build IContainercolumn objects using the style IContainercolumn: :icon
because the Windows native container only supports icons in the first column.

If possible, use the defaults for both Datastyle and Headingstyle when you create
column objects. If you do specify these styles, they must be text and are read-only.

246 Power GUI programming with visualAge for c++

Using Dates and Times in the Details View
As you read earlier, the container can format and display both dates and times in the fields of a
details view. You can also use Open Class Library classes IDate and ITime to format and store
dates and times as string data. If you want to give your users the ability to directly edit the
dates and times, store this information as a character pointer or an Istring. The container's
built-in support for dates and times does not support user editing.

To use the container's built-in date and time support, store the date and time data in your
container object in a form identical to the Developer's Toolkit for OS/2 structures CDATE and
CTIME. Also, construct an IContainercolumn with IContainercontrol: :Datastyle
enumeration values of IContainercolulnn: : date or IContainercolumn: : time. The cnr\cdata
program shows our Developer object with CDATE and CTIME support added and container
columns to display this information. Note that this example shows the layout of both CDATE
and CTIME. The cnr\uidate program shows our Developer object with support for the classes
IDate and ITime instead of CDATE and CTIME.

Adding a Split Bar
A xpJz.£ bczr is a movable vertical border that you use to separate a range of columns in the
details view. Call IContainercontrol: :setDetailsviewsplit to add a split bar to a details
view. The parameters for this function identify the last column to appear on the left side of the
split bar and the initial location of the split bar, in pixels, from the left side of the details view.
Call IContainercontrol::showsplitBar to show the split bar and call
IContainercontrol : : hidesplitBar to hide it.

The native container in the Windows operating system does not support separately scrollable
windows in the details view. If you do not use the IContainercontrol : :pmcompatible style
when you build your container, IContainercontrol ignores calls to add or reposition the split
bar. The Windows native container does allow users to reposition the border of all columns in
the details view whereas the OS/2 container does not.

To add a split bar to a container displaying the details of our Developer object after the name
column and to specify an initial location 125 pixels from the left side of the container, you
would include this code:

cnr.setDetailsviewsplit(&name,125) ;
cnr . showsplitBar () ;

Although adding a split bar to a container is easy, you can run into complications with the
details-view container. In containers, the columns on the right side of the split bar are in a
separate presentation system window than those on the left side. To clarify this, recall the
relationship of the container window or view port to the container workspace. Because of this
relationship, the two split windows move independently in a horizontal direction. But, they
move together in a vertical direction. To determine if a column is in the left or the right
window, call IContainercontrol : : iscolulmRight.

CfeapferJ3 Container control 247

Another complication occurs because IContainercontrol : : detailsobj ectRectangle (which
returns the window rectangle bounding an object in the details view) returns only the area on
one side of the split bar. The Boolean that you specify for the rightwindow parameter deter-
mines on which side it returns. Call IContainercontrol: :splitBaroffset to find the
location of the split bar.

Moving and Copying Objects in the Container
IContainercontrol provides two powerful functions to move or copy objects in a container.
IContainercontrol : :moveob].ectTo supports moving objects in both the ordered and hierar-
chical model, and it supports changing the icon position in the icon view. It also supports
moving objects from one container to another if both containers are in the same process.
Because not all moves in a container are valid, moveobjectTo returns false rather than
throwing an exception when it cannot move the object. Trying to move an object to one of its
descendants is an example of an invalid move. You can also call
IContainercontrol : : isMovevalid prior to attempting a move to determine if you can make
the move.

IContainercontrol : : copyobjectTo supports copying objects in both the ordered and hierar-
chical models. It also supports copying objects from one container to another if both
containers are in the same process. If you create a class that inherits from IContainerobject
and you ever plan to call IContainercontrol: :copyobjectTo, you must override and
implement copyobjectTo in the derived class. Because the container's built-in direct
manipulation support calls copyobj ectTo to copy objects as the result of a direct manipulation
copy operation, you must implement copyobjectTo if you enable direct manipulation. If you
do not implement copyobjectTo in your derived class, IContainerobject: :copyobjectTo
throws an IInvalidRequest exception when it is called instead of your version.

IContainercontrol does not provide support to move or copy objects between two containers
in different processes. To do this, you need to use an inter-process communications vehicle to
transfer the data of an object from one process to another. The Dynamic Data Exchange (DDE)
classes in Open Class Library, provide this vehicle. See Chapter 22, "Dynamic Data Exchange
Framework," for a description of these classes.

Managing the Lifetime of Container Objects
Managing the lifetime of objects in containers can become quite complex because your objects
can exist in one container, multiple containers, or no containers at all. Many helper functions
in the container help you handle this complexity.

Removing and Deleting Objects
Just as constructing an object is an independent event from adding that object to a container,
removing an object from a container is an independent event from deleting it. You can remove
an object from a single container or all containers simultaneously. You can remove a single

248 Power GUI programming with visualAge for c++

object by its address or by using an IContainercontrol::Objectcursor or an
IContainercontrol : :Textcursor. You can also remove all selected objects or all objects in
the container simultaneously. The following examples show how you remove objects from a
container:

// Remove the object with the cursor.
IContainerobject* pobject = cnr.cursoredobject () ;
cnr . removeob]. ect (pobj ect) ;

// Remove all objects in a container.
cnr . removeA110bj ects () ;

// Remove all selected objects in a container.
cnr . removeselectedobj ects () ;

// Remove the first object with an Objectcursor.
IContainercontrol : : Obj ectcursor obj ectcursor (cnr) ;
ob]. ectcursor . setTOFirst () ;
if (ob].ectcursor.isvalid())

cnr . removeobj ectAt (obj ectcursor) ;
// Remove the last object with the text ``Delores."
IContainercontrol : :Textcursor textcursor (cnr, "Delores") ;
textcursor . setTOLast () ;
if (textcursor.isvalid())

cnr . removeobj ectAt (textcursor) ;

When you remove an object that contains descendants in the hierarchical model,
IContainercontrol removes all of its descendants.

When you delete an object, IContainercontrol removes the object from all containers with
the object prior to deleting it. When you delete an object with descendants in the hierarchical
model, IContainercontrol removes and deletes all descendants in all containers. The
container builds a list of the objects requiring deletion, removes them from their respective
containers, and calls each object's destructor. Similar to the process you use to remove
objects, you can request the container to delete all objects, delete all selected objects, or to
delete an object at a particular cursor location.

Automatic Deletion of Objects
In many cases, you only add objects to a single container and want the objects deleted when
the user closes the container. If you do not need an object beyond its use in a particular
container, call IContainercontrol : : setDeleteobjectsonclose on that container. Calling
this function causes the IContainercontrol destructor to remove all its objects and then to
call the destructor of those objects that do not exist in other containers. Those objects that
exist in other containers remain there.

Managing objects in multiple containers imposes a performance penalty on your application,
especially during the deletion of container objects, because IContainercontrol must handle
the use of the object in other containers. If you do not share objects among multiple
containers, create your containers witb the IContainercontrol : : nosharedobj ects style. This
style cause the container to ignore the code that handles objects that exist in multiple
containers.

Cfea!pferJ3 Container control 249

Locating Container Objects and Columns
Using three nested cursor classes of IContainercontrol, you can iterate the objects and
columns in a container. Cursors are "smart" placeholders to a current object in a container. By
using a cursor to maintain a current position in the container, you can have multiple place-
holders in the same container. These cursors also limit the amount of data stored with the
container because you create them only for as long as you need them.

As you learn in the following topics, several arguments to the cursors' constructors change the
behavior of the cursors. In effect, you create a different kind of cursor depending on the values
of these arguments.

Object Cursor
Use IContainercontrol: :Objectcursor to find container objects that match a particular
emphasis attribute that you specify when you create the cursor. The cursor supports all tbe
emphasis types of IContainerobj ect including these:

IContainerobj ect : : none
IContainerobj ect : : inuse
IContainerobj ect : : selected
IContainerobj ect : : cursored

You also can change the order in which this cursor finds objects in the container. Objects can
be found in I.Jem o7ider or in Z-o7ider. Item order is the order of the objects in the hierarchical
and ordered models. Z-order is the painting order of the icons in the icon view because icons
can be on top of each other.

Finally, several options control how the objects are found in the hierarchic model. You can
choose to iterate only the root-level objects of the ordered model, all objects including those in
the hierarchical model, the direct descendants of a single object, or all descendants of an
object.

In a container with the IContainercontrol: :singleselection style and in all tree view
containers, a single object is selected at a time. In addition, this object is always the container
object with input focus. Therefore, instead of using an object cursor to find the selected
object, call IContainercontrol : : cursoredobj ect.

You can construct an object cursor in the following ways:

// Create an object cursor for all container objects,
// including subtree objects.
IContainercontrol : :Objectcursor all0bj ects (cnr) ;
// Create an object cursor for the direct children of rootl.
IContainercontrol : : Obj ectcursor rootlDirect (cnr, rootl) ;
// Create an object cursor for all children of rootl.
IContainercontrol: :Objectcursor rootlAll (cnr, rootl, true) ;

250 Power GUI programming with visualAge for c++

// Create an object cursor for all selected ob].eats in item order.
IContainercontrol : :Ob].ectcursor allselected (cnr,

IContainerobj ect : : selected) ;
// Create an object cursor for all selected objects in Z-order.
IContainercontrol : :Objectcursor allselected (cnr,

IContainerobj ect : : selected,
IContainercontrol : : zorder) ;

Although you create object cursor in different ways, you use them with the same cursor loop to
iterate the container, as follows:

for (allobj ects . setTOFirst () ;
all0bj ects . isvalid () ;
allob].ects.setTONext()) {

IContainerobject* pcnrobj = cnr.ob].ectAt (cursor) ;
)

Text Cursor
Use an IContainercontrol : : Textcursor to return objects that match a particular text string.
Create a text cursor by providing the text string and the following optional Boolean arguments:

iscasesensitive

Determines if the text match is case sensitive. If true, make the case of the text
identified on the Textcursor constructor the same case as the object's text for the object
to be found. If false, the default, text searches are not case sensitive.

isFirstlnRecord

If true, the text identified on the Textcursor constructor must match the text in the
object, starting from the beginning of the string. If false, the text can be anywhere in
the string. By default, text searches examine the entire string for a match.

isExactMatch

If true, the text identified on the Textcursor constructor must exactly match the entire
text string for an object to be found. If false, the default, an exact match is not
required.

Construct and use text cursors just as you do other cursors, as follows:
// Create a text cursor to find all objects with "the" in their text.
IContainercontrol : :Textcursor thecursor (cnr, `'the") ;
// Create .a text cursor to find all objects starting with "An.''
// Match the case as well.
IContainercontrol: :Textcursor ancursor(cnr, "An", true, true) ;
// Use the thecursor to hide all ob].ects with "the."
for (thecursor . setTOFirst () ;

thecursor . isvalid () ;
thecursor.setTONext()) {

IContainerobject* pcnrobj = cnr.objectAt (thecursor) ->hide () ;
)

CfeapferJ3 Container control 251

Column Cursor
Use IContainercontrol : : Colunncursor to return the columns added to the container. Add an
additional Boolean argument if you want to limit the search to visible columns in the
container, as follows:

// Hide all visible columns.
IContainercontrol : : Columncursor visiblecolumns (cnr, true) ;
for (visiblecolulnns . setTOFirst () ;

visiblecolumns . isvalid () ;
visiblecolumns.setTONext ()) {

IContainercolumn* pcnrcol = columnAt (visiblecolumn) ->hide () ;
)

One restriction for all cursors in the container (and the rest of Open Class Library) is that these
cursors become invalid if additions or removals occur to the cursor's collection. Conse-
quently, do not add or remove objects or columns without setting the cursor to a valid value
during the cursor for loop. You can make a minor variation in the cursor for loop to overcome
this restriction. The following example uses a cursor loop to remove all objects that match our
previously created thecursor. Instead of advancing the text cursor to the next item in the
collection, the code continually resets the cursor to the first item. The action of resetting the
cursor to a known value validates the cursor after it has been invalidated by the call to
IContainercontrol : : removeobj ect.

for (thecursor . setTOFirst () ;
thecursor . isvalid () ;
thecursor.setTOFirst()) {

IContainerobject* pcnrobj = cnr.objectAt (thecursor) ;
cnr . removeobj eat (pcnrobj) ;

)

Applying Behavior to Objects
As you already learned, you use cursors to loop through a container and retrieve objects or
columns that match various characteristics. A slight variation of this technique is to loop
through a container and call a function for each object in the container. The
IContainercontrol : : Iterator class provides this capability. The steps involved in using an
iterator are as follows:

1. Define a class derived from IContainercontrol : : Iterator and implement the function
applyTo. The container calls this function for each object and passes it a pointer to the
object. When called, this function must return a Boolean value to indicate if the
iteration should continue; it returns true to continue the iteration and false to stop it.

2. Declare an object of the new derived class.

3. Call Icontainercontrol : : all0bjectsDo and provide the iterator object as an argument.

252 Power GUI programming with visualAge for c++

Suppose, for example, you want to translate any icon text containing the string "alarm" to
upper case. You can do this using the following code:

// Create the derived class and implement applyTo.
class FoldlconText : public IContainercontrol: : Iterator{
virtual Boolean

applyTo(IContainerobject* ob].ect) {
// Update the state of the object.
Istring iconText = object->iconText() ;
if (iconText.includes (`'alarm")) {

iconText . uppercase () ;
obj ect->setlconText (iconText) ;

)return true;
)

);

// Declare an object of the iterator.
FoldlconText toupper;
// Apply the function to the container.
cnr . all0b]. ectsDo (toupper) ;

Sorting Objects in the Container
You can sort objects in the container using their icon text by calling
IContainercontrol : :sortBylconText or by using an application-provided comparison
function. Using an application comparison function, you can sort the objects in the container
in any number of ways. When you call sortBylconText, the container provides its own
comparison function to do the sorting.

The steps involved in providing your own sort behavior are as follows:

1. Define a class derived from IContainerconrol : :CompareFn and implement the function
isEqual. Code isEqual to return an integer value that is:

Less than zero, if the first object is less than the second object.
- Zeroifthe first objectis equal to the second object.

Greater than zero if the first object is greater than the second object.
2. Create an object of the newly defined comparison class.

3. Call Icontainercontrol : : sort and pass the comparison function object.

The following example sorts our previously defined Developer objects by the value of their
compuserveld fields. To accomplish this, we compare the identifiers using the national
language-support-enabled function, IContainercontrol : : nlscompare.

// Define the comparison function and implement isEqual.
Class Comparecservelds : public IContainercontrol : :CompareFn{virtual int

isEqu.al (IContainerobj ect* developerl ,
IContainerobj ect* developer2 ,
IContainercontrol* container) {

return nlscompare (((Developer*) developerl) ->compuserveld () ,
((Developer*) developer2) ->compuserveld ()) ;

)
);

Cfea!pferz3 Container control 253

// Create an object of the comparison function.
Comparecservelds comparelds ;

// Invoke the sort funtion.
cnr . sort (comparelds) ;

Hiding or Filtering Container Objects
Containers created with the style IContainercontrol : :pmcompatible support the notion of
invisible, or filtered objects. Use filtering as a way to display a subset of the objects in a
container without removing the objects from the container's collection. The container does
not display invisible objects but because they remain in its collection of objects you can iterate
them using an object cursor. Hide a visible object by calling
IContainercontrol::hideobject and show a hidden object by calling
IContainercontrol : : showobject. You can also hide and show objects by building your own
filter function. Like the sort function, hideobject and showobject use filter functions inter-
nally to hide and show objects.

The steps for providing your own filter behavior are as follows:

1. Define a class derived from IContainerconrol : :FilterFn and implement the function
isMemberof. Code isMemberof to return true if the container should display the object
and false if it should not.

2. Create an object of the newly defined filter class.

3. Call Icontainercontrol : : filter and pass the filter-function object.

The following example hides any of our previously defined Developer objects if they don't
have a value for their compuserveld fields.

// Define the filter function and implement isMemberof .
Class Validcservelds : public IContainercontrol: :FilterFn
(virtual int

isMemberof (IContainerobj ect* developer,
IContainercontrol* container)

(
if (((Developer*) developer) ->compuserveld () .length () >0)

return true;
return false;

)
);

// Create an ob].ect of the comparison function.
Validcservelds cservelds ;
// Invoke the filter function.
cnr . filter (cservelds) ;

Editing Container Text
The container supports user editing of the text in the container title, the text associated with an
icon, the column headings of the details view, and the object data of the details view. In
addition, you can initiate the editing of text in your program using functions in

254 Power GUI programming with visualAge for c++

IContainercontrol. Before the text can be edited, you must enable editing in the field and
ensure the field contains character data. You can meet the requirement for character data by
using a character array or the class Istring.

Enabling User Editing
By default, the user cannot edit text in the container. To enable user editing, complete these
tasks:

• Ensure the field to be edited is text data using either an Istring or a character pointer.

• Enable editing for an object by calling IContainercontrol: :enableDataupdate and
passing the object.

• Create an object of the class IcnrEditHandler or a class that inherits from
IcnrEditHandler and invoke the function handleEventsFor.

The fields in the container that support text editing may have construction styles, functions
that can be invoked after construction, or both to enable editing in the field. To edit any data
in an object you must call IContainercontrol : : enableDataupdate. In addition, if the object
data to be edited is in a column of the details view, construct the column without the
IContainercolumn: :readonly data style (this style is set by default). Alternatively, call
IContainercolulm : : enableDataupdate after you construct the IContainercolunn.

To enable editing of the container title, call IContainercontrol : : enableTitleupdate. To
enable editing of the column headings in the details view, construct the columns without the
IContainercolumn: :readonly heading style or call the IContainercolumn function
enableHeadingupdate.

Initiating and Terminating Editing
Use IContainercontrol functions to initiate and terminate editing in the container. The
following IContainercontrol functions support editing:

editcontainerTitle

Opens an edit field on an edit-enabled container title.

editcolumnTitle

Opens an edit field on an edit-enabled column heading in the details view. The field
must contain character data.

editobject

Opens an edit field on an edit-enabled container object in any of the container's
available views. Use an optional parameter of this function to specify a column in the
details view so that you can open an edit field on the data of a column. A field in the
details view must contain character data.

CfeapferJ3 Container control 255

Handling an Edit Change Request
Use the classes IcnrEditHandler and IcnrEditEvent to add specific behavior during the
process of editing data in the container. IcnrEditHandler supports the following notifica-
tions:

be8inEdit

Called by the edit handler and passed an IcnrBeginEditEvent following a request to
open a container edit field. IcnrEditHandler: :beginEdit creates and attaches an
IMultiLineEdit object to the edit control opened by the container. If you override this
function, call the base class function before adding your custom behavior.

reallocstring

Called by the edit handler when it needs to reallocate the storage to contain new data in a
field. IcnrEditHandler: :beginEdit provides complete support for data reallocation.
In particular, the edit handler can identify the type of data used for fields managed by
the container (title, details headings, and icon text) and handles reallocation automati-
cally.

Consider overriding reallocstring in an edit handler only if your object data is a
mixture of Istring objects and character pointers.

endEdit

Called by the edit handler and passed an IcnrEndEditEvent after the container has been
updated with the new data of the edit field. IcnrEditHandler: :endEdit deletes the
IMultiLineEdit object added by IcnrEditHandler: :beginEdit. If you override the
behavior of this function, call the base class implementation after you complete your
processing.

The IMultiLineEdit object provides a wrapper class for the edit field that the presentation
system container uses for editing text. You can replace this object with a different object that
inherits from IMultiLineEdit, but you cannot replace the actual container's edit field. Your
class must still provide a wrapper for the container's multiline edit field. You do not need to
replace the IMultiLineEdit object because you can adjust the behavior of the edit field by
attaching your own edit handler to the existing edit control.

Container Obj ect Attributes
Objects stored in a container have several different attributes. Because an object can exist in
more than one container, many of these attributes reflect the state of an object in a particular
container. For example, an object can be visible in one container but hidden in another. The
container classes provide functions to help you answer the following two questions about an
attribute:

256 Power GUI programming with visualAge for c++

1. What is the state of an object's attribute in a particular container? For example, is the
object customerl visible in containerl? Answer this question by calling the object and
providing the container or by calling the container and providing the object. For
example:

obj ectl->isvisible (containerl) ;
containerl->isvisible (obj ectl) ;

2. What is the state of an attribute in all places where the object resides? If you have not
added an object to a container, the object answers the question based on its state data. If
you have added the object to one or more containers, the object answers the question by
determining its state in all containers holding the object. For example, an object returns
false to IContainerobject : : isvisible unless it is visible in all its containers. Always
answer this question by calling the attribute functions of the object without supplying a
container, as follows:

ob]. ectl->isvisible () ;

For example, consider two containers, containerl and container2, and an object, objectl.
Initially, objectl is not in either container. The following code demonstrates the use of the
container functions to query the attributes of an object:

obj ectl->hide () ;
obj ectl->isvisible () ;
obj ectl->show () ;
obj ectl->isvisible () ;

containerl->addobj ect (obj ectl) ;
container2 ->addobj ect (obj ectl) ;
obj ectl->hide (containerl) ;
obj ectl->isvisible () ;

//NO

// YES (even though it is not
// in a container) .

//NO

objectl->isvisible(containerl) ; // NO
containerl->isvisible(objectl) // NO (salne question)
objectl->isvisible(container2) ; // YES
container2->isvisible(objectl) ; // YES (same question)

Setting and Querying Object Attributes
You can modify the following container object attributes:

Visibility

The ability to see an object in the container on the display. An object is visible unless
you explicitly hide it. Hide an object either by calling IContainercontrol : :hide or by
using a filter function (as we showed earlier). Determine an object's visibility by
calling IContainercontrol : : isvisible or IContainerobj ect : : isvisible.

CfeapferJ3 Container control 257

Cursored emphasis

An object with input focus. Change the object with cursored emphasis by calling
IContainercontrol: :setcursor. Only a single object at a time can have cursored
emphasis in a container. Therefore, setting the cursored emphasis to one object removes
cursored emphasis from another. Removing an object with cursored emphasis causes the
container to apply cursored emphasis to a different object.

You cannot explicitly turn cursored emphasis off. Don't try to use an objectcursor to
remove an object with cursored emphasis. If you use the normal cursor loop, it can
remove many or all of the objects in the container. This happens because the container
automatically shifts the cursored emphasis to the next object.

You can determine if an object has cursored emphasis by calling
IContainercontrol: :iscursored. You can determine which object has cursored
emphasis by calling IContainercontrol : : cursoredobj ect.

Selection emphasis

A highlighted object or group of objects that the user wants to perform an action on, such
as copy or move. Selection emphasis shows the highlighted target of the user's action.
Typically a user selects an object or a group of objects, and applies a specific behavior to
these objects. In a single-selection container, setting the selection emphasis to a new
object removes selection emphasis from the prior object with selection emphasis. Call
IContainercontrol: :setselected to set selection emphasis on an object and call
IContainercontrol : : removeselected to remove it. Determine if an object has selected
emphasis by calling IContainercontrol : : isselected.

In-use emphasis

A highlighted object that is currently in-use. This emphasis might occur when the user
opens a view on the object. Call IContainercontrol : : setlnuse to set in-use emphasis
on an object and call IContainercontrol : :removelnuse to remove it. Determine if an
object has in-use emphasis by calling IContainercontrol : : islnuse.

Refresh state

A state of an object that determines whether the container updates the view of the object
on the display. To make a series of changes to an object without updating the display, set
an object's refresh state to off. To do this, call setRefreshoff, make the changes, call
setRefreshon, and then call refresh.

The container also has a refresh state which enables you to make changes to a group of
objects without updating the container. If you turn off the container's refresh state, your
changes to an object are not seen even if the refresh state of the object is on. Turn off the
container's refresh state by calling IContainercontrol: : setRefreshoff. After you
make your changes, turn refresh on by calling IContainercontrol : : setRefreshon and
then IContainercontrol : : refresh.

258 Power GUI programming with visualAge for c++

Open status

An opened object. By default, the container sets in-use emphasis on when an object is
opened and removes it when an object is closed. Set an object to the open state by
calling IContainerobject::setopen and to the closed state by calling
IContainerobject::setclosed. Determine if an object is open by calling
IContainerobj ect : : isopen.

Direct edit status

An object enabled for editing. As described earlier, the text data associated with an
object cannot be edited by the user or under program control unless you enable the
object for editing. Enable an object for text editing by calling
IContainercontrol : : enableDataupdate or IContainerobject : : enableDataupdate.
Disable an object for update by calling IContainercontrol : :disableDataupdate or
IContainerobject: :disableDataupdate. Determine if an object can be edited by
calling IContainercontrol : : isReadonly or IContainerobj ect : : isReadonly.

Expanded or collapsed state in tree view

An object's state when its descendants are viewable or hidden. Hide the descendants of
an object by collapsing a branch of the tree and restore them by expanding the branch of
the tree. Collapse a branch of the tree by calling IContainercontrol: :collapse and
expand a collapsed branch by calling IContainercontrol : :expand. Determine if the
descendants of an object are collapsed by calling IContainercontrol : : iscollapsed or
IContainercontrol : : isExpanded.

Target Emphasis

A highlighted object that is the target of a user's direct-manipulation action. Determine
if an object is the target of a direct manipulation by calling
IContainercontrol : : isTarget.

Source Emphasis

A highlighted object that is the source of a user's action. The container shows an object
with source emphasis when the user is dragging it with the mouse and when a user
requests a pop-up menu for the object. Determine if an object has source emphasis by
calling IContainercontrol: :issource. The container classes call the functions
showsourceEmphasis and hidesourceEmphasis in IContainercontrol to add and
remove source emphasis during direct manipulation and while showing a pop-up menu.

Handling Object Change Notification
The container classes provide a series of event notifications when the values of object
attributes in the container change. The base container handler, IcnrHandler, captures these
notifications and routes them to virtual functions within the handler. By default, when the
attributes of an object change, the handler calls virtual functions on the changed object. The
container classes do 72of create an IcnrHandler by default. If you need to process the virtual
functions in your IContainerobj ect derived class, create an IcnrHandler object and call its

CfeapferJ3 Container control 259

function handleEventsFor to attach it to the container. Unlike many other handlers, you do
not need to derive from IcnrHandler to use it.

The base container handler captures the following changes and passes them to an object for
processing.

The user presses Enter or double-clicks mouse button 1.

The handler calls IcnrHandler : : enter and passes it an IcnrEnterEvent object to
describe the details of the event. If the enter occurs over an object,
IcnrHandler : : enter calls IContainerobj ect : : handleopen to process the action;
otherwise, the function does nothing.

The selection status of an object changes.

The handler calls IcnrHandler::selectedchanged and passes it an
IcnrEmphasisEvent object to describe the details of the event. Then,
selectedchanged calls the IContainerobject: :handleselectedchange and
indicates whether the selection emphasis was acquired or released. Note that the
container usually sends two events for each user's changing of the emphasis-one
event for the object losing the emphasis and one event for the object acquiring the
emphasis.

The cursored status of an object changes.

The handler calls IcnrHandler::cursoredchanged and passes it an
IcnrEmphasisEvent object to describe the details of the event. Then,
cursoredchanged calls IContainerobject: :handlecursoredchange and
indicates whether the cursored emphasis was acquired or released. Similar to
selection notification, the container dispatches an event both for the object
acquiring the cursor and for the one losing it.

The in-use status of an object changes.

The handler calls IcnrHandler::inusechanged and passes it an
IcnrEmphasisEvent object to describe the details of the event. Then,
inusechanged calls IContainerobject: :handlelnusechanged and indicates
whether the in-use emphasis was acquired or released.

Advanced Features

Using Help in the Container
The native help facilities of the Windows and OS/2 operating systems provide a powerful
facility for displaying help information for an application. Chapter 23, "Using Help,"
discusses adding help to Open Class Library applications. In addition to the contextual
window help available to all windows, the container classes allow you to display help for
objects in any of the available views and for the individual columns in the details view during
direct editing.

260 Power GUIprogramming with visualAge for c++

To use help in objects of the container, create the container's default handler, IcnrHandler,
and call its function handleEventsFor. In addition, if you provide column help during a direct
edit in the details view, create an IcnrEditHandler and call its function handleEventsFor.

When the container's default handler detects a request for help, it calls IcnrHandler : :help to
process the request. If the help request occurs over an object, IcnrHandler: :help checks to
determine whether an edit field is currently open on a column of the details view. If so, it calls
IContainercolumn: :helpld to determine the identifier of the help panel to display for the
column. If a column is not currently being edited, it calls IContainerobject: :helpld to
determine the help panel to display for the object. If a help panel is not returned in either of
these cases, it calls Iwindow: :helpld to determine if a help panel is set for the container. If
the handler finds a help panel in any of these situations, it calls the static function
IHelpwindow: :helpwindow to determine the help window for the container and then calls
IHelpwindow : : show to display the help panel.

Because the objects and columns of the container are not presentation system windows, you do
not need to add information to the help table or subtable in your resource file. Identify the
help panel to be displayed at run time by providing the actual panel identifier (the RES= tag in
the IPF file) of the help panel.

Help for Container Objects
To provide help for an object in the container, override the function helpld in your
IContainerobj ect-derived class and return the help panel that you want displayed. Then you
can provide help at the class level for objects in the container. Also, with a little additional
code, you can provide help for each individual object in the container. For example, to add
help for each of our Developer objects, add the following functions to the class:

Container Help - cnr\help\devmodel.cpp
Developer& Developer: :setHelpld (unsigned long helpld)
(

this->fHelpld = helpld;
return *this;

)

unsigned long Developer: :helpld () const
(

if (this->fHelpld ! =0)
return this->fHelpld;

else
return PANEL_DEVELOPER_UNENOWN ;

)

To specify help for a Developer object, call setHelpld to store the help panel identifier in the
Developer instance data. If you do not call this function for an object, the container displays
the help panel for "unknown developers."

CfeapferJ3 Container control 261

Help for Container Columns
Because IContainercolulnn is a class designed to be used without derivation, its help strategy
is different from that of IContainerobject. IContainercolumn contains a data member to
store the help panel identifier similarly to the way we extended the Developer object in the
last example. To show column help, call IContainercolumn: : setHelpld with a valid panel
identifier. Because a user cannot directly select the columns in the container (selection occurs
on the entire row of data), the container can only display column help if a user opens a column
for editing. Thus, you cannot provide column help in a read-only container.

Customized Container Edit Controls
The container classes provide the capability to enhance the edit behavior of the container in
several ways. The simplest way is to create a keyboard handler as a derived class of
IKeyboardHandler and to override the behavior of the virtual function key. To use this
handler, create an IcnrEditHandler object and call the function setELEHandler with the
newly-created keyboard handler object. For example, the following code prevents a user from
typing the character "A" in the container' s edit field.

KeyboardHandler Interface - cnr\edithdr\keyhdr.hpp
#include <ikeyhdr. hpp>
#include <istring.hpp>
class KeyboardHandler : public IKeyboardHandler {
protected:virtual Boolean

characterKeypress (IKeyboardEvent& event)
(

// Reject any 'A' characters.
Istring strchar = event.mixedcharacter () ;
if (strchar.issBCS() && strchar == 'A')
(

event . setResult (true) ;
return true;

)return false;
)

);

KeyboardHandler Usage - cnr\edithdr\edithdr.cpp
#include
#include
#include
#include
#include
#include
#include
#include

< i f rare . hpp>
=iapp.hpp=
<icnrctl . hpp>
<icnrobj . hpp>
<icnrhdr.hpp>
<icnrehdr.hpp>
<iccons t . h>" keyhdr . hpp "

void main()
(
// Create the frame and a container.
IFramewindow frame (''Container Keyboard Edit Handler") ;
IContainercontrol cnr (IC_FRAME_CLIENT_ID, &frame, &frame)

262 Power GUI programming with visualAge for c++

// Create and attach the container handlers.
IcnrEditHandler editHandler ;
IcnrHandler cnrHandler ;
editHandler . handleEventsFor (&cnr) ;
cnrHandler . handleEventsFor (&cnr) ;

// Create the keyboard handler and pass it to
// the container's edit handler to use whenever
// an ELE is created.
KeyboardHandler keyHandler ;
editHandler . setMLEHandler (&keyHandler) ;

// Add an object for editing.
IContainerobject* obj ect;
object = new IContainerobject("Object 1") ;
Cnr

. addobj ect (obj ect)

. enableDataupdate (obj ect) ;

// Put the container into the text view and
// give it the focus.
Cnr

. showTextview ()

. setFocus () ;

// Put the container in the client and
// show the frame.
frame

. setclient (&cnr)

. show () ;

// Start processing messages.
IApplication : : current () . run () ;
)

Another way to alter the processing of the container's edit control is to acquire a pointer to the
IMultiLineEdit control during the processing of the edit handler's function beginEdit. Then
use it to call functions on the multiline edit control that alter its behavior. Remember to call
the base class implementation of beginEdit before trying to use the multiline edit control
because this function creates the wrapper for the container' s multiline edit control.

Container Pop-Up Menus
IContainercontrol can display pop-up menus using a pop-up menu handler and the
IPopUpMenu class. Because you need to be able to show pop-up menus on the objects in the
container (and one for the container itself), Open Class Library provides the class
IcnrMenuHandler to determine the object under the mouse. Consequently, derive a class from
IcnrMenuHandler, instead of IMenuHandler, and override its popUpMenu function. This
example shows you how to do that:

// Declare a derived class of the container's menu handler.
class DeveloperMenuHandler : public IcnrMenuHandler
(
protected:
Boolean

makepopupMenu (IMenuEvent& menuEvent) ;
);

CfeapferJ3 Container control 263

// Provide the implementation of makepopupMenu.
Boolean DeveloperMenuHandler : : makepopupMenu (IMenuEvent& menuEvent)
(

// If the mouse is on an object, create a menu for the object.
// Add support for a container window menu if
// the mouse isn't over an object.
IContainercontrol* container =

(IContainercontrol*) (menuEvent .window ()) ;
if(popupMenuob].ect()) {

IPopUpMenu* popUpMenu = new IPopUpMenu (POPUP_RENU, container) ;
popUpMenu->setAutoDeleteobj ect () ;
popUpMenu->show (menuEvent .mouseposition ()) ;return true;

)return false;
)

To use the preceding handler, create an object of the handler and call its handleEventsFor
function. This is not shown in the preceding example, but it is included in the cnr\popup
program on the examples disk. A restriction of the container's pop-up menu handler is that you
must attach it to the container itself; the handler does not work correctly attached to the
container' s owner.

Also, within the pop-up menu handler's makepopupMenu function, you must create the pop-up
menu using the container as the owner parameter. We show this line of code in bold type in the
preceding example.

Building Large Numbers of Container Objects
It might be necessary to display more items in a container than the performance characteristics
of the container can reasonably support. To overcome this problem, Open Class Library
provides two techniques to minimize the time it takes to build and display objects in the
container. The first technique, called record c¢cfez.73g, allows you to show the container with a
subset of the total records. The container dispatches notification events as a user scrolls the
container to allow you to dynamically adjust the actual records in the container.` This
technique is limited because the scroll bars in the container reflect the actual items in the
container, not the full set of items you intend your users to view.

To enable caching in the container, call IContainercontrol: :enablecaching and pass the
deJfcz vczJz4e. The delta value is a count of objects from the top and bottom ends of the
container. The container uses this count to form boundaries at the top and bottom of the
container. When the user scrolls past either boundary, the container dispatches an
IcnrQueryDeltaEvent to IcnrHandler: : deltaReached. The IcnrQueryDeltaEvent object
provides information describing the current location of the scroll bar in the container. Use this
event to adjust the objects in the container by removing objects from one end and adding new
objects to the other end, depending on which way the user moves the scroll bar.

The second technique optimizes how you create and add container objects by allowing you to
allocate and add objects as a group instead of one at a time. Open Class Library provides this
capability with the class IcnrAllocator in combination with functions in IContainercontrol
and IContainerobj ect.

264 Power GUI programming with visualAge for c++

Follow these steps to use IcnrAllocator:

1. Allocate the storage for your objects by creating an IcnrAllocator object. Because
IcnrAllocator allocates the storage for a group of objects, provide it with the number of
objects and the size of each object. Use the C macro sizeof on your
IContainerobject-derived class to determine the size to pass to the IcnrAllocator
constructor. The following example creates an allocator for 5,000 IContainerobj ects.

IcnrAllocator allocator(5000, sizeof(IContainerob].eat)) ;

2. Create your objects using the version of IContainerobject: :operator new that accepts
an IcnrAllocator object. This function uses the storage already acquired by the
IcnrAllocator object rather than allocating a separate block of storage for each object.

IContainerobject* ob].eat = new(allocator) IContainerobject ("object") ;

3. Add your new objects to a container using one of the functions in IContainercontrol
that accepts an IcnrAllocator as an argument.

container . addobj ects (allocator) ;

The cnr\cnralloc program on the examples disk demonstrates how to add objects to a
container both with and without an IcnrAllocator and it shows the time you can save if you
use IcnrAllocator.

Custom Drawing
The container normally handles the painting of icons, text, and its own background, and does
so sufficiently well to meet the needs of most applications. When needed, an application on
the OS/2 operating system or on the Windows operating system that uses the style
IContainercontrol : :pmcompatible, can handle some of this drawing. The container classes
do not currently support custom drawing on the native Windows container. Even for the
containers Open Class Library supports, custom drawing can be difficult unless you limit the
support your container provides. Some of the difficulties in providing custom drawing in these
two containers are as follows:

• The container supports multiple lines of text in all fields that support text. This includes
titles, icon text, column headings, and the data stored in the details view.

• The container does not send a separate notification for drawing selection emphasis. If

you decide to draw the text or icon of an item, you must also draw cursored, selection,
in-use, source, and target emphases.

• The container is composed of several different windows. The title in all views and the
data to the left and right of a split bar in the details view are child windows of the
container.

CfeapferJ3 Container control 265

• Drawing the background in anything other than a solid color or pattern is difficult
because of the relationship between the container workspace and the view port on that
workspace and because the container adds scroll bars when it determines they are
needed.

If you choose to change the default drawing performed by the container, we recommend that
you finish the rest of your application first. The following steps describe how to use the
support that the container classes provide for drawing.

To handle drawing the background of the container, follow these steps:

1. Derive a class from IcnrDrawHandler, override drawBackground, and implement your
drawing of the background.

2. Create an object of your draw handler and call its function handleEventsFor to attach
the handler to the container.

3. Call IContainercontrol : : enableDrawBackground to cause the container to dispatch an
IcnrDrawBackgroundEvent obj ect to your handler.

To handle drawing items in the foreground of the container, follow these steps:

1. Derive a class from IcnrDrawHandler and override one or more of the following
functions. If you do not provide one of these functions, the container does the drawing.
If you override a function, you must draw the emphasis states of the items and the items
themselves.

IcnrDrawHandler : : drawlcon
IcnrDrawHandler : : drawText
IcnrDrawHandler : : drawTreelcon
IcnrDrawHandler : : drawDetailsltem
IcnrDrawHandler : : drawTitle

2. Create an object of your draw handler and call its function handleEventsFor to enable it.

3. Call IContainercontrol: :enableDrawltem to cause the container to dispatch an
IcnrDrawl temEvent obj ect to your handler.

Under the Covers
Open Class Library implements IContainercontrol differently depending upon the operating
system and the styles you use to create an IContainercontrol. Particular differences are as
follows:

OS/2 operating system
• IContainercontrol uses the native wc_CONTAINER control.

266 Power GUI programming with visualAge for c++

Windows operating system
• When you create an IContainercontrol wz.£feoz4£ the style

IContainercontrol: :pmcompatible, IContainercontrol creates the native
SysListview32 and SysTreeview32 controls on top of a window it creates with the class
name "ICL Native Container." See Figure 13-7.

• When you create an IContainercontrol wz.£fe the style
IContainercontrol: :pmcompatible, IContainercontrol creates a version of the
container control that Open Class Library provides. It looks and behaves like the native
OS/2 container control and has the class name WC_CONTAINER.

Because you may need to modify or extend the behavior in IContainercontrol or its related
classes, we spend some time discussing how to accomplish this.

IContainercontrol
ICL Native Container

List View Tree View
SysListview32 SysTreeview32

Figure 13-7. Windows IContainercontrol without the pmcompatible Style.

IContainercontrol
IContainercontrol encapsulates the window and collection portion of the behavior found in
the operating system containers it uses. In the OS/2 operating system, an application performs
operations on the WC_CONTAINER control by sending it messages starting with the characters
"CM_" (for Container Message). IContainercontrol functions that need to perform operations

on the WC_CONTAINER control build the appropriate CM_ messages and call Iwindow: : sendEvent
to send them to the WC_CONTAINER control.

In the Windows operating system, an application performs operations on the SysListview32
and SysTreeview32 controls by composing messages starting with "LVM_" (for List View
Message) for SysListview32 and "TVM_" (for Tree View Message) for SysTreeview32. The
Windows operating system also provides a set of macros to help in composing these messages.
For example, the macro ListviewGetltem expands to a call to SendMessage with an
LVL_GETITEM message identifier. Open Class Library typically uses the macros to invoke
functions in the Windows native containers.

Cfe¢pfe7.J3 Container control 267

Rather than providing separate implementations of its functions for the native Windows
containers, IContainercontrol uses the same functions to send these messages to its top-level
window, the ICL Native Container control. A handler attached to this window captures these
messages and routes the appropriate calls to either the native SysListview32 or
SysTreeview32 container. This approach isolates the differences between the two implemen-
tations to a few files,leaving the majority of the container code common across all platforms.

IContaiherobject on the OS/2 Native Container
The primary structure that the WC_CONTAINER window class uses exists in two different versions
in the OS/2 operating system: RECORDCORE and MINIRECORDCORE. MINIRECORDCORE, as its name
implies, is a slimmed-down version of the RECORDCORE data structure that the OS/2 developers
added to reduce storage demands. The following points describe their differences:

• You can only display a single icon using a MINIRECORDCORE structure, whereas you can
display both bitmaps and icons in minimized and regular versions using a RECORDCORE
structure.

You can only store a single text string in MINIRECORDCORE structure, whereas you can
store a different text string for each of the four major views in RECORDCORE structure.

You can store collapsed and expanded icons and bitmaps in the RECORDCORE structure for
the tree name view.

IContainerobject is built on the MINIRECORDCORE structure, and therefore does not use the
additional features of the RECORDCORE structure. As Figure 13-8 shows, the storage of an
IContainerobj ect is contiguous with a MINIRECORDCORE structure.

When you create an IContainerobject using operator new, the base MINIRECORDCORE is
initialized. The base portion of this object is not accessible to a client program. The container
object stores the address of the base record during construction.

Although it is okay to derive a C++ object from a C structure (there is no difference between
the two except the default access; a struct is public and a class is private),
IContainerobject is not derived from the MINIRECORDCORE structure. A private header file,
provided with the source code only, re-declares the contents of MINIRECORDCORE as a separate
class, IMinicnrRecord. IContainerobject: :operator new allocates an IMinicnrRecord
object whenever an IContainerobject is constructed. The operator new in
IContainerobj ect calls the WC_CONTAINER via CM_ALLOCRECORD to allocate enough memory for
the user portion of IContainerobject, IContainerobject itself, and IMinicnrRecord. It
stores the pointer to the IMinicnrRecord in the IContainerobj ect field called pbase. All that
operator new in the private class IMiniRecordcore does is return a pointer to the
MINIRECORDCORE portion of the object.

Because the WC_CONTAINER works with RECORDCORE and MINIRECORDCORE addresses, and
IContainerobject works with object addresses, you may need to convert these addresses in
the interface between IContainerobj ect and the Presentation Manager container.

268 Power GUI programming with visualAge for c++

Figure 13-8. Layout of IContainerobject Storage.

Use the following code to convert from IMinicnrRecord (MINIRECORDCORE) to
IContainerobject:

IContainerob].ect* IobjFromRec (const IMinicnrRecord* pcnrrec) {
if (pcnrrec)

return (IContainerob].ect*) (((char*)pcnrrec) + pcnrrec->cb) ;
return 0;

)

Use the following code to convert from IContainerobj ect to IMinicnrRecord:

IMinicnrRecord* IRecFromobj (const IContainerobject* pcnrobj) {
if (pcnrobj)

return ((IContainerobj ect*) pcnrobj) ->baseRecord () ;
return 0;
)

As indicated earlier, one requirement of IContainerobject, or any of the classes that inherit
from it, is that you must allocate its storage using operator new because the Presentation
Manager container requires storage to be allocated by sending it a CM_ALLOCRECORD message.
You cannot allocate this storage yourself.

You may have noticed that you can create an IContainerobject before you create an
IContainercontrol. Also, you cannot specify a container when you create a container object.
So where is the container that allocates container objects? IContainercontrol maintains an
allocation container for each thread for the specific purpose of acquiring storage for
IContainerobj ects. This allocation container allows you to create an IContainerobject or a
class derived from IContainerobj ect independently of any containers in the application.

CfeapferJ3 Container control 269

IContainerobject on the Windows Native Container
Although in the previous topic you learned how Open Class Library implemented
IContainerobject in the OS/2 operating system and the PM-compatible container in the
Windows operating system, the details apply to the implementation of IContainerob].ect on
the Windows native container. This is because IContainerobject uses the same
IMinicnrRecord base to store information it needs for objects in the Windows native
containers.

Catching Container Exceptions
Open Class Library uses a strategy to only throw exceptions when an error occurs; it does not
use exceptions for conveying the results of a request. If one of the container functions throws
an exception, you usually have a mistake in your code. In most situations, you do not need to
add try-and-catch code before calling container functions in a shipped application.

The primary exception returned from a call to a container function occurs when the presen-
tation system container indicates that a request sent via an internal message failed to work.
When this happens, the container function throws an IAccessError exception to identify the
appropriate presentation system message along with any error text that the presentation system
returns concerning the failure.

Unfortunately, in many cases the presentation system returns an error indicating only that the
parameters to the function were invalid, not the details of what is invalid.

Tips and Techniques
The following topics discuss coding examples that we provide on the examples disk to extend
the capability of the container.

Dynamic Creation of Objects and Columns
A requirement of showing objects in the details view is that you must put all details-view data
in a class derived from IContainerobject, and you must report the offset of that data when
you create the IContainercolumn for displaying the data. This doesn't work very well if you
don't know the layout of the object until run time. As it turns out, with a few added restrictions
and some creative programming, you can overcome this limitation.

Tlie cnr\dynobj program on the examples disk demonstrates how to dynamically create
IContainerobjects to display details-view data. The primary requirement is that you must
store all data in the object as an Istring. The creative part is to provide a class derived from
IContainerobject with a special version of operator new with an argument indicating the
number of fields in the object. The operator new function uses this count to allocate storage
for the correct number of Istrings. Further, we use C++ placement syntax to construct the
Istrings during the object' s constructor without allocating storage (because the operator new

270 Power GUI programming with visualAge for c++

function already allocated the storage as part of the object's storage). All access to the data in
the object occurs via an index into the array of Istrings in the object.

The following code demonstrates the implementation of the operator new function that
allocates storage based on the number of fields and it demonstrates the object constructor that
allocates the Istrings using placement syntax. The entire example is on the examples disk.

// Operator new for variable number of fields.
void* Tableobject: :operator new(size_t size)
(

void* tableobject = IContainerobject: :operator new(size +
(size_t) fgFieldcount*sizeof (Istring)) ;

return (tableobj eat) ;
)

// Primary Tableobject constructor.
Tableobject: :Tableobject ()

: IContainerobject (0)
(

IASSERTSTATE (Tableobject: : fgFieldcount ! = 0)
// Call global operator new using placement syntax.
// This does not allocate any storage, but the
// constructor gets called.
for(unsigned long s=1; s<fgFieldcount; s++)
(

new(&fFieldArray[s]) Istring() ;
)

)

Spreadsheet Behavior in the Details View
Typically, users initiate editing in the details view by clicking on an item with mouse button 1
to open an edit field on a column and close the edit field by clicking tbe mouse outside the edit
field (in the OS/2 operating system, users open an edit field by click mouse button 1 while
holding down the Alt key). You may have an application where you want a default editing
behavior that more closely resembles how you edit in a spreadsheet. By defining a few
keyboard accelerators and creating a specialized handler, you can achieve a details view that
provides the editing function you need. You might include the following behavior:

• An editfieldis usually openin the details view.

• The tab keys move the edit field from column to column. The edit field wraps to the next
row after it moves to the last column, and it moves the previous row after it moves to the
first column.

• The up and down arrowkeys move the editfieldfromrow to row.

• The view port is scrolled automatically to keep the edit field in view.

To enable the use of this spreadsheet behavior with other containers, we build this behavior
into a specialized handler that you can attach to any container. For the simplicity of this
handler, we have coded the example to use an accelerator table that equates specific keyboard
keys to the functions in the spreadsheet handler tbat move the edit field. You can also accom-
plish this using a keyboard handler and processing the keys directly or by using
IAcceleratorTable with the IAcceleratorKey class to build an accelerator table dynamically.
The complete example is in the cnr\spreadsh program on the examples disk.

Chapter 14

Notebook Control

Describes the Open Class Library classes you can use to build settings (or property)
views
Describes the INotebook, INoteBook: :Pagesettings, INoteB ook: :Cursor,
IpageHandle, IpageHandler, IpageHelpEvent, IpageEvent, Ipages electEvent,
IpageRemoveEvent and INoteB ookDrawltemEvent classes
Read Chapter 7 before reading this chapter.
Chapters 5, 15, 17, and 23 cover related material.

The INotebook class creates a control that displays information in a manner similar to a real
notebook. It includes several features of a real notebook such as pages, tabs, and an optional
binding. Because it is a software notebook, you can also add unique features such as page
buttons to rapidly turn the pages of the notebook, a status area, and tab scroll buttons to scroll
the tabs when there are more tabs than the notebook can display at one time. You can also add
text, bitmaps, or both to your notebook tabs. Use the notebook control to organize related
information and to easily retrieve that information.

An INotebook object functions like other control objects in Open Class Library. You can use a
notebook as the client window of a frame window, as a frame extension, or within any canvas
object. Usually, you create a notebook as the client window of a frame window. While you can
place any window onto a page of the notebook, it is best to limit your choice to frame windows
and the canvas classes. You can also attach handlers to the notebook to provide special
processing.

Using Notebooks and Tab Controls
Both the Windows and OS/2 operating systems use the notebook to provide settings or property
views using pages with tabs. The notebook tabs define the different categories of an object's
attributes; the contents of the pages provide the details. INotebook supports the controls that
both operating systems provide for these views.

The OS/2 operating system provides settings notebooks for all workplace objects. Open Class
Library bases the INotebook class on the OS/2 notebook control and supports major and minor
tabs, bindings, and a status area. You can use this notebook on both the Windows and OS/2
operating systems.

271

272 Power GUI programming with visualAge for c++

Additionally, in the Windows operating system, the Open Class Library implements the
INotebook class using the Windows tab control. You can use the native tab control to display
the properties associated with an object and provide a user interface consistent with that of the
operating system.

The Windows tab control differs from the OS/2 notebook in the following ways:

• The tab control supports only major tabs. As a result, all minor and non-tab pages in
existing applications are converted to major tabs when executed on the Windows
operating system. Tab orientation and shape settings are ignored as the Windows tab
control only supports rounded major tabs with their orientation limited to the top of the
control. The Windows tab control centers the tab text and tab text alignment settings are
also ignored.

• The Windows tab control automatically sizes the tabs unless you specify a size using
INotebook : : setMaj orTabsize.

• The windows tab control supports the placement of text and bitmaps on the same tab.

• The windows tab control supports multiple rows of tabs that keep all of the tabs visible
to the user.

• The Windows tab control supports owner drawing of the tabs. However, you must
specify INotebook: :handleDrawTabs during INotebook construction to enable the
owner draw support. The owner-drawn tabs must all be the same width.

The Windows tab control contains no binding or back pages area. The INotebook's
implementation of this control ignores the binding and back pages settings.

The Windows tab control contains no status text line so this is ignored as well.

The Windows tab control contains no page buttons. If you specify a page button setting,
it is ignored.

The Windows tab control is the default selection on the Windows operating system. To use the
OS/2-style notebook, use INotebook: :pmcompatible when you construct your notebook.
Figure 14-1 shows the default notebook control on the Windows operating system.

Constructing a Notebook
The INotebook class supports the same basic three constructors that all control classes provide
in Open Class Library. One constructor creates a new presentation system notebook window
and the other two create a wrapper object for an existing notebook window.

In the Windows operating system, the constructors that create an INotebook object for an
existing control assume that the application interacts with the control only via the INotebook
object, because it creates a clipping window and manipulates the pages when the user selects
tabs. Use the constructor that creates a new window when you use the tab control.

Cfe¢pferJ4 Notebook control 273

When you delete an INotebook object, the notebook destructor by default destroys the window
only if the notebook constructor created it. Therefore, if you use the first constructor to create
the window, the destructor will destroy it. If you use a constructor that creates a wrapper for
an existing window, the destructor does not destroy the window. Call
Iwindow : : setAutoDestroywindow to change the default behavior in both of these cases.

Typically, you create a notebook as the client window of a frame window using
IFramewindow: : setclient as in the following simple example:

Simple Notebook Example - notebook\simple\simple.cpp
#include <inotebk. hpp>
#include <iframe.hpp>
#include <iapp.hpp>
#include <icconst.h>
main ()
(

IFramewindow frame
INotebook notebook

("Simple Notebook") ;
(IC_FRAME_CLIENT_ID, &frame, &frame) ;

frame
. setclient (¬ebook)
. setFocus ()
• show () ;

IApplication : : current () . run () ;

Figure 14-1. Default Windows Notebook Control.

274 Power GUI programming with visualAge for c++

Changing the Notebook's Style
There are many different ways to change the look and feel of a notebook. There are styles you
can specify at construction, and there are functions to change these styles after you create the
notebook. When you specify a style on the notebook constructor, you are making a series of
choices. Some of these choices are independent and some are not. If you use the constructor
styles, you must ensure that no conflicts occur. The style functions try to insulate you from
making these types of mistakes. The majority of these styles apply to the PM-compatible
notebook control only and are ignored when you use the Windows tab control. Figure 14-2
shows the major components of a notebook.

Figure 14-2. Components of a Notebook.

Creation Styles
You create a notebook with either a spiral binding or a solid binding using one of the following
styles:

INotebook: : solidBinding
INotebook : : spiralBinding

The back pages of a notebook are the recessed edges, which give the notebook a three-
dimensional effect. The notebook style, which specifies the location of the back pages,
identifies the corner where the pages intersect.

You can put the back pages intersection in any corner using one of the following styles:

CfeapferJ4 Notebook control 275

INotebook : : backpagesBottomRight
INotebook : : backpagesBottomLef t
INotebook : : backpagesTopRight
INotebook : : backpagesTopLef t

Page buttons move through the pages of the notebook one page at a time. The left page button
brings the previous page into view in the notebook, and the right page button brings the next
page of the notebook into view. The notebook places the page buttons on the corner where the
back pages intersect.

The tabs of a notebook allow a user to move rapidly through the sections of the notebook. You
can put the major tabs on any side of the notebook and their placement sets the location of the
binding. The notebook puts the binding on the side opposite the tabs. If major tabs are on the
right, the binding is on the left. Specify the location of the major tabs using one of the
following styles:

INotebook : : maj orTabsRight
INotebook : :maj orTabsLeft
INotebook : : maj orTabsTop
INotebook : : ma]. orTabsBottom

The minor tabs of a notebook allow a user to move within a major tab section of a notebook.
The notebook sets the location of the minor tabs based on the location of the back pages and
the location of the major tabs. The notebook always puts the minor tabs on the back page edge
that does not already contain the major tabs. If the back pages are on the bottom right and the
major tabs are on the right, the notebook places the minor tabs on the bottom.

You can create the tabs with rounded corners, square corners, or as a polygon using one of the
following styles:

INotebook : : roundedTabs
INotebook : : squareTabs
INotebook : : polygonTabs

If a tab contains text (it can contain a bitmap instead), you can justify the text using one of the
following styles:

INotebook : : tabTextLeft
INotebook : : tabTextRight
INotebook : : tabTextcenter

The status area of the notebook displays information about the current page, such as "Page 1 of
3." The notebook always puts the status area on the same line as the page buttons. You can
justify the text in the status area using one of the following styles:

INotebook: : statusTextLeft
INotebook : : statusTextRight
INotebook : : statusTextcenter

Style Functions
If you do not code the style on the first constructor for your notebook, the static member
INotebook: : classDefaultstyle determines the style. This style specifies the original default
style for the INotebook class and yields a notebook with the back pages on the bottom right,
the major tabs on the right, a solid binding on the left, square-shaped tabs, centered tab text,
and left-justified status text. The default style gives the look used by the settings or properties
views of the operating system. Figure 14-1 displays the default view of the notebook.

276 Power GUI programming with visualAge for c++

You can change the notebook's default style to a style of your own choosing by calling the
function INotebook:setDefaultstyle. For instance, to change the default style of new
INotebook objects and to put a spiral binding of the notebook at the top with the minor tabs on
the left, you would code the following:

INotebook : : setDefaultstyle (INotebook : : backpagesBottomLef t
INotebook : : spiralBinding
INotebook : : maj orTabsBottom
INotebook : : roundedTabs
INotebook : : tabTextcentered
INotebook: : statusTextLeft) ;

Once you create the notebook, you can change its style using functions in INotebook.
INotebook defines an additional set of enumerations to represent the notebook's binding,
orientation, tab shape, and text alignment. You provide values of these enumerations to the
INotebook functions, which cause a change in the notebook's style. These functions are
setBinding, setorientation, setTabshape, setstatusTextAlignment, and
setTabTextAlignment.

For example, the values of INotebook::Binding are INotebook::spiral and
INotebook: :solid. To change a notebook binding from solid to spiral, you would code the
following:

notebook. setBinding (INotebook: : spiral) ;
One difference exists between the styles you use at construction and the enumerations you use
to modify these styles after creating the notebook. The styles used to specify the location of
the back pages and the location of the major tabs are merged into a single enumeration called
Orientation. Orientation can have one of the following values:

INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:

:backpagesBottomTabsRight
:backpagesTopTabsRight
:backpagesBottomTabsLeft
:backpagesTopTabsLeft
: backpagesRightTabsTop
:backpagesLeftTabsTop
:backpagesRightTabsBottom
:backpagesLeftTabsBottom

You use these values after you create your notebook as we did previously with the notebook
binding. For example, to change the binding and orientation, you would code the following:

notebook.setBinding(INotebook: :spiral) ;
notebook. setorientation (INotebook: :backpagesBottomTabsRight) ;

Adding Pages in a Notebook
The last topic explained how you can create and modify the style or appearance of a notebook.
You usually construct your notebooks in a style consistent with others in the system and,
therefore, do not need to spend much time adjusting notebook styles. As in a real notebook,
the value of a notebook is its content. This topic shows you how to add value to your notebook
by filling it with useful pages.

On one level, a notebook is simply an ordered collection of pages. Each page has certain
characteristics. The primary characteristic is the application window it shows on the page. To
try to keep things straight, we refer to the portion of the notebook that contains the application

CfeapferJ4 Notebook control 277

window, tabs, and status information, as a pczge of the notebook. We call the application
window that you display on a page a page wz.72dow.

Logically, each page window is associated with a page of the no+tebook. However, the
notebook creates a single window to control and handle keyboard and mouse input for all
pages of the notebook. The main purpose of the window that holds the page window is to clip
the page window so it does not paint over tabs or other notebook contents. When you add a
page window to the notebook, the notebook makes this window the parent of your page
window. As you select different pages in the notebook, it updates the information associated
with a page, such as the text or bitmap on a tab and the status text. The notebook also hides the
current page and makes the one you selected visible.

Page Settings
The nested class INotebook: : Pagesettings describes the characteristics of a notebook page.
You use a Pagesettings object to identify the characteristics of a page prior to adding it to the
notebook. Once you add a page to the notebook, you use INotebook functions to update this
information. If you call a function on a Pagesettings object after putting the page in the
notebook, it has no effect on the actual page in the notebook. The name Pagesettings, instead
of simply Page, reflects the use of the class in establishing the initial settings of a page. You
can also use one object of this class to add multiple pages with the same characteristics or to
query the current state of a page in a notebook.

A Pagesettings object defines the attributes for a page of the notebook: the use of major or
minor tabs, the page's autosizing behavior, the text or bitmap for tabs, and the text for status.
You specify the attributes of a page using a nested class of INotebook: : Pagesettings called
INotebook: : Pagesettings : :Attribute. This class is similar to a style class and has constant
values defined for its valid values. By default, pages are created with no attributes. You
specify the type of tabs on a page using one of the following attributes:

INotebook : : Pagesettings : : maj orTabs
INotebook: : Pagesettings : :minorTabs

A page cannot have both a major and a minor tab with different text. If you insert a page
without a tab style, it does not have a tab on the page and it becomes a part of the section
containing the closest prior tab page. The Windows tab control only supports major tabs and
converts all minor and non-tab pages in your application to major tab pages.

To add status text or cause the notebook to autosize the page, use the following attributes:
INotebook: : Pagesettings : : statusTexton
INotebook: : Pagesettings : : autopagesize

The Windows tab control contains no status text line, and it ignores the status text and
alignment settings.

If you use the autopagesize attribute, a page window is automatically resized when a user
resizes the notebook. Otherwise, you are responsible for sizing your page windows.

The notebook can also create a Pagesettings object to indicate the current settings of a page
in the notebook. You identify the page with an IpageHandle object. We discuss the functions
that return a page handle later in this chapter. Again, modifying the Pagesettings object

278 Power GUI programming with visualAge for c++

returned from the notebook has no affect on the actual page in the notebook. In addition to its
value of describing the characteristics of a page, it is useful as a template to create a new page
in the notebook with the same or modified characteristics.

Besides the characteristics of the page, you can use the Pagesettings nested class to store a
single piece of application data with a page. You can then use this to store the identity of the
object viewed on a page so it can be used later.

Page Handles
Once you add a page to the notebook, you identify it with an IpageHandle object. You use an
IpageHandle on most of the operations affecting the characteristics of the page and to remove
the page from the notebook.

INotebook has a number of functions to add pages to the notebook and each returns an
IpageHandle object for the page. Besides identifying the position of the page in the
notebook's collection, such as first or last, you add the page by providing a Pagesettings
object and an optional window to put on the page. You can also use some of these functions to
add a page before or after another page. You can specify this "reference" page using either an
IpageHandle or an INotebook : : Cursor (which we discuss shortly).

In the next example, we imaginatively name it notebook, and add three pages to it. The first
page needs a bitmap as the major tab and needs to contain a frame window created from a
dialog template with the resource identifier, ID_DIALOG1. The second page needs a major tab
with the text "no window," and does not have a page window. The third page needs a minor tab
with the text "dialog3," and should contain a dialog window with the resource identifier,
ID_DIALOG3. The status area contains information identifying the current page seen in the
notebook. We do not show the definition of the actual dialogs, but the code to build the
notebook is as follows:

Adding Notebook Pages - notebook\addpages\addpages.cpp
#include
#include
#include
#include
#include
#include
#include
#include

< ino tebk . hpp>
< i f rame . hpp>
=iapp.hpp=
<ihandle . hpp>
=ifont.hpp=
= ipoint . hpp=
<iccons t . h>`' addpages . h"

void main ()
(

IFramewindow frame ("Adding Notebook Pages") ;
INotebook notebook (IC_FRAME_CLIENT_ID, &frame, &frame) ;

// Dialogl & Dialog3
IF.ramewindow

dialogl (ID_DIALOG1, ¬ebook, ¬ebook) ,
dialog3 (ID_DIALOG3 , ¬ebook, ¬ebook) ;

// Use one of the system bitmaps for the tab.
IsystemBitmapHandle pagelBitmap (IsystemBitmapHandle : : drive) ;

Cfe¢pferJ4 Notebook control 279

// Add Page 1 to the notebook with a bitmap, major tab,
// and dialogl.
INotebook: : Pagesettings pageDatal (

pagelBitmap,„Pa9e 1",
INotebook: : Pagesettings : : statusTexton I
INotebook: : Pagesettings : :majorTab) ;

notebook.addLastpage (pageDatal, &dialogl) ;

// Add Page 2 to the notebook with
// but no window.
INotebook: : Pagesettings pageData2''no window" ,

„Pa9e 2„'
INotebook : : Pagesettings
INotebook : : Pagesettings

notebook. addLastpage (pageData2) ;

// Add Page 3 to the notebook with
// and dialog3.
INotebook: : Pagesettings pageData3`,dialo93 „ '

Page 3„'
INotebook: : Pagesettings

text and major tab,
(

: :statusTexton I
: :majorTab) ;

text, minor tab,
(

: :statusTexton I
INotebook: : Pagesettings : :minorTab) ;

notebook.addLastpage (pageData3 , &dialog3) ;

// Size the tabs to fit the text.
IFont noteFont (¬ebook) ;
Isize tabsize (Isize (noteFont.minTextwidth("no_window Page_3") ,

noteFont.maxcharHeight()) + Isize(6, 6)) ;
notebook
• : :::#:i:::::S:Z: (:::S:Z:) ,

// Show the application and process messages.
frame

. setclient (¬ebook)

. show () ;
IApplication : : current () . run () ;

)

Sizing Tabs
The Windows tab control automatically sizes the tabs according to the size of its contents.

The PM-compatible version of INotebook does not currently provide the capability to
automatically size its tabs to best fit their contents. As a result, you must explicitly set the size
of both the major and minor tabs to something large enough to contain their largest piece of
data. While you can separately size major and minor tabs, you cannot uniquely size individual
tabs.

The previous example contains code that works well for finding the size needed to contain the
text in the tabs. It passes a string containing all the words used on the tabs to the function
IFont: :minTextwidth. minTextwidth returns the size of the largest word. Note that we have
replaced blanks with underscores (so that multiple-word tab text is treated as a single "token")
and have added a little extra size for padding. An alternative approach would be to use the
function IFont : : textwidth on each individual string and loop for all the tabs.

280 Power GUI programming with visualAge for c++

Like all presentation system windows, the notebook changes its font when you drag a new font
from the OS/2 Font Palette or modify your Windows Control Panel settings. However, the
notebook does not change the size of the tabs to accommodate an increase or decrease in the
space required to display the tab text. If you want to add this function to your notebooks, you
can do so by providing a class that derives from INotebook, and implements the function
setLayoutDistorted to dynamically resize the tabs. See Chapter 15, "Canvases," for more
information on the setLayoutDistorted function.

If you want tab text to be in a specific font, do not call Iwindow: setFont to make the notebook
use the font. This propagates the font to all the page windows. A better strategy would be to
use IpageHandler to draw the tab text using that font instead of using the default drawing with
the font of the notebook.

In the OS/2 operating system, if you do not have any minor tabs, set the minor tab size to
Isize (0, 0) . This removes space that the notebook would otherwise reserve for minor tabs,
even if you do not have any. This is useful if you later choose to add a minor tab.

Adding Windows to a Page
A pczge wz.#dow is the window associated with a page of the notebook. As you have already
seen, this association is accomplished by specifying the window when the page is added to the
notebook or after the page is in the notebook using INotebook : : setwindow.

You can define page windows using a variety of different windows, but you usually choose one
of the following:

• An IFramewindow created from a dialog template and loaded from a resource file
• One of the Icanvas classes (primarily IMulticellcanvas)

Chapter 15, "Canvases," describes the advantages that the canvas classes have over dialog
templates. The advantages of using a canvas are even more important when building a
notebook because you now have the task of trying to get a group of dialogs to look right given
a fixed size for the notebook. This is hard enough that some developers resort to resizing the
notebook to fit the contents of the current page. Visually, the notebook grows or shrinks as the
user leafs through the pages of the notebook. We do not recommend this approach, primarily
because it violates one of our user-interface design goals-Jeclvc Zfee z{Ser I.7® co#£roJ. Allow the
user to determine the position and size of the windows on the desktop and do not design your
application so that it takes this ability away.

There are other reasons to use the canvas classes to compose the views in your page windows.
For one, you can use the views displayed in the pages of a notebook in other places in your
application, perhaps even other notebooks. You do not want to fix the size of these views just
because they are going to be displayed in the same notebook. The problem is further compli-
cated if you decide to delay building some of the pages until a user turns to that page. Because
you have not created the page yet and its size is specified in a resource independent from your
application, you do not know how big to make the notebook to contain it (unless, of course,
you build all the page windows of your application at a fixed size). If you still are not

CfeapferJ4 Notebook control 281

convinced, read Chapter 15, "Canvases," and see what can happen when you drop a font on a
dialog template using the OS/2 Font Palette window.

We Lope we have convinced you that the canvas classes are the way to go in building the pages
of a notebook. Nevertheless, Open Class Library supports dialog templates, and you might
have situations where you need to use them (especially if you are supporting an existing
application).

Dialog Pages
To create a page window from a dialog template, construct an IFramewindow using the frame
window constructor that takes an IResourceld and a parent and owner Iwindow*. Unless you
are putting the dialog template into a view port, both the parent and the owner of the frame
window fflz4Sf be the notebook.

Use the class Iviewport between the page and your dialog template window to automatically
add scroll bars when the notebook page reaches a size that would cause the page window to be
clipped. This technique gives you some measure of support for dynamically sized windows. If
you use a view port, the parent and owner of the view port must be the notebook and the view
port must be the parent and owner of your dialog template window. Add the view port as the
page window. Specify INotebook: : Pagesettings : : autopagesize as the style for the page.
If you use IFramewindow objects as the page windows for a notebook, and all the frame
windows or dialogs have a nonzero initial size, the notebook returns the smallest size it needs
to contain all of its page windows at their initial size as its minimum size. This is a useful
feature for initially sizing a notebook to an optimal size.

Matching Dialog Colors on a Page
There is a problem with the example used in the topic "Page Handles." While the background
of the dialog page window is gray, the typical dialog background color, the background of the
page itself is white. Thus, a white border shows around the outside of the dialog page window
and the background of the tabs are white. We can fix this by changing the colors of these areas
of the notebook to the color of a dialog background. The INotebook: :pageBackground is the
area around the page and includes the background of the tabs and the status area. It also
includes any area of the page not covered by the dialog page window. We need to add the
following code to our dialog example:

// Set the color of the page parts to that of a dialog
// background.
notebook

. setpageBack.groundcolor (
(IGUIColor : : dialogBgnd)

. setMaj orTabBackgroundcolor (
(IGUIColor : : dialogBgnd) ;

The following example demonstrates how to use a view port on a page of the notebook:

282 Power GUI programming with vlsualAge for c++

View Port on a Notebook Page - notebook\vportdlg\vportdlg.cpp
#include <inotebk.hpp>
#include <ifralne.hpp>
#include <iapp.hpp>
#include <ihandle. hpp>
#include <ifont.hpp>
#include <ipoint.hpp>
#include <ivport.hpp>
#include <icolor.hpp>
#include <icconst.h>
#include "deferacc.hpp"
#include "vportdlg.h"
void main ()
(

// Create the frame, notebook, and view port.
IFramewindow frame (`'Viewport Notebook") ;
INotebook notebook (IC_FRAME_CLIENT_ID, &frame, &frame) ;
Iviewport viewport (Oxl02, ¬ebook, ¬ebook) ;

// Set the window and the page to the
// color of a dialogr background.
frame . setBackgroundcolor (

(IGUIColor : : dialogBgnd) ;
notebook

. setpageBackgroundcolor (
(IGUIColor : : dialogBgnd)

. setMaj orTabBackgroundcolor (
(IGUIColor : : dialogBgnd) ;

// Create a dialog on the view port.
IFramewindow dialogl (ID_DIALOG1, &viewport, &viewport) ;

#ifdef IC_PM
DeferAccelerators accelHdr;
accelHdr . handleEventsFor (&dialogl) ;

#endif
// Declare a page settings with text, major tab, and
// a dialog.
INotebook: : Pagesettings pageData =

INotebook: :Pagesettings („dialogl " ,
Page 1,,,

INotebook: : Pagesettings : :autopagesize I
INotebook: : Pagesettings : : statusTexton I
INotebook: : Pagesettings : :ma].orTab) ;

notebook.addLastpage (pageData, &viewport) ;

// Make sure the tabs are big enough.
IFont noteFont (¬ebook) ;
Isize tabsize (Isize (noteFont .minTextwidth (`'Page_1") ,

noteFont.maxcharHeight()) + Isize(6,6)) ;
notebook . setMaj orTabsize (tabsize) ;

// Set the client and show the window.
frame

. setclient (¬ebook)

. show () ;
IApplication : : current () . run () ;

)

The Def erAccelerators class in the previous example prevents the dialog from processing
accelerator keys in the OS/2 operating system. Omitting this handler causes default accel-
erator keys for a frame to be processed by the dialog instead of the frame window containing
the notebook. The accelerator keys are Alt+F4 for Close, Alt+F7 for Move, Alt+F8 for Size,
Alt+F9 for Minimize, and Alt+Flo for Maximize. So, pressing Alt+F4 would close the page

CfeapferJ4 Notebook control 283

window and leave the notebook with an empty page. This does not occur on the Windows
operating system.

Canvas Pages
Two canvas classes provide the essential ingredients for building page windows. You already
learned how to use the Iviewport class to add scroll bars to your dialog page windows. The
IMulticellcanvas class provides the ability to easily create dialogs that are insensitive to
changes in font, screen resolution, or window size. As you do for the dialog page windows,
create the canvas classes used as page windows with the notebook as their parent and owner.

If you use IMulticellcanvas objects as the page windows for a notebook and all the canvases
have an initial size of Isize(0,0), the notebook returns the smallest size it needs to contain all
of its page windows (sized to their minimum sizes) as the notebook's minimum size. This is a
useful feature for initially sizing a notebook to an optimal size.

Chapter 15, "Canvases," provides examples and additional information on using the canvas
classes.

Finding Pages Using the Notebook Cursor
A coJzecfz.o7® c#rSor is a standard mechanism in Open Class Library for moving through the
elements of a collection. Because a notebook is a collection of pages, INotebook provides the
nested class INotebook: : Cursor to iterate notebook pages. The INotebook: :Cursor class has
the standard protocol of all cursor classes: setTOFirst, setTONext, setToprevious,
setTOLast, isvalid, and invalidate. The cursor class relieves you of having to store page
handles when the pages are first added to the notebook because they can be retrieved in a
logical order. For example, to find the page of the notebook that contains the window dialog2,
you code the following:

INotebook: :Cursor cursor (notebook) ;
for (cursor.setTOFirst() ; cursor.isvalid() ; cursor.setTONext()) {

if (notebook.window(cursor) == dialog2)
// Do something.

)

Keep the lifetime of a cursor object as short as possible because changes to the notebook can
cause the cursor to become invalid. The best approach is to declare cursors on the stack and to
avoid calling functions that cause pages to be added or removed. The addition and removal of
pages after the creation of a cursor causes the cursor function isvalid to return false.
In addition to the standard protocol, INotebook: : Cursor also has functions that set the cursor
location and then return the page handle at the cursor location: first, next, previous, and
last. There are also functions to return the page handle at the cursor location and to set the
cursor directly to a known page: current and setcurrent.

The cursor movement functions return 0 for the page handle if the requested operation cannot
be accomplished. A 0 handle is not a valid page handle and results in an exception if you use it
as input to one of the notebook's functions. You must also ensure a page handle is valid prior
to calling the setcurrent function because it is not checked. A handle is not valid if you

284 Power GUI programming with visualAge for c++

remove the page from the notebook. The current and setcurrent functions can be useful if
you are iterating a notebook and need to add or remove pages and still maintain the integrity of
the cursor. Do this by storing the current handle with a call to current, adding or removing
pages, and then restoring the cursor to the saved value with a call to setcurrent. Just be sure
you do not remove the page with the restored page handle.

Requesting and Updating Page Information
The page handle is the primary identifier you use to query or change the data associated with
the pages of a notebook. As we discussed in the previous section, you can store this handle
when you add the page or determine it later using a cursor. There are also functions of the
notebook that you can use to return page handles: toppage, f irstpage, nextpage,
previouspage, and lastpage. The top page is the page that you see when the notebook is
visible, and it changes as you flip through the pages of the notebook.

The notebook itself has no means of keeping track of a current page, so the functions nextpage
and previouspage require a reference page. If you use these functions, you assume the
primary duty of the cursor-keeping track of the current page.
Once you know the page handle, you can determine a wealth of information about the page.
You can query the current settings of the page describing the status line, the existence and type
of the tab, the text or bitmap of the tab, and any application data you stored with the page. You
also use the page handle to query the window associated with the page.

Removing Pages
Like you do with many of the functions in the notebook, remove pages by supplying the
IpageHandle, which was returned when the page was created. The function
INotebook: :removepage accepts either a handle directly or determines the handle from an
instance of an INotebook: :Cursor. You can remove pages of a notebook by calling
INotebook: :removeAllPages to empty the notebook or INotebook: :removeTabsection to
remove pages associated with a major or minor tab section. An invalid handle in any of these
functions or a request to remove a tab section for a page without a tab results in an
IAccessError exception.

Handling Notebook Events
In addition to the handlers described in Chapter 17, "Reusable Handlers," which you can use in
a notebook as you use them in other controls in Open Class Library, the notebook has handlers
specific to the pages of the notebook. Use IpageHandler to receive notification of events
affecting the pages of the notebook. Attach the page handler either directly to the notebook or
to the owner of the notebook. The page handler is not called if it is attached to the page
windows. When the page handler receives one of these events, it creates a corresponding event
object and dispatches that object to the appropriate IpageHandler virtual function. Table 14-1

CfeapferJ4 Notebook control 285

Table 14-1. IpageHandler Notification Functions

Virtual Function Description
drawTab Called when a tab is drawn on the notebook.

help Called when a user requests help for the notebook when the selection cursor is on
a tab.

remove Called when a page is removed from the notebook.

resize Called when the size of the application page window has changed.

select Called when a user selects a new page in the notebook and it is brought to the top
of the notebook.

selectpending Called when a selection is pending on another page in the notebook. This member
is supported on the Windows operating system only and is used to save the state of
the outgoing page and to prevent the user from turning to another notebook page.

shows the IpageHandler virtual functions that you can use to process events in the notebook.
You can override these virtual functions to supply customized processing of a page event. The
return value from the virtual functions specifies whether Open Class Library passes the page
event to another event for additional processing.

Delayed Addition of Pages
One of the best uses of an IpageHandler is to support the creation of page windows when a
user selects the pages instead of building all of the page windows prior to showing the
notebook. Adding a window to the page after it is in the notebook requires the page handle and
a call to the function INotebook: : setwindow.

In the following example, we create the page window for the first page when we create the
notebook. We wait until a user selects the other pages of the notebook before we create their
page windows. We store the dialog identifier of the page window as application data in the
page when adding the page to the notebook. When the window dispatcher calls the page
handler to process the select event, the handler loads the dialog and adds it to the notebook. It
then sets the application data field to 0 to indicate that the page window has already been
created.

Delayed Addition of Notebook Windows - notebook\select\select.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include

<inotebk.hpp>
< ipagehdr . hpp>
< i f rare . hpp>
=iapp.hpp=
< ihandl e . hpp>
= i font . hpp=
=ipoint . hpp=
<icolor . hpp>"select.h"

286 Power GUI programming with visualAge for c++

// The page handler for capturing page select
// events (used to delay dialog creation) .
class PageselectHandler : public IpageHandler {
protected:virtual Boolean

select (IpageselectEvent &event) ;
);

void main ()
(

// Create the frame and the notebook.
IFramewindow frame (`'Delayed Addition of Pages") ;
INotebook notebook (ID_NOTEBOOK, &frame, &frame) ;

// Make the page parts the same color as the dialog.
notebook

. setpageBackgroundcolor (
(IGUIColor : : dialogBgnd)

. setMaj orTabBackgroundcolor (
(IGUIColor : : dialogBgnd) ;

// Declare a page settings object.
INotebook: : Pagesettings pageData (

INotebook: : Pagesettings : : statusTexton I
INotebook: : Pagesettings : :majorTab I
INotebook: : Pagesettings : : autopagesize) ;

// Set up page 1 with text, a major tab, and a dialog.
// User data is 0 because we load the dialog here.
pa9eData

.setTabText (`'Page 1'')

.setstatusText (`'Page 1")

. setuserData (0) ;

// Create the dialog for the top page
// and add the page to the notebook.
IFramewindow dialogl (ID_DIALOG1, ¬ebook, ¬ebook) ;
notebook.addLastpage (pageData, &dialogl) ;

// Set up page 2 with text, a major tab, and a dialog.
// We store the dialog ID in user data and use it
// later to load the dialog.
PageData

.setTabText("Page 2")

.setstatusText("Page 2 -no window yet")

. setuserData (ID_DIALOG2) ;

// Add page 2 to the notebook without a dialog.
notebook. addLastpage (pageData) ;

// Repeat the above for page 3.
pageData

.setTabText("Page 3")

.setstatusText("Page 3 -no window yet")

. setuserData (ID_DIALOG3) ;
notebook. addLastpage (pageData) ;

// Size the tabs to fit the text.
IFont noteFont (¬ebook) ;
Isize tabsize (Isize (noteFont.minTextwidth ("no_window Page_3 ")

noteFont.maxcharHeight()) + Isize(6,6)) ;
notebook

. s e tMaj orTabs i z e (tabs i z e)

. setMinorTabsize (tabsize) ;

// Create and energize a page handler to capture ''select"
// events so we can add the missing dialogs.
PageselectHandler pageHandler ;
pageHandler . handleEventsFor (&frame) ;

Cfe¢pferz4 Notebook control 287

// Put the notebook in the client and show the frame.
frame

. setclient (¬ebook)

. show () ;
dialogl . setFocus () ;

// Run the application.
IApplication : : current () . run () ;

)

IBase: :IBoolean PageselectHandler: :select (IpageselectEvent &event)
(

IpageHandle selectedpage = event.pageHandle () ;
INotebook* notebook = event.notebook() ;
INotebook: : Pagesettings pageData =

event . notebook () ->pagesettings (selectedpage) ;
unsigned long dialogld = pageData.userData() ;

// If we have a dialog ID in user data, the frame needs to
// be created.
if (dialogld != 0) {

IFramewindow* dialog = new IFramewindow(
dialo9=d,
notebook,
notebook) ;

// Size the dialog to the size of the page.
(*dialog) . sizeTo ((*notebook) .pagesize ()) ;

// Put the page on the notebook, and set user data to
// zero to indicate that we've added the page window.Istring statusText

= pageData.tabText() + " has been added";
(*notebook)

.setwindow(selectedpage, dialog)

.setuserData(selectedpage, 0)

. setstatusText (selectedpage, statusText) ;
)

else
// Page window already loaded.

(*notebook)
. setstatusText (selectedpage, pageData . tabText ()) ;

)return false;
)

Changing Notebook Colors
As you do with all Open Class controls, you change the colors in tbe PM-compatible notebook
using member functions in INotebook that accept an IColor object. These functions define all
the parts of a notebook that can have colors independently set. You can also query the color of
different areas of the notebook. The color functions are not supported for the tab control due
to a Windows limitation.

The color functions supported in INotebook are as follows:

288 Power GUI programming with visualAge for c++

INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:
INotebook:

:backgroundcolor
:hiliteBackgroundcolor
: maj orTabBackgroundcolor
: maj orTabForegroundcolor
:minorTabBackgroundcolor
:minorTabForegroundcolor
:pageBackgroundcolor
:resetMa].orTabBackgroundcolor
: resetMaj orTabForegroundcolor
:resetMinorTabBackgroundcolor
:resetMinorTabForegroundcolor
:resetpageBackgroundcolor
: setMaj orTabBackgroundcolor
: setMaj orTabForegroundcolor
: s etMinorTabBackgroundcolor
: s e tMinorTabForegroundcolor
: setpageBackgroundcolor

Iwindow : : foregroundcolor
Iwindow : : resetBackgroundcolor
Iwindow : : resetForegroundcolor
Iwindow : : resetHiliteBackgroundcolor
Iwindow : : setHiliteBackgroundcolor

For example, to change the background color of your page, you would code the following:
notebook. setpageBackgroundcolor (IColor: :red)

Note the following items about these functions:

• Changing the notebook window background color can change the color of notebook
children that do not have their own background color. The presentation system and Open
Class Library passes this color change request to all windows that the control owns. If a
child window has the same color area and you have not explicitly set it to its own color,
it acquires the new color in this area. Therefore, changing colors in the notebook can
cause changes to the page windows on the notebook.

The Windows tab control does not provide color-support Apls. All tab control colors are
based upon the default system colors. The INotebook's implementation of this control
ignores the color.settings.

Calling setForegroundcolor changes the color of the notebook's status line text and,
potentially, the foreground color of page windows.

Changing the selection cursor color can change the color of notebook child windows that
use a highlight background color.

Displaying Notebook Help
Chapter 23, "Using Help," discuses how you add help text to your application using Windows
native help or IBM's Information Presentation Facility (IPF). Some people have trouble
adding help to.the notebook control because the notebook allows you to put the focus onto the
tabs of the notebook. The problem arises because the tabs are non-window elements of the
window used to implement the page. They are not individual windows for which you can
provide an entry in a help table. In fact, on the OS/2 operating system, the tab with the
selection cursor does not have to be the tab on the page currently displayed.

Cfeapfe7.J4 Notebook control 289

If you want to show help when the focus is on a notebook tab, create an IpageHandler and add
it to the notebook to process help requests. When you receive the help notification, you must
decide to show help either for the tab with the selection cursor or for the top page in the
notebook. You can determine the page with the selection cursor by calling
IpageHelpEvent: :pageHandle, and show the appropriate help panel. You can determine the
top page of the notebook by calling INotebook: : toppage. The operating system shows help
for the top page when help is requested with the selection cursor on a tab.

Smart Guides
You can use the notebook control to create a sJ#¢rf gwz.de or wz.zczrd, a notebook that guides a
user through a set series of tasks and the pages are displayed based upon the choices that the
user makes. This allows for a consistent interactive model for goal-oriented task support.

To illustrate a smart guide, we create a more complex notebook sample that incorporates many
of the topics that we discuss in this chapter, including delayed addition of pages and help
support. Figure 14-3 displays the first page of the finished smart guide. In the following
topics, we code our interface for the various classes used in the smart guide.

Designing a Smart Guide
Our smart guide design is a framework that is composed of a number of classes, but you only
create a few of them to build a smart guide application. The two primary class types are
SmartGuide itself and a series of classes derived from Smartpage.

SmartGuide has several roles, as follows:

1. It is a collection of smart pages. This collection is a hierarchy implemented by the
IMutliwayTree collection class. When you add smart pages to this collection, you
provide a reference page that identifies where to attach a new page in the tree. Like any
good collection, Smartpage has functions to iterate the pages in its collection.
Smartpage provides the nested class Cursor like most collections do in Open Class
Library.

2. It builds the view to display smart pages. To do this, it creates an IFramewindow with an
INotebook in the frame's client area. Prior to building the view the first time, it deter-
mines the size of the view by calling Smartpage: :minimumsize on each smart page and
then ensures that the notebook is big enough to contain the largest page.

3. It handles navigation through the pages of the notebook. The tree structure you create
when you add smart pages establishes the paths that your users might take when they
move through the smart guide. When you first show the smart guide after it builds the
frame window and the notebook, SmartGuide calls Smartpage : : createAndorphanpage
on the root smart page. Thereafter, when users press the Next button on the smart guide,
it calls Smartpage: :currentchoice. SmartGuide uses this value to determine which
branch of the tree to follow next. It then calls createAndorphanpage on the Smartpage
stored at that branch to display the next page of the notebook.

290 Power GUI programming with visualAge for c++

Smartpage has the same three primary roles that SmartGuide has:

1. It must indicate its minimum size by implementing smartpage : :minimunsize.

2. It must implement Smartpage : : createAndorphanpage to create a view of its contents.

3. It must implement Smartpage: :selectedchoice to indicate the current choice on its
page. Because the class Smartpage itself does not support page selection, it always
indicates that its first (and only) branch is selected.

Smartpage also stores text for the tab of the notebook and a help id that SmartGuide uses to
display help when a user presses the Help button.

Although Smartpage defines the protocol that all smart pages must follow, you cannot create a
Smartpage directly because it does not implement Smartpage: : createAndorphanpage. To
show the usefulness of these smart pages, we provide two classes that derive from Smartpage.
The first of these, Textsmartpage, serves as an information-only page with a label at the top
and scrollable information below it. Call Textsmartpage : : setpageLabel to specify the text to
use for the label, and call either Textsmartpage : : setpageText to specify the text directly or
Textsmartpage : : setpageTextFile to identify a file that contains the text.

Singlechoicesmartpage, which we derive from Textsmartpage, finally provides the ability
we have been looking for in our smart guide: it allows you to specify choices that SmartGuide
can use to select different branches of the tree. Call Textsmartpage: :addchoice with a text
string to fidd choices and call Textsmartpage: : setselectedchoice to establish a default
selection. You can also pass an optional help id when you call addchoice. This allows the
SmartGuide to display choice sensitive help.

Lngging Lfl# Filt± Lflt2atgor[Stthmf{
hat is a Smart Guide?

SmartGuides are used to help you choose the ai]propriate information for an application. Tliey can also
serve as a tutorial to give users needed information at)out a product. The choices made on each page
determine what page is displayed nerd. Often, applications |]rovide a NDvice or Expert choice that
determines if the user is led steF) by step througli a process or merely prompted for pertinent
information with entry fields, combo boxes, radio buttons and more.

When all tlle choices are completed, you select the Done push button and the notebook is closed and
the choices are saved and processed. You can also select tlie Cancel pusli button to close the
SmartGuide without saving your changes.

This sample is very simplistic in order to demonstrate liow to use a SmartGuide in your application.
You select if you want a log file and that choice determines the path the SmartGuide takes.I

•4# gun EH EH H
Figure 14-3. Example of a Smart Guide or Wizard.

Cfeapfe7.J4 Notebook control 291

Because SmartGuide walks down the selected branches of its tree and creates a page in the
notebook with tab text for each page, it is a good idea to always provide default selections.
Then your users can jump ahead if they are familiar with your smart guide. Each time your
users change a choice in the smart guide, SmartGuide again walks down the selected branches
and rebuilds the notebook pages if necessary. It does not rebuild the page views themselves;
they are kept around and used again if the page comes back into the selected path and a user
selects the page.

When Singlechoicesmartpage builds its view in response to SmartGuide calling its
createAndorphanview function, it first builds an ISplitcanvas and then calls
createindorpanview of its parent Textsmartpage class to build the label and scrollable
information in the top of the view port. It then creates an Isetcanvas in the bottom of the view
port. If you have only added a small number of choices, it adds an IRadioButton for each
choice to the set canvas. If you have coded a larger number of choices, it instead creates an
IListBox in the set canvas.

Behind the scenes of the primary smart guide classes are a number of implementation classes
that tie the framework together. There is a command handler to capture the command events
resulting from the Back, Next, Cancel, and Help buttons on the notebook. There is a page
handler to capture page selection so that the smart page views are only created when users
select the page. And there is a Smartlnfo class that stores the information associated with
each node of the tree. This includes the smart page view returned from createororphanpage
and the count of the number of children at the node. Smartlnfo objects are stored in a
SmartTree (which is a basic IMultiwayTree).

Another feature of the SmartGuide is that you can add the same page to multiple branches of
the tree. For example, no matter which choice a user makes, you probably always want to
display a "Mission complete" panel. Supporting this feature is the reason that
SmartGuide: :addpage accepts a handle instead of a Smartpage. The handle uniquely
identifies the node containing the Smartpage. This is necessary because the same Smartpage
can exist at multiple nodes. We demonstrate this capability in the example which follows.
Figure 14-4 shows the flow of the example and demonstrates how the same page views exist at
multiple nodes.

Caution: We have not provided you with a complete smart guide application that you can use
out of the box. We did not implement all of the pieces we discussed in this topic.

Creating a Smart Guide
In this application, we first define the class Smartpage to determine the behavior of the pages
in our notebook. Because of the special needs of the smart guide, the notebook needs to have
additional functionality. We also define a Textsmartpage class derived from Smartpage,
which adds a label and descriptive text to the notebook page. This class overrides the same
functions for creating the page.

292 Power GUI programming with visualAge for c++

Figure 14-4. Flow of the Smart Guide Sample.

Singlechoicesmartpage provides support for making a choice and then displays the next page
based on that choice. This class demonstrates the logic needed for a smart guide, or wizard,
but provides minimal support for removing or changing the choice. We provide the help ID for
the choice so that a user can request information before making a selection.

The final class, SmartGuide provides our collection behavior with a tree of node records with a
pointer to the page. On the Windows operating system, this is an IMultiwayTree; on the OS/2
operating system, this is an ITree collection. Here, we also define our navigation and panel
creation functions needed to show the smart guide and refresh the pages to rebuild the
notebook after a user makes a choice. We only display the push buttons when they are valid for
a particular page.

Note that the behavior of the smart guide is predicated by the current choice, and a user cannot
go to pages that would have otherwise been displayed. We also use canvases and sizing
algorithms to determine the size of our pages and use MLEs for our text in order to provide
text-wrapping and scrolling features.

Smart Guide Notebook - notebook\smrtguid\smrtguid.hpp
#include <istring.hpp>
#include <ibitflag.hpp>
#include <irect.hpp>
class Iwindow;
class IFramewindow;
class INotebook;
class IMulticellcanvas;
class IpageselectEvent;
class IpageHandle;
class IPushButton;
class IHelpwindow;
class SmartGuideList;
class SmartGuidepageHandler;
class SmartGuidecommandHandler ;
class SmartchoiceselectHandler;
class SmartchoiceList;
class SmartpagelnfoList;
class SmartTree;
class Smartpagelnfo;

Cfeapferz4 Notebook control 293

// Smartpage is an abstract base class that defines the protocol
// for pages in a SmartGuide. This includes help for the
// page (not implemented), text for the notebook tab,
// the protocol to specify the size of the view for the page,
// and the protocol to create the view of the page.
//
class Smartpage {

public i/ * ------------------------------- Cons true tors ----------------------- * /
Smartpage (

: f TabText
fHelpld

(}virtual
~Smartpage ()
()

/*-------------------------virtual Isize
minimumsize () const;

Panel Creation ----------------------- */

virtual Iwindow*
createAndorphanpage (Iwindow* parent,

Iwindow* owner ,
const IRectangle& initialRect) = 0;

/* ------------------------- Navigation and Choice -------------------- */
// The following function is called by the SmartGuide when
// navigating to the next page in the notebook. All choices are
// zero based. The 0 returned here causes traversal to
// the first leg of the node. Multi-choice smart pages overide this to
// pick other legs.
virtual unsigned long

currentchoice () const { return 0; }
// The following function is called by SmartGuide to determine
// if it can enable the `'Done" button.
virtual Boolean

isoKToclose (Istring& closeErrorlfFalse) const;
/* -----------------.------------ Panel Text --------------------------- */
virtual Smartpage

&setTabText (const Istring& tabText) ;
virtual Istring

tabText () const;

/* ------------------------------ Displaying Help --------------------- */
// The following functions store and retrieve a help identifier
// for the page.
virtual Smartpage

&setHelpld (unsigned long helpld) ;
virtual unsigned long

helpld () const;

private :
/* ------------------------------ Hidden Members ---------------------- */

Smartpage (const Smartpage&) ;
Smartpage

&operator= (const Smartpage&) ;

Istring
fTabText;

unsigned long
fHelpldj

}; // Smartpage

294 Power GUI programming with visualAge for c++

// Textsmartpage is
// and non-editable//
class Textsmartpage
(
typedef Smartpage

Inherited;
public :
/*------------------

Textsmartpage ()
: f pageLabel ("

f pageText (
()

/*----------------virtual Isize
minimunsize

a Smartpage that adds a label
text to the page.
: public Smartpage

Cons truc tors ----------------------- * /

Panel Creation ----------------------- */
() const;

virtual Iwindow*
createAndorphanpage (Iwindow* parent,

Iwindow* owner ,
const IRectangle& initialRect) ;

Panel Text --------------------------- */
virtual Textsmartpage

&setpageLabel (const Istring& pageLabel) ,
&setpageText (const Istring& pageText) ,
&setpageTextFile (const Istring& pageTextFile) ;

virtual Istring
pageLabel
pa9eText
pageTextFile

private :
/* ------------------------------ Hidden Members ---------------------- */

Textsmartpage (const Textsmartpage&) ;
Textsmartpage

&operator= (const Textsmartpage&) ;
Istring
f pageLabel ,
fpageText,
fpageTextFile;

IMulticellcanvas*fMulticellcanvas;
);

// Singlechoicesmartpage is a Smartpage that adds
// the ability for the page Eo display multiple
// choices and overrides ''currentchoice" to
// enable the SmartGuide to pick different paths.
//
class Singlechoicesmartpage : public Textsmartpage
(
typedef Textsmartpage

Inherited;
publ i c :
/ * ------------------------------- Cons truc tors ----------------------- * /

Singlechoicesmartpage
: fsmartchoiceList

fNumberofchoices
fselectedchoice
fselectHandler
fselectionwindow

()

Cfe¢pferJ4 Notebook control 295

/*-----------virtual Isize
minimunsize () const;

Panel Creation ----------------------- */

virtual Iwindow*
createAndorphanpage (Iwindow* parent ,

Iwindow* owner ,
const IRectangle& initialRect) ;

/* ------------------------- Navigation and Choice -------------------- */
virtual Singlechoicesmartpage
&addchoice (const Istring& choiceText,

unsigned long helpld = 0);

virtual Singlechoicesmartpage
&setselectedchoice (unsigned long choicelndex) ;

virtual unsigned long
currentchoice () const;

virtual Istring
choiceTextAtlndex (unsigned long index) ;

unsigned long
numberofchoices () const;

virtual Boolean
isoKToclose (Istring& closeErrorlfFalse) const;

/* ------------------------------ Displaying Help --------------------- */
// Override the following function to return a choice sensitive
// help id. You specify the help id on the constructor.
virtual unsigned long

helpld () const;

private :
/* ------------------------------ Hidden Members ---------------------- */

Singlechoicesmartpage (const Singlechoicesmartpage&) ;
Singlechoicesmartpage
&operator= (const Singlechoicesmartpage&) ;

SmartchoiceList* f smartchoiceLi s t ;
unsigned long

fNutnberofchoices;
unsigned long

fselectedchoice;
SmartchoiceselectHandler*fselectHandler;
Iwindow*fselectionwindow;
);

// SmartGuide contains all smart pages and controls:
// 1) Telling a page to create its windows
// 2) Navigation through the pages of the guide
// 3) Cancel and Close requests
class SmartGuide
(
public :
class Cursor;
/ * -----------------------------.-- Cons truc tors ----------------------- * /

SmartGuide (const Istring& guideName) ;

296 Power GUI programming with visualAge for c++

/*-----------
unsigned long

Navigation and Choice -------------------- */
addpage (Smartpage* smartpage,

unsigned long referencepageHandle=0) ;
virtual Boolean

isoKToclose (Istring& closeErrorlfFalse) const;
/*-------------------------
virtual SmartGuide

&show (),
&refreshpages () ;

virtual Isize
newpagesize () const;

/*-------------------------
virtual SmartGuide

Panel Creation ----------------------- */

Displaying Help ---------------------- */
&setHelpwindow (IHelpwindow& helpwindow) ;

/* ------------------------------ Cursor Functions -------------------- */
enum Iterationorder
(

selectedorder,
topDOun,
bottomup

);

Smartpage*pageAtLocation (Cursor& cursor) const;

class Curs`or {
Public :

Cursor (SmartGuide&
Cons truc tors ----------------------- * /

smartGuide ,
SmartGuide: : Iterationorder order =

virtual
~Cursor ();

/*-------------
virtual Boolean

setTOFirst
setTONext
setToprevious
setTOLast
isvalid

SmartGuide : : selectedorder)

Page Iteration ---------------------.- */

void
setcurrent (unsigned long smartpageHandle) ;

private :
/*------ Hidden Members ----------------------- */
Cursor (const Cursor& cursor) ;
Cursor
&operator= (const Cursor& cursor);

/*------------------------
void* fTreecursor ;
SmartGuide
&fsmartGuide;

SmartGuide : : Iterationorder
forder;

friend class SmartGuide;
);

/*-------------virtual Istring
asstring
asDebuglnfo

() const'
() const;

Private------------------------.--*/

Debug Functions --------------------- */

iE
Cfe¢pferJ4 Notebook control 297

protected:
/* ------------------------------ Callback Functions ------------------ */
virtual Boolean

handlepageselect
handleBack
handleNext
handlecancel
handleDone
handleHelp
handleRefresh

IpageselectEvent& event) ,

Smartpagelnfo*pagelnfoAtLocation (Cursor& cursor) const,
*pagelnfowithHandle (const IpageHandle& pageHandle) const;

private :
/* ---------------------------- Hidden Members ------------------------- */
SmartGuide (const SmartGuide&) ;
SmartGuide

&operator= (const SmartGuide&) ;

/ * -------------------------------- Priva:JIe ---------------------------- * /
// Consider moving the following to a private data class.Istring

fGuideName ;
SmartTree* f smartTree ;
SmartpagelnfoList*fpagelnfoList;
Smartpagelnfo* f currentpagelnf o ;
IFranewindow*fFramewindow;
INotebook*fNotebook;
IPushButton* f BackBut ton ,
*fNextButton,
*fcancelButton,
* f DoneBut ton ,
*fHelpButton;

SmartGuidepageHandler*fpageHandler;
SmartGuidecommandHandler* f commandllandl er ;
Isize
fLastpagesize;

IHelpwindow*fHelpwindow;
friend class SmartGuidepageHandler;
friend class SmartGuidecommandHandler;
friend class Cursor;
);

In the implementation file, we create our notebook pages, add tab text, labels, choices, and
determine the path of the pages. We also create objects of the SmartGuide,
Singlechoicesmartpage, and Textsmartpage classes as shown in the following code:

Smart Guide Notebook - notebook\smrtguid\training.cpp
#include <iapp.hpp>
#include <iostream.h>
#include `'smrtguid.hpp"

298 Power GUI programming with visualAge for c++

void main ()
(

SmartGuide smartGuide (`'PowerGui SmartGuide Sample") ;
Textsmartpage intropage;
intropage

.setpageLabel("What is a Smart Guide?")

. setpageTextFile (" smrtpagl . txt")

. setTabText (" Introduction") ;
Singlechoicesmartpage logFile;
1ogFile `

. addchoice ("Yes ")

. addchoice (''No")

. setselectedchoice (0)

.setpageLabel("Specify whether you want to keep a log file.")

. setpageTextFile (" smrtpag2 . txt")

. setTabText ("Logging") ;

Singlechoicesmartpage logFileLocation;
1ogFileLocation

. addchoice ("Current Path")

. addchoice (`'Root directory")

. setselectedchoice (0)

.setpageLabel("Choose a log file location.")

. setpageTextFile (" smrtpag3 . txt")

.setTabText("Log File Location") ;

Textsmartpage submitpage;
submitpage

.setpageLabel("Press \"Done\" to Finish.")

. setpageText (" ")

. setTabText (" Submit") ;

Textsmartpage donepage;
donepage

. setpageLabel (`'SmartGuide Complete . ")

.setpageText("Ok. Thanks.")

. setTabText (`'Done") ;

unsigned long introHandle, 1ogFileHandle, 1ogFileLocationHandle,
submitlHandle, submit2Handle, donelHandle, done2Handle;

// Flow of the smart guide (See Figure 14-4) .
introHandle = smartGuide. addpage (&intropage) ;
1ogFileHandle = smartGuide.addpage (&1ogFile, introHandle) ;
1ogFileLocationHandle = smartGuide. addpage (&1ogFileLocation,

1ogrFileHandle) ;
submitlHandle = smartGuide. addpage (&submitpage, 1ogFileLocationHandle) ;
donelHandle = smartGuide. addpage (&donepage, submitlHandle) ;
submit2Handle = smartGuide. addpage (&submitpage, 1ogFileHandle) ;
done2Handle = smartGuide. addpage (&donepage, submit2Handle) ;

cout << smartGuide.asDebuglnfo () ;

smartGuide . show () ;
cout << smartGuide.asDebuglnfo () ;
IApplication : : current () . run () ;

)

For each page in the notebook, we include a file that contains the text displayed on that page.
We then dynamically load this file using setpageTextFile. To run the sample, ensure that you
have these text files in the current directory.

Chapter 15

Canvases

• Describes the canvas classes of open class Library, which represent advanced visual
layout controls

• Describes the Icanvas, IMulticellcanvas, Isetcanvas, ISplitcanvas, and Iviewport
classes

• Read chapter 7 before reading this chapter.
• Chapters 5, 8,10,16, and 18 coverrelatedmaterial.

The canvas classes are a set of window classes that you can use to implement dialog-like
windows, that is, windows with several child controls. These windows are useful for showing
views of objects as pages in a notebook and for prompting the user for information to run an
action. What differentiates the canvas classes from traditional dialog boxes are the added
features they provide to support more robust user interfaces. .

This chapter describes these classes, which include Icanvas, IMulticellcanvas, Isetcanvas,
ISplitcanvas, and Iviewport. They are characterized as follows:

Icanvas Provides base dialog-box-like behavior

IMulticellcanvas Arranges child windows according to relative sizing and positioning
information

Isetcanvas Lines up child windows into rows and/or columns

ISplitcanvas Provides split bars between child windows

Iviewport Scrolls a window of information

Figure 15-1 shows the class hierarchy. Although IDrawingcanvas also derives from Icanvas,
we do not describe it here. Chapter 16, "Tool Bars, Fly-Over Help, and Custom Buttons,"
describes IToolBar and IToolBarcontainer, which are derived from Isetcanvas.

Why Use Them?
The canvas classes offer help for solving problems that software developers who program to
system Apls often struggle with, ignore, or don't even recognize as problems! Specifically,
the canvas classes offer help as follows:

299

300 Power GUI programming with visualAge for c++

• They overcome limitations of dialog boxes (the mechanism that the operating system

gives you for implementing dialog-like windows).
• They provide dialog-box behavior outside of dialog boxes.

• They offer advanced window layout features that the operating system does not provide.

The following sections describe each of these points.

IControl

Icanvas

I I I

IDrawingcanvas Isetcanvas IMulticellcanvas Iviewport

lITo ontainer I

ISplitcanvasIEiiiiiiiiiil
olBar I I IToolBarc

Figure 15-1. Canvas Class IHerarchy.

Overcoming Limitations of Dialog Boxes
The IMulticellcanvas and Isetcanvas classes address a key weakness of dialog boxes:
dialog boxes require that an application provide absolute positioning and sizing for all child
controls. This design point can make dialog boxes cumbersome to use during development
because the text in a dialog often changes as you modify the design of your application. A
single change sometimes affects the size and position of several controls. You face the same
problems if you want to change text dynamically at run time.
Canvases also support some routine direct-manipulation actions better than dialog boxes do.
These actions include dragging the sizing border of a frame window and, in the OS/2 operating
system, dropping a font onto a window. IMulticellcanvas and Isetcanvas change the size
and position of their child controls when a user performs either of these actions.

Dialog Box Basics

You define a dialog box with a dialog template, which you define at run time as a structure or
statically to produce a dialog resource that you build into your program. You can use a dialog
editor tool, such as the one included with VisualAge for C++, to build a dialog resource.
Alternatively, you can hand-craft a text file equivalent to one that a dialog editor produces.
We have done that for most of the dialog resources you see in this book. After defining a

Chapterl5 Canvz\ses SOL

dialog template, you call operating system Apls to display it. You can also use the
IFramewindow class to display a dialog box from a dialog resource. See Chapter 5, "Frame
Window Basics," for more information.

An example of a dialog resource in a resource script file follows. The file contains statements
to define equivalent OS/2 and Windows dialogs, although we show only those for the Windows
dialog here. Figure 15-2 shows the dialog box in the OS/2 operating system.

Dialog Box Definition - canvas\lunchdlg\lunchdlg.rc
#include `'1unchdlg.h"
ID_LUNCH_DIALOG DIALOG 8, 5, 217, 166
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I WS_DLGFRAME
CAPTION `'Lunch"
FONT 8, `'System"
(

LTEXT

GROUPBOX
AUTORADIOBUTTON

AUTORADIOBUTTON
AUTORADIOBUTTON
AUTORADIOBUTTON
GROUPBOX

AUTORADIOBUTTON

AUTORADIOBUTTON
AUTORADIOBUTTON
AUTORADIOBUTTON
GROUPBOX

AUTOCHECKBOX

AUTOCHECKBOX

LTEXT
EDITTEXT
DEFPUSHBUTTON

PUSHBUTTON
PUSHBUTTON

''Select your lunch preferences: '' ,
ID_LUNCH_TEXT, 4, 5, 186, 8, SS_LEFT
"Food'', ID_FOOD, 11, 19, 93, 74, BS_GROUPBOX I WS_GROUP
''&Hahourger", ID_HAMBURGER, 18, 31, 72, 10,
BS_AUTORADIOBUTTON I WS_GROUP I WS_TABSTOP
`'&Cheeseburger", ID_CHEESEBURGER, 18, 47, 72, 10
`'Hot &dog", ID_HOTDOG, 18, 63, 72, 10
''&Pizza", ID_PIZZA, 18, 79, 72, 10
"Beverage", ID_BEVERAGE, 114, 19, 93, 74,
BS_GROUPBOX I WS_GROUP
`'&Milk", ID_MILK, 121, 31, 79, 1:0,
BS_AUTORADIOBUTTON I WS_GROUP I WS_TABSTOP"&Soft drink", ID_SOFTDRINK, 121, 47, 79, 10
`'&Tuice", ID_JUICE, 121, 63, 79, 10
`'&Water", ID_WATER, 121, 79, 79, 10
`'Side orders'', ID_SIDEORDERS, 11, 97, 196, 45,
BS_GROUPBOX I WS_GROUP"Sa&lad", ID_SALAD, 18, 109, 63, 10,
BS_AUTOCHECKBOX I WS_GROUP I WS_TABSTOP"&French fries", ID_FRIES, 90, 109, 63, 10,
BS_AUTOCHECKBOX I WS_GROUP I WS_TABSTOP`'Other", ID_REQUESTPROMPT, 21, 125, 40, 8, SS_LEFT
ID_REQUEST, 64, 124, 135, 10
"OK", ID_OK, 5, 149, 40, 14,
BS_DEFPUSHBUTTON I WS_GROUP I WS_TABSTOP"Cancel", ID_CANCEL, 49, 149, 40, 14, NOT WS_TABSTOP
"Help", ID_HELP, 93, 149, 40, 14, NOT WS_TABSTOP

)

One of the biggest enticements for using dialog boxes is their automatic support for the
following basic keyboard and button behavior:

• Tabbing and cursormovement
• Defaultpushbuttons
• Mnemonics
• Cursor selection of radio buttons
• Mutually exclusive selection of radio buttons

However, dialog boxes are not dynamic in nature; this is their major shortcoming. The canvas
classes address this limitation, while also providing the same basic keyboard and button
support usually associated only with dialog boxes. We later show how to use Isetcanvas and
IMulticellcanvas to create windows equivalent in appearance and basic behavior to the
dialog box in Figure 15-2.

302 Power GUI programming with visualAge for c++

Figure 15-2. OS/2 Dialog Box.

One area that the canvas classes do not handle is separating the definition of a dialog box from
your executable code. You have to weigh the benefits of using canvases against the loss of
using dialog template files and the tools written for them. Because the benefits that the canvas
classes offer are enormous, do not discard them hastily.

Relative Positioning of Controls
You can use the IMulticellcanvas and Isetcanvas classes to replace the drudgery of speci-
fying exact positions and sizes for dialog controls. Both classes determine the positions and
sizes for their child windows based on relative positioning information, such as which child
window is located before which and the minimum size that each child window returns.

The amount of code you need to provide is minimal. In most cases you can use the minimum
size values that Open Class Library provides. You can also create complex arrangements of
controls by combining canvases, and you can fine-tune each canvas as to how it lays out its
child windows.

Independence from Changing Text
Changing the text in a dialog template, such as the text in a push button or the prompt for an
entry field, can adversely affect the layout of its controls. The main reasons for this brittleness
are as follows:

Chapterl5 Cainyz\ses SOS

1. You must specify the exact location and size of all controls in all your dialog templates.

2. It is not always obvious how to optimally size a control. For many controls, the optimal
size is dependent on the text strings that they display. If you change the text, you may
need to change the size.

3. The optimal position for a control is dependent on the positions and sizes of the controls
around it. If you change one, you may need to change the position of the controls
surrounding it and even the size of the dialog box itself.

Take, for example, the definition of the push buttons shown in Figure 15-2. The resource file
uses the following rules to size and position them:

• Each push button has a height of 14 dialog units (the units of measure you use to define
dialog boxes).

• Each push button has a width of40 dialog units, regardless of its text string.

• Eachpushbutton is positioned 5 dialog units above the bottom of the dialog box.

• The first push button is 5 dialog units from the left edge of the dialog box, and each
subsequent push button is horizontally separated from the previous by 4 dialog units.

If you need to change the OK push button to Place order, you know that you only have to
change the resource script file. However, the new text no longer fits in the push button. How
much wider should you make this button?

This specific case is not much of a problem because this change only affects the size of the
first push button and the position of the ones following it. Additionally, most dialog editors
provide a way to position and align a row of controls, and some even provide a recommended
size for push buttons based on their text. However, IMulticellcanvas and Isetcanvas can do
all of this work automatically for you; you can even change the text at run time.

Next,1et's say you need to add a fifth choice, Chicken sandwich, in the middle of the Food
group box. For the screen changes, this change requires far more work than changing the OK
push button. Adding this radio button requires you not only to enlarge the Food group box
horizontally and vertically, but also to shift two of the food radio buttons vertically to make
room for the new Chicken sandwich radio button. You also have to move the Beverage group
box and its four radio buttons to the right, while keeping it aligned with the top of the Food
group box. You need to enlarge the dialog box itself and move the controls further below or
above the Food group box to make room for its larger size. Generally, dialog editors are
cumbersome for making all these changes. However, the IMulticellcanvas and Isetcanvas
classes can do this work for you automatically.

Independence from Changing Fonts
In the OS/2 operating system, one of the more complicated issues to deal with is the effect of
font changes on the appearance of your windows. Although controls repaint themselves when
they get a new font, they do not alter their size. Likewise, if you change the font that a dialog
box or any of its child controls uses, the dialog box does not adjust the size or position of its

304 Power GUIprogramming with visualAge for c++

child controls. Therefore, changing a font on a dialog box can cause text to be clipped or cause
a control to look inappropriately sized for its text.

Figure 15-3 shows the same dialog box that appears in Figure 15-2 after changing the font of
six of its controls. Now the Cheeseburger radio button, the French fries check box, and the
Cancel push button are no longer wide enough to contain their text, and the Select your lunch
preferences: prompt and the Other entry field are no longer tall enough to hold their text.
How much of a problem is this? An OS/2 user can change fonts at any time by dragging one
from a Font Palette window and dropping it onto any window or control. The Windows
operating system, however, does not provide a way for a user to change the font that an
individual window uses.

Open Class Library addresses the dynamics that font changes cause by using minimum sizes.
Both IMulticellcanvas and Isetcanvas use the minimum sizes that their child windows
return in order to size and position those child windows. Most of the window classes in Open
Class Library use font-size information to calculate their minimum size. These canvases rely
on these font-sensitive routines not only to initially size and position each child window, but
also to update the size and position of child windows when a font is changed. Figure 15-4
shows the dialog, now implemented with the Isetcanvas class, after dropping the same fonts
as we did for Figure 15-3. For more information on how the control classes return minimum
sizes, see the topic "Using Minimum Sizes in Open Class Library" near the end of this chapter.

Figure 15-3. OS/2 Dialog Box after Changing Fonts.

Chapterl5 Czmv8Ises SOS

Scfiees €//ide]i;¢ fzzr¢red przicafp;carf¢£7e4f

ffi¥imbuige.r!

te&derfu
a Hat gag

gEizza

Side orders

Beverage

gHilk

ffisoft drink

@±uice

ee3#stac

RE&at.i yrd & Fly givife
i.lil_.i+ L ` 'H3.r" 3 +i iJt` i-Tj ~,+ ¥ I

{44i47€75{5flf fy ` 6 '` + `„ +, ` r,ri==-=!
Figure 15-4. Dialog Box Built with Isetcanvas after Dropping a Font.

Sizable Dialog Boxes

Dialog-like windows tend to be fixed in size. Ideally, however, dialogs should bave sizing
borders and should size their child windows to best utilize the size of the dialog box. Creating
sizable dialogs benefits your users because they can take better advantage of different display
resolutions and fonts by sizing a window to best suit their customized systems.

The operating system does not prevent you from adding sizing borders to dialog boxes, yet
most application developers don't do this. Why not? The probable reason is that the work you
need to do to support a window that sizes intelligently is not trivial.

IMulticellcanvas provides a solution. With this canvas class, you can identify the white
space and child windows that the canvas grows or shrinks as it changes size. Although we have
not discussed Figure 15-12 yet, it shows how IMulticellcanvas can provide sizing support for
the lunch dialog.

Dialog-Box Behavior outside a Dialog Box
The canvas classes provide the same kind of keyboard and button support that you might
expect only from a dialog box. For example, they allow the Tab and arrow keys to move the
input cursor between controls. If you create a window with child controls and use a window
other than a canvas or frame as their parent, you may lose dialog-box behavior that you need.

306 Power GUI programming with visualAge for c++

The potential loss of this dialog-box behavior is a major reason for continuing to use a dialog
box. You probably want to avoid emulating the operating system's dialog-box support because
it's difficult to do and the canvas classes already provide this support. The topic "The Icanvas
Class" explains what this support includes.

Difficult Implementations Made Easy
The canvas classes provide features beyond what you can get using dialog boxes. We already
mentioned that you can use IMulticellcanvas to support a sizable dialog. The canvas classes
also provide other layout-related features, such as split bars that a user can move with the
mouse and automatic scrolling support for any window. See the topics describing the
ISplitcanvas and Iviewport classes for more information.

Class Comparisons
Table 15-1 provides a comparison of features among the five canvas classes. Several of the
entries in the table include a number. The meanings of these numbers follow the table.

Table 15-1. Comparison of Canvas Classes

No

No

No

Chapter 15 C8IINases SOT

The following notes apply to Table 15-1. Later sections in this chapter that describe the
specific canvas class provides more detail.

1. A view port makes a child window appear to scroll by repositioning it. If the window
being scrolled initially has a size of (0,0), the view port sizes it to its minimum size.
Otherwise, it does not size the child window.

2. A set canvas can grow a child window beyond its minimum size based on the pack option
you choose. (See the topic "Pack Options" later in this chapter.)

3. A multicell canvas can grow a child window beyond its minimum size if the child
window lies in an expandable row or column or if it lies in a row or column that is grown
to hold a sibling window with a larger minimum size than the child window' s.

4. You must call IMulticellcanvas : :addTocell for each child window of the canvas. This
enables the canvas to manage the size and position of the child window.

5. Aview port can have only one child window.

6. A multicell canvas resizes child windows that lie in an expandable row or column.

7. A split canvas resizes all of its child windows so that together they fill the canvas.

8. A view port updates its scroll bars to reflect what portion of the window being scrolled is
now visible.

The Icanvas class
Icanvas is the base canvas class. It provides dialog-box behavior that all other canvas classes
inherit. Although you can construct an Icanvas object, it has the least functionality of all the
canvas classes; its dialog-box behavior is the only processing that it provides to its child
windows. You must size and position child windows because Icanvas does not.

Supplying DialoglBox Behavior
All of the canvas classes automatically support the same type of keyboard and button behavior
that a dialog box provides. For a canvas to provide this support to its child windows, make the
canvas the owner of its child windows.

Cursor Movement
In a dialog box, a user can move the input cursor, or caret, from one control to another with the
Tab and arrow keys. Canvases provide the same support for their child windows. The topic
"Tabbing and Cursor Movement" in Chapter 7, "Controls," describes how to define cursor
movement behavior for a control, whether it is a child window of a canvas or a dialog box.

The child window of a canvas can be another canvas. If the child canvas has child windows of
its own to which your users can tab, the Tab key moves the input cursor between those child
windows and the sibling windows of the canvas. Figure 15-5 illustrates this behavior. (Note,

308 Power GUI programming with visualAge for c++

Figure 15-5. Tabbing into, within, and out of a Canvas.

however, that the arrow keys cannot be used to jump between child windows of different
windows.) The canvas\cvtab program on the examples disk contains the code for this window.

Tab key support in Icanvas is one example of how dialog-box behavior is implemented to
support the nesting, or embedding, of canvases. By using canvases within canvases (a canvas
as the child window of another canvas), you can build complex layouts of controls.

Default Push Buttons
A de/c!#Jf pz4Sfe b##o7i is the push button tbat becomes selected when a user presses the Enter
key. The operating system draws the default push button with a thick border. See Chapter 10,
"Button Controls," for more information on creating default push buttons.

Canvases support default push buttons in the same way that dialog boxes do. This support
includes identifying the original default push button for a window, changing the default push
button to the push button with the input focus, restoring the original default when a window
other than a push button receives the input focus, and selecting the default push button when a
user presses the Enter key.

Mnemonics on Buttons
A J7®mefflo#z.c is a character associated with a control. A user can type this character to move the
input cursor to that control. The operating system underlines the mnemonic character. See
Chapter 10, "Button Controls," for more information on defining mnemonics. After the user

Chapter 15 Cz\INz\ses 309

types a mnemonic character (sometimes together with the Ctrl or Alt key) on a dialog box, the
button that uses that mnemonic is selected. Canvases provide this same support for their child
button controls.

Radio Button Selection
Chapter 10, "Button Controls," describes two aspects of radio button selection usually
associated only with dialog boxes. One is the automatic selection of a radio button when a
user presses the Tab or arrow keys to give it the input focus. The other is 7#z4£z4¢JJy excJzisz.1;e
SeJccfz.o73 when only one radio button in a group can be selected at a time. The canvas classes
provide this dialog-box behavior for their child radio buttons using the same information that a
dialog box uses (the IControl::group style and absence of the
IRadioButton : : nocursorselect style).

Creating a Window with Icanvas Objects
The following example creates four Icanvas objects: a client window and three color squares.
The constructor calls appear in the following code. Figure 15-6 shows the resulting window.
Because the color squares do not have any child windows, we could use IstaticText objects
in their place. We use Icanvas objects instead to show the additional constructor examples.

We must explicitly size and position the child windows of an Icanvas object-in this case, the
Icanvas and IPushButton child windows of the client window. Although you can control
exactly where and how large you want these child windows to be, Icanvas provides no support

ffE
- . ^ - `- - -- ^ . . ' . ` -` ..-. , . . ^-` v

Figure 15-6. Icanvas Example.

310 Power GUI programming with visualAge for c++

for resizing child windows when a font or text changes or when the size of the frame window
changes. These are features that Isetcanvas and IMulticellcanvas offer.

Simple Canvas - canvas\cvsimple\cvsimple.cpp
#include <iapp.hpp>
#include <icanvas.hpp>
#include <icolor.hpp>
#include <icoordsy.hpp>
#include <iframe.hpp>
#include <ipushbut. hpp>
#include <isysmenu. hpp>
#include <icconst.h>
#def ine MARGIN
#def ine COLOR_SIZE
#def ine COLOR_OVERLAP
#def ine BUTTON_PAD
#def ine BUTTON_HEIGHT

void main ()
(

// Position windows relative to the upper left as the
// Windows operating system does.
ICoordinatesystem : : setApplicationorientation

(ICoordinatesystem: :originupperLeft) ;
IFramewindow

frame("Base Canvas Example") ;
Icanvas

client(IC_FRAME_CLIENT_ID, &frame, &frame) ;

// Create three color squ.ares using Icanvas objects,
// specifying their position and size.
Isize

colorsize(COLOR_SIZE, COLOR_SIZE) ;
Icanvas

red (1, &client, &client,
IRectangle(IPoint(MARGIN, MARGIN), colorsize)) ,

green(2, &client, &client,
IRectangle (IPoint (MARGIN + COLOR_SIZE -COLOR_OVERLAP,

MARGIN + COLOR_SIZE - COLOR_OVERLAP) ,
colorsize)),

blue (3, &client, &client,• IRectangle(IPoint(MARGIN + 2 * COLOR_SIZE

DrmGIN
2 * COLOR_OVERLAP,

colorsize));
red

.setBackgroundcolor(IColor: :red) ;
green

.setBackgroundcolor(IColor: :green) ;
blue

.setBackgroundcolor(IColor: :blue) ;
IPushButton

ok(IsystemMenu: :idclose, &client, &client,
IRectangle (IPoint (MARGIN,

MARGIN + 2 * COLOR_SIZE
- COLOR_OVERLAP + BUTTON_PAD) ,

Isize(3 * COLOR_SIZE -2 * COLOR_OVERLAP,
BUTTON_HEIGHT)));

ok
. enableDefault ()
.enablesystemcommand() // For IsystemMenu: :idclose.
.setText("OK")
. enableTabstop ()
. enableGroup () ;

Chapterl5 CaiINaises 3\1

// Size and show tbe window now.
Isize

clientsize(client.minimumsize() + Isize(MARGIN, MARGIN)) ;
frame
.setclient(&client)
.movesizeToclient(IRectangle(IPoint(100,100), clientsize))
. setFocus ()
. show () ;

IApplication : : current () . run () ;
)

The Isetcanvas Class
The Isetcanvas class is the simplest canvas class that you can use to build dialog-like
windows that dynamically update their layouts at run time. This class positions and sizes its
child windows according to their sibling order, their minimum sizes, and a set of options that
you specify. You can characterize a set canvas as a window that automatically sizes its child
windows and lines them up, typically in the order that you create them.

Terms and Features of a Set Canvas
The lines into which a set canvas arranges its child windows are termed decks'. A deck can be
oriented horizontally with child windows laid out in rows from left to right or vertically with
child windows laid out in columns from top to bottom. (This direction-independent term is
convenient for discussing a set canvas because Isetcanvas has a number of formatting options
available for both row-based and column-based layouts. "Deck" has no particular orientation,
horizontal or vertical.)

Generally, a set canvas works best for child windows of similar size such as a row of push
buttons, a group of check boxes or radio buttons, or a matrix of bitmaps or icons. Isetcanvas
provides you with pack and alignment options for handling differently sized child windows.
These options work best for similarly sized child windows.

A set canvas also supports a pczd and mcI7.gz.# size. Pad is the amount of space that the set
canvas adds between adjacent child windows in a deck and between adjacent decks. Margin is
the amount of space that it adds around its group of decks. The size of both the pad and margin
defaults to the average character width and maximum character height of t.he initial font used
by the canvas. Figure 15-7 illustrates these terms.

If the size of the set canvas is not large enough to display all of its child windows, the canvas
clips them at its bottom and right edges. If the size of the canvas is larger than what is needed
to contain all of its child windows, it adds white space below and to the right of its decks.

Sizing and Positioning Child Windows
You do not need to make any calls to add a control to a set canvas. You only need to make the
canvas the parent window of the control.

312 Power GUI programming with visualAge for c++

Figure 15-7. Set Canvas Terms.

The most important factors that Isetcanvas uses for sizing and positioning its child windows
are their sibling order, deck information, and the minimum size that each of its child windows
returns. The pack option that you choose is the next important factor. Other settings, such as
alignment and pad, are the least important factors.

Sibling Order
A set canvas orders its child windows in decks according to their sibling order. A set canvas
arranges its child windows in their sibling order from left to right in horizontal decks and from
top to bottom in vertical decks. The Tab and arrow keys move the input cursor between the
child windows in this same order.

Number and Direction of Decks
Isetcanvas gives you different ways to control the look of the decks you create. For example,
Figure 15-7 shows two set canvases with more than one deck. The left one displays its child
windows in three horizontal decks (rows); the right one, in two vertical decks (columns).
Isetcanvas provides functions for setting and querying the orientation and number of its

Chapter 15 Cg.INaLses 313

decks and styles to set the orientation. The canvas\setdecks program on the examples disk
shows the use of many of these functions. This example displays the windows in Figure 15-7.

By default, a set canvas organizes its child windows into horizontal decks. You can set or
change the direction of the decks by specifying a deck orientation style when constructing the
set canvas or by calling setDeckorientation.

Use the setDeckcount function to specify the maximum number of decks into which a set
canvas distributes its child windows. By default, a set canvas places all of its child windows
into a single deck. If you specify more than one deck, the set canvas splits its child windows
into decks as evenly as possible by number. Because the size of the child windows plays no
part in determining how many are placed in each deck, Isetcanvas works best with similarly
sized child windows. As you saw in Figure 15-7, the set canvas distributed five child windows
across three horizontal and two vertical decks. If you specify more decks than the number of
child windows, a set canvas places each child window into a separate deck. The extra decks
are empty and take up no space.

You can also use the Isetcanvas : :decksByGroup style to create decks. If you use this style,
the set canvas ignores any calls to setDeckcount and no longer tries to balance the number of
child windows in each deck. It instead places each child window with the IControl : :group
style into a new deck.

Decks of a set canvas never overlap. The canvas arranges multiple horizontal decks vertically
from top to bottom and multiple vertical decks from left to right. The decks are separated by a
pad amount (see the topic, "Pad and Margin," for more information).
The size of a deck is determined by the child windows it holds. The height of a horizontal deck
is the height of the tallest child window in the deck; its width is the sum of the widths of the
child windows in the deck and the pads between them. The width of a vertical deck is the
width of the widest child window in the deck; its height is the sum of the heights of the child
windows in the deck and any pads between them.

n4inimun Size
A set canvas sizes a child window based on the minimum size that the child window returns
from its minimumsize function. Although Isetcanvas never sizes a child window smaller than
its minimum size, the canvas can grow a child window beyond its minimum size according to
the pack option you use. The topic "Pack Options" describes the effects of the different pack
options. For more information on minimum sizes, see the topic "Using Minimum Sizes in
Open Class Library" near the end of this chapter.

Pad and Margin
Isetcanvas supplies a default amount of space between child windows. This space is called
z7cld. You can change the separation of adjacent windows in a deck or of adjacent decks in a set
canvas by changing the pad with Isetcanvas : : setpad.

314 Power GUI programming with visualAge for c++

Do not confuse pad with 77cczrgz.7®, which is the amount of space that a set canvas adds between
the edge of the canvas and its child windows. The margin does not add space between child
windows, and the pad does not add space around the entire collection of child windows. Call
Isetcanvas : : setMargin to modify the default margin.

The canvas\setdecks example calls Isetcanvas : : setpad and Isetcanvas : : setMargin.

Both pad and margin have a horizontal (width) and vertical (height) component. The deck
orientation of the canvas determines how it uses the pad value. A set canvas with horizontal
decks uses the pad width to separate child windows within a deck, and the pad height to
separate decks. A set canvas with vertical decks uses the pad width to separate decks, and the
pad height to separate child windows within a deck.

You can also add a group pad value by calling Isetcanvas : : setGrouppad. This causes the set
canvas to add additional space between a child window with the Iwindow: : group style and the
child window preceding it in the deck. The group pad does not affect the first window in a
deck, nor the space between decks.

Using the Isetcanvas : : even pack option can cause child windows in a deck to be separated by
more than the pad amount. See the next section, "Pack Options," for details.

Pack Options
The pczck apfz.o7®s control adjustments that a set canvas makes to its child windows to
compensate for different minimum sizes. The adjustments may alter the size of the child
windows and their placement in a deck. Changing the pack option does not affect spacing
between decks, which is determined exclusively by the pad size. Table 15-2 compares the
different pack options that Isetcanvas provides.

Table 15-2. Isetcanvas Pack Options

Pack Changes child window Changes child window Notes
Option sizes? positions?
tight No. Child windows remain at No. Child windows remain The default pack option.

their minimum sizes. separated by the pad size.

even No. Child windows remain at Yes. The set canvas adds Acts like the tight pack option
their minimum sizes. space between child windows if the canvas has only one

in a deck as needed to align deck. This pack option
windows across multiple usually causes the length of a
decks. This creates the effect deck to grow, because the
of both rows and columns of canvas adds white space
child windows. between child windows in adecktocross-aligndecks.

expanded Yes. The set canvas makes its No. Child windows remain Child windows across
child windows the same size, separated by the pad size. multiple decks are aligned,
that of the largest minimumheightandwidth. like the even pack option.

Chapterl5 Ca[INaises 315

Aligrment Options
If all child windows do not have the same minimum size, and you do not use the
Isetcanvas : : expanded pack option, you can use the alignment options to control how a child
window is positioned within a deck (alignment otherwise has no affect). The alignment
options do not move decks, however, which are always aligned to the top and left edges of a set
canvas.

For a horizontal deck with the Isetcanvas : : tight or Isetcanvas : : even pack option, you can
shift all child windows vertically to align them with the top or bottom of the deck, or center
them vertically in the deck. For a vertical deck with the Isetcanvas::tight or
Isetcanvas: :even pack option, yotl can shift all child windows horizontally to align them
against the left or right edge of the deck, or center them horizontally in the deck. If you use
the Isetcanvas : : even pack option and its child windows occupy more than one deck, you can
also align the child windows both horizontally and vertically.

Figure 15-8 shows the difference between the different pack options, and the effect of using
top-left alignment. The canvas\setpack program on the examples disk contains the code that
displays this window. .

Figure 15-8. Set Canvas Pack and Alignment Options.

Creating a Row of Push Buttons
The Isetcanvas class is well-suited for managing a row of push buttons. Simply by placing
push buttons in a set canvas, the canvas can evenly space them, automatically size them, and
change their size and position when fonts and text change at run time.

An example of a set canvas with three push buttons follows. The lunch dialog, shown in
Figure 15-4, uses this set canvas. The canvas\setlunch program on the examples disk contains
the rest of the code for this lunch dialog.

316 Power GUI programming with visualAge for c++

Push Buttons in a Set Canvas - canvas\setlunch\pushbtns.hpp
#include <ipushbut. hpp>
#include <isetcv.hpp>
#include <icconst.h>
#ifdef IC_PM

// Define special window identifiers not originally
// included in VisualAge for C++ for OS/2, V3.0.
#ifndef IC_ID_OK

#define IC_ID_OK 1
#endif
#ifndef IC_ID_CLOSE

#define IC_ID_CLOSE 0x8004
#endif

#endif
class MystandardpushButtons : public Isetcanvas {
public:

MystandardpushButtons (unsigned long id,
Iwindow* parentAndowner)

: Isetcanvas (id, parentAndowner, parentAndowner) ,
ok(IC_ID_OK, this, this),
cancel(IC_ID_CLOSE, this, this) ,
help(IC_ID_HELP, this, this)

(
(* thi s)
.setMargin(Isize())
. setpackType (Isetcanvas: :expanded) ;

// Make all the buttons the same size.
ok

. enableDefault (

.setText("OK"

. enableTabstop (

. enableGroup () ;
cancel

.enablesystemcommand() // For the Close system command.

.setText(''Cancel");
help

. enableHelp ()

. disableMouseclickFocus ()

.setText(`'Help") ;
)

private :
MystandardpushButtons (const MystandardpushButtons&) ;

MystandardpushButtons
&operator= (const MystandardpushButtons&) ;

IPushButton
ok,
cancel ,
help;

} ; // MystandardpushButtons

The set canvas displays the three push buttons in a single row, separated by the default pad
amount. We use the Isetcanvas : : expanded pack option to keep the size of the three buttons
the same-the largest any of them needs based on their current text and font.

Adding a Group Box
It is not unusual for a dialog box to use group boxes to visually associate related information.
For example, the dialog box shown in Figure 15-2 uses three group boxes. However, controls
like a group box that surround or overlap other controls do not work well as a child window of
an Isetcanvas, because a set canvas does not allow its child windows to overlap.

Chapter 15 Caraya[ses 3T]

Isetcanvas gives you a way to achieve this look without a group box control. The group boxes
you see in Figures 15-4, 15-7, and 15-8 are a result of using this capability. To cause a set
canvas to draw a group box around itself, call Isetcanvas : : setText. The set canvas uses the
text string you pass to setText as the label of the group box. If you do not specify any text, the
previously displayed group box is removed. Calling setText causes the minimum size of the
set canvas to change to include or remove the space needed to show the group box.

The IMulticellcanvas Class
As with Isetcanvas, you can use the IMulticellcanvas class to build a window with the look
of a dialog box. Also like Isetcanvas, it sizes and positions its child windows based on their
minimum sizes.

However, IMulticellcanvas is more complex than Isetcanvas, so you can arrange its child
windows in ways not possible with a set canvas. Its child windows do not have to be aligned,
can be separated by different amounts of space, and can overlap one another. Because sibling
order does not determine the arrangement of child windows, you have greater control over how
the Tab and cursor arrow keys work. But the most obvious difference between the two canvas
classes is how IMulticellcanvas can automatically adjust the size and position of its contents
as it is sized: it has the ability to grow and shrink child windows as its size grows and shrinks.

Terms and Features of a Multicell Canvas
Picture a multicell canvas as divided into rows and columns. These are the units you use to
position child windows relative to one another. Unlike window or dialog coordinates, rows
and columns are not fixed-size units. For example, the width of one column may differ from
the width of another in the same canvas. You identify columns and rows by their number. Both
are 1-based and numbered sequentially, columns from left to right and rows from top to
bottom.

The intersection of each column and row forms a cezJ. The cell is the fundamental unit of
screen space for IMulticellcanvas. The size of a cell is the width of its column and height of
its row. You identify a cell by its column and row. Thus, the cell at the top-left corner of a
multicell canvas is cell 1,1.

You assign each child window a unique starting cell and a number of adjoining cells to occupy.
A multicell canvas sizes its child windows to completely fill the cells you define for them.
IMulticellcanvas allows child windows to overlap, so more than one child window can
occupy a cell. Additionally, because a cell does not have to contain a child window, you can
create space around or between child windows by leaving some cells empty.

You can also mark rows and columns to be expandable. If the height of a multicell canvas is
larger than the sum of the heights its rows require, the canvas divides the extra space among its
expandable rows. Similarly, if the width of the canvas is larger than the sum of the widths its
columns require, the canvas divides the extra space among its expandable columns.

318 Power GUI programming with visualAge for c++

If the size of a multicell canvas is not large enough to display all of its child windows, the
canvas clips them at its bottom and right edges. If the size of the multicell canvas is larger
than needed to contain all of its child windows, the canvas adds white space below and to the
right of its child windows, unless it has expandable rows or columns. In this case, the canvas
grows the size of its expandable rows and columns to absorb the extra space.

Adding and Positioning Child Windows
Unlike the other canvas classes, to add a child window to a multicell canvas, you must do more
than just make the canvas its parent window. You must also call
IMulticellcanvas: :addTocell. This function assigns the child window to one or more
adjoining cells of the canvas. If you fail to call addTocell for a child window, the canvas does
not manage its size or position.

By adding child windows to occupy the same cell or range of cells, you can overlap child
windows. However, IMulticellcanvas does not allow two child windows to start in the same
cell (cannot have the same cell for their upper-left corners). The most common types of
windows to overlap are a group box, for overlapping the sibling windows it contains within its
border, and a combination box control with a drop-down list box, for sharing the portion of the
screen where its list box displays with sibling windows. The topic "Adding Special-Case
Child Windows" discusses special considerations for both.

Because addTocell conveys positioning information, IMulticellcanvas uses sibling order
only to determine the order in which the input cursor cycles through its child windows when
the user presses the Tab or cursor arrow keys.

Creating White Space
You can create space between child windows of a multicell canvas by leaving an empty cell
between them, that is, a cell that no child windows occupy. You can create a margin around its
child windows, similar to the margin explicitly supported by Isetcanvas, by leaving empty its
first and last rows and first and last columns.

The width of an empty column and height of an empty row both default to ten pels, the default
cell size. You can query and set this size using IMulticellcanvas: :defaultcell and
setDefaultcell. You can also give a row or column, whether empty or not, a specific height
or width by calling setRowHeight or setcolumnwidth.

To create a right and bottom margin, use setcolunnwidth and setRowHeight. A multicell
canvas creates only as many rows and columns as you specify. It creates all rows up to the
highest numbered one that you pass to addTocell or setRowHeight. It creates all columns up
to the highest numbered one that you pass to addTocell or setcolumnwidth. Therefore, if you
need an empty column beyond the rightmost column that you specify to addTocell, specify it
on a call to setcolumnwidth. If you do not want to change the default width of the empty
column, call setcolumnwidth, as follows:

canvas
. setcolunnwidth (LAST_COLUEN,

IMulticellcanvas: :defaultcell () .width()) ;

Chapter 15 Ca[IN8Ises 319

Creating a Window with IMulticellcanvas Objects
In Figure 15-6, you saw a window implemented with the Icanvas class. The code for a similar
window implemented with IMulticellcanvas follows. Figure 15-9 shows the columns and
rows holding the color blocks and the push button child windows, and it shows the empty
columns and rows used for margins. Each of the child windows occupies multiple rows or
columns. This is necessary so that the color blocks overlap and the push button spans the
widths of the color blocks.

Simple IMulticellcanvas - canvas\mcsimple\mcsimple.cpp
#include <iapp.hpp>
#include <icolor.hpp>
#include <iframe.hpp>
#include <imcelcv. hpp>
#include <ipushbut. hpp>
#include <isysmenu.hpp>
#include <icconst.h>
void main ()
(

IFramewindow
frame("Multicell Canvas Example") ;

IMulticellcanvas
client (IC_FRAIffi_CLIENT_ID, &frame, &frame) ;

// Create three color squares using Icanvas objects.
// Do not let the squares get smaller than 20x20 pels.
Icanvas

red (1, &client, &client
green(2, &client, &client
blue (3, &client, &client

red
.setBackgroundcolor(IColor: :red)
.setMinimumsize(Isize(20, 20));

green
. setBackgroundcolor (IColor: :green)
.setMinimumsize(Isize(20, 20));

blue
. setBackgroundcolor(IColor: :blue)
.setMinimumsize(Isize(20, 20));

// Create a push button.
IPushButton

ok(IsystemMenu: :idclose, &client, &client) ;
ok

. enableDefault ()

.enablesystemcommand() // For IsystemMenu: :idclose.

.setText("OK")

. enableTabstop ()

. enableGroup () ;

// Position child windows in the canvas.client
addTocell (
addTocell (
addTocell (
addTocell (

320 Power GUI programming with visualAge for c++

// Use expandable rows and columns so that the squares always
// fill the canvas. Set the overlap amount to be 25% of the
// child windows' width and height via the ratios we pass to
// setcolulnnwidth and setRowHeight.
Isize

defaultcellsize = IMulticellcanvas: :defaultcell () ;
client

. setcolumnwidth

. setcolumnwidth

. setcolumnwidth

. setcolumnwidth

. setcolumnwidth

. setcolumnwidth
setRowHeight
setRowHeight
setRowHeight
setRowHeight

7, defaultcellsize.width())

defaultcellsize.height()) ;
// Size and show the window now.
frame
.setclient(&client)
. setFocus ()
• show () ;

IApplication : : current () . run () ;

Figure 15-9. Cells in a Multicell Canvas.

Chapter 15 Ca[INe\ses 321

The first addTocell call places the red color block at column 2, row 2 of the canvas. This child
window spans two columns and two rows. We place the green child window at column 3,
row 3, and the blue child window at column 5, row 2. The green block spans three columns and
two rows, and the blue spans two columns and two rows. Thus, we align the top edge of the red
and blue blocks in row 2 and overlap portions of the color blocks in columns 3 and 5 and in
row 3. The OK push button appears below them in row 6. It spans the entire width of the three
color blocks because it occupies columns 2 through 6. Columns 1 and 7 and rows 1 and 7
provide a margin around the child windows.

More on Positioning and Sizing Child Windows
A multicell canvas positions and sizes its child windows based on their minimum sizes.
However, a number of other factors also affect the layout of its controls. These include the
followingfactors:

• The initial sizes of its rows and columns. Specify these sizes by calling setRowHeight or
setcolumnwidth. Otherwise, each size defaults to the width or height that
IMulticellcanvas : : defaultcell returns.

• The number ofcolumns and rows that a child window occupies.

• Theuse ofexpandablerows or columns.

These factors determine the width of the columns and height of the rows of the canvas, which
in turn set the sizes of its cells. IMulticellcanvas positions and sizes its child windows to fill
the cells that they occupy.

Using Minimum Sizes
A multicell canvas never sizes a child window smaller than the minimum size that the child
window returns from its minimunsize function. (For more information on minimum sizes, see
the topic "Using Minimum Sizes in Open Class Library" near the end of this chapter.) Because
a multicell canvas sizes a child window to fill the cells it occupies, the canvas can size the
child window larger than its minimum size.

If a child window occupies a single column, its minimum size can cause the canvas to increase
the width of the column. The same applies to rows. If the width of the child window's
minimum size exceeds the column' s width, the larger value becomes the column' s new width.

If a child window spans several columns, its minimum size can also cause the canvas to
increase the width of a column. However, a canvas only does this if the width of the child
window's minimum size is greater than the combined widths of the columns it occupies. In
this case the canvas increases the width of the expandable columns. If none of the columns
that the child window occupies is expandable, the canvas increases the width of the child
window's starting (first) column. Again, the same applies to rows.

322 Power GUI programming with visualAge for c++

Creating Hxpandable Rows and Columns
If you compare the code for the similar windows in Figure 15-6 and 15-9, you might not see
much difference; the line count is comparable. The major difference is that the Icanvas
version explicitly positions and sizes its child color-block windows; the IMulticellcanvas
version does not. Instead, the multicell canvas does the positioning and sizing based on calls
to addTocell, setcolumnwidth, and setRowHeight.

Actually, there is another difference. The code for the second example uses setcolurmwidth
and setRowHeight to make some of the columns and rows expandable. This feature gives the
IMulticellcanvas version sizing support; the Icanvas version and dialog boxes lack this
support. As the user changes the size of the frame window, the multicell canvas automatically
sizes the color blocks, keeping them equal in size. It sizes the color blocks and the OK push
button to fit the size of the canvas, overlapping the color blocks by 25% of their widths and
heights. Additionally, if we change the text or font of the push button, the canvas automati-
cally updates the size of the button to accommodate the change. Figure 15-10 shows how the
IMulticellcanvas version responds to changes in frame sizes.

By default, columns and rows are not expandable, so their sizes are not dependent on the size
of the multicell canvas. You can make a column or row expandable by passing a value of true
as the third argument to setcolumnwidth or setRowHeight. By creating expandable rows and
columns, you cause a multicell canvas to size its child windows and white space based on the
size of the canvas. If the canvas is wider or taller than what its columns and rows minimally

Figure 15-10. Differently Sized Multicell Canvases with Expandable Rows and Columns.

Chapterl5 C8myases 3Z3

need, it divides this extra space among its expandable columns and rows. It does this by
dividing this space proportionally, according to the widths and heights of the expandable
columns and rows before expanding them.

As mentioned in the previous topic, if a child window occupies more than one row or column
of which none is expandable, the multicell canvas can grow the child window's starting row
and column. This behavior gives unexpected results in some cases. You can correct this
potential problem by making one or more rows or columns expandable. The canvas\mcbad
program on the examples disk is a variation of the canvas\mcsimple example that we used to
create Figure 15-10, but without the expandable rows or columns. The resulting window
shown in Figure 15-11, with the green block almost entirely covered by the blue block,looks
far different from the ones in Figure 5-10. Therefore, because expandable rows and columns
give you greater control over the size of shared rows and columns, they are useful even if you
do not add sizing borders to frame windows.

Figure 15-11. Multicell Canvas Needing Expandable Rows and Columns.

Look at the IMulticellcanvas version of the lunch dialog shown in Figure 15-12. It looks
much like the Isetcanvas version shown in Figure 15-4 and the dialog box shown in
Figure 15-2. However, this IMulticellcanvas version uses expandable rows and columns to
provide sizing support for the dialog in addition to the support for text and font changes that it
shares with the Isetcanvas version. Figure 15-13 shows the IMulticellcanvas version after
enlarging the frame window. The code follows.

324 Power GUI programming with visualAge for c++

Figure 15-12. Lunch Dialog Built with IMulticellcanvas.

Lunch Dialog using IMulticellcanvas - canvas\mclunch\mclunch.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include

=iapp.hpp=
<ichectox.hpp>
<ientryfd.hpp>
< i frame . hpp>
<igroupbx.hpp>
<imcelcv.hpp>
< iradiobt . hpp>
= i s tattxt . hpp=
<icconst . h>

#include "pushbtns.hpp"
#include `'mclunch.h"

// For MystandardpushButtons.

void main ()
(

IFramewindow
frame("Lunch",

ID_LUNCH_DIALOG,
IFramewindow : : classDefaultstyle

& ~IFramewindow: :maximizeButton
& ~IFramewindow: :minimizeButton
I IFramewindow: :dialogBackground) ;

// Create the client window.
IMulticellcanvas

client (IC_FRAME_CLIENT_ID, &frame, &fralne) ;

Chapterl5 Ca[INases 325

Sgfgct #pur lunch prt=fer§f]RE§:

ae Hamburger

ae £It5BsfbHr9gr

S Hot ±flg

S Eizza

E±B¥erage

® Hilk

S Soft ffrink

S juice
S rsatgr

sid€8rdfr5 `--' AnJ

Salad Ej french friesC!

8lhz±r]E§cargDt

Figure 15-13. Expanded Multicell Canvas Lunch Dialog.

// Create the heading text.IstaticText
headingText (ID_LUNCH_TEXT, &client, &client) ;

headingText
.setText (ID_LUNCH_TEXT) ;

// Create the "Food" group box and its choices.
IGroupBox

food(ID_FOOD, &client, &client) ;
food

.setText(ID_FOOD) ;
IRadioButton

hamburger (ID_IIAMBURGER, &client ,
cheeseburger (ID_CHEESEBURGER, &client,
hotdog (ID_HOTDOG,
pizza (ID_PIZZA,hamburger

. setText (ID_IIAREURGER)

. enableTabstop ()

.enableGroup () ;
cheeseburger

.setText (ID_CHEESEBURGER) ;
hotd09

.setText(ID_HOTDOG) ;
pizza

.setText(ID_PIZZA) ;

&client'
&client,

326 Power GUI programming with visualAge for c++

// Create the `'Beverage" group box and its radio buttons.
IGroupBox

beverage(ID_BEVERAGE, &client, &client) ;
beverage

.setText(ID_BEVERAGE) ;
IRadioButton

milk (ID_MILK,
softDrink (ID_SOFTDRINK,
juice (ID_JUICE,
water (ID_WATER,

milk
.setText (ID_MILK)
. enableTabstop ()
.enableGroup () ;

softDrink
.setText(ID_SOFTDRINK) ;

J'uice
.setText(ID_JUICE) ;

water
.setText(ID_WATER) ;

// Create the `'Side orders"
IGroupBox

sideorders (ID_SIDEORDERS,
sideorders

.setText(ID_SIDEORDERS) ;
IMulticellcanvas

group box and its choices.
&client, &client);

checkBoxes (1, &clienL &client),
requestpair(2, &client, &client) ;

IcheckBox
salad(ID_SALAD, &checkBoxes, &checkBoxes) ,
fries (ID_FRIES

salad
. setText
. enabl eTabs top
. enableGroupfries
. setText
. enabl eTabs top
. enableGroup

IstaticText

&checkBoxes, &checkBoxes) ;

ID_SALAD)

®

ID_FRIES)

requestprompt (ID_REQUESTPROMPT, &requestpair, &requestpair) ;
requestprompt

. setAligrment (IstaticText: :centerLeft)

. setText (ID_REQUESTPROMPT) ;
IEntryField

request (ID_REQUEST, &requestpair, &requestpair) ;
request

. enableTabstop ()

. enableGroup () ;

// Create the push buttons.
MystandardpushButt6ns

pushButtons(4, &client) ;
// Position and size child windows of the multicell canvases
// by assigning them to cells.
Isize

defaultcellsize = IMulticellcanvas: :defaultcell () ;
client

addTocell (&headingText,
addTocell (&food,
addTocell (&hamburger,
addTocell (&cheeseburger,
addTocell (&hotdog,
addTocell (&pizza,

14)
5, 11)

Chapter 15 Ct+INases 32fl

addTocell (
addTocell (
addTocell (
addTocell (
addTocell (
addTocell (
addTocell (
addTocell (

&beverage,
anilk,
&softDrink,
&juice,
&water,
&s ideorders ,
&checkBoxes ,
&requestpair,

addTocell (&pushButtons
client

. setcolumnwidth

. setcolumnwidth

. setcolulnnwidth

. setRowHeight

. setRowHeight

. setRowHeight

. setRowHeight

. setRowHeight

checkBoxes
.addTocell (&salad,
.addTocell (&fries,

checkBoxes
. setcolumnwidth(2,
. setcolumnwidth(4,

defaultcellsize.width
defaultcellsize.width
de f aul tcel 1 s i ze . width

true)
true)

defaultcellsize.height() , true)
defaultcellsize.height() , true)
defaultcellsize.height() , true)
defaultcellsize.height() , true)
defaultcellsize.height() , true) ;

1,1)
3, 1);

defaultcellsize.width() , true)
defaultcellsize.width() , true) ;

requestpair
.addTocell(&requestprompt,1, 1)
.addTocell(&request, 3, 1);

requestpair
.setcolumnwidth(3, 0, true);

// Select the default choices.
hamburger

. select () ;
milk

. select () ;

// Size and position the frame window.
IRectangle

clientRect(|Point(50, 50), client.minimumsize());
frame
.setclient(&client) ;
.movesizeToclient(clientRect) ;

// Show the dialog now.
frame

. setFocus ()

. show () ;

IApplication : : current () . run () ;
)

Some controls do not return a context-sensitive minimum-size value, such as IListBox,
IMultiLineEdit, IContainercontrol, and ISplitcanvas. Consider placing these controls
into cells with expandable rows and columns. If you effectively use expandable rows and
columns, you do not need to supply these classes with a minimum size specific to their content.

Independently Sizing Child Windows
You can use multiple canvases for positioning child windows that coincidentally lie in the
same column or row. Do not forcibly align windows that are not logically related. If the size
of one of the child windows changes, a multicell canvas continues to align windows from
independent parts of the overall window, which can give unexpected results.

328 Power GUI programming with visualAge for c++

Look again at the IMulticellcanvas version of the lunch dialog in Figure 15-11 as an
example. This window uses a multicell canvas as the client window. This canvas contains the
majority of the controls on the lunch dialog. The client window aligns the choices within each
group box by placing them in the same column. It also aligns choices in the Food and
Beverage group boxes by placing them in the same rows. Finally, it aligns the borders of the
Food and Side orders group boxes at the left edge of the window and the Beverage and Side
orders group boxes at the right edge of the window.

The lunch dialog also uses three other canvases. The first is a set canvas for the push buttons.
Although it appears we could align the Cancel push button and the entry field by placing them
in the same column of the multicell canvas, these two controls are not related. By adding this
alignment, changes to the prompt text of the entry field could cause the OK push button to
grow or the Cancel button to shift to the right. This alignment would not look right, so we do
not want a change to the prompt text affecting the size or position of any other control. For
this reason, the example uses an additional multicell canvas just for managing the prompt text
and the entry field. Because these two controls are related, we want any size changes to one to
take only the other into account. Similarly, the dialog uses a multicell canvas to insulate the
check boxes from formatting changes that affect the radio buttons. Although you could also
create additional multicell canvases to insulate each group of radio buttons from the other,
adding too many layers of canvases affects performance.

Another reason to isolate independent groups of controls into separate canvases is to minimize
the factors contributing to the size of a given column or row. Once you exceed multiple
factors, it becomes harder to control the outcome of a layout.

Removing Child Windows
Generally, you do not need to clean up a multicell canvas before you delete it. However, to
delete or even temporarily remove a child window from a multicell canvas that you are
currently displaying or are planning to display again, you need to use the
IMulticellcanvas : : removeFromcell function.

removeFromcell is the counterpart to addTocell. Use removeFromcell so a multicell canvas
no longer manages the position and size of a given window. Call removeFromcell prior to
deleting a child window if the canvas might thereafter try to position and size it.

This function is not a replacement for destroying a child window or deleting a child window
object. To completely remove a child window from a multicell canvas, you must also either
delete the child window you no longer need or change its parent window. Otherwise, it
remains on the canvas, keeping its last position and size. If you only want to temporarily
remove a child window, change its parent to the object window that Iwindow: : objectwindow
returns. This hides the child window and prevents a user from tabbing to it until you change its
parent window back to the multicell canvas. Call addTocell at that time.

Chapterl5 Ca[INaises 3Z9

Adding Special-Case Child Windows
The topic "Canvas Usage Considerations" in Chapter 8, "Static Controls," provides infor-
mation on adding an IstaticText object to a multicell canvas. Follow the techniques there for
using an IstaticText object to display anything other than a single line of unchanging text.

With IMulticellcanvas you also need to take special steps to ensure that a combination box or
group box control properly overlaps sibling windows. Both controls share the characteristics
of having a top portion that typically does not overlap other controls and a bottom portion that
typically does. For a combination box, the top portion is the entry field component of the
control; the bottom portion is where it displays its drop-down list box. For a group box, the
text is its top portion; the area inside its borders is the other. In a multicell canvas, you want
the top portion of these controls to fully occupy a row so that sibling windows in rows below
cannot overlap them.

Combination B oxes
If you create the combination box control with the IBasecomboBox: :dropDownType or
IBasecolhooBox : : readonlyDropDownType styles, its list box appears only on demand. The area
over which the list box appears is an ideal place to locate other controls. This area must be
part of the combination box control's window rectangle, and can extend below the bottom of
the parent window. IMulticellcanvas uses the Iwindow: :1ayoutAdjustment function to
support the special needs of this control (IBasecomboBox overrides this function). To use this
support, add a combination box object that occupies only a single row of a multicell canvas.
The canvas places the entry field of the combination box entirely within this row. Then, call
IBasecomboBox : : setMinimumRows to specify the height of the list box in number of rows.

If you create a combination box control witn the IBasecomboBox: : simpleType style, it always
displays its list box. No special considerations apply to adding this type of combination box
control to a multicell canvas.

The following example adds a simple and drop-down type combination box to a multicell
canvas. The list box of the drop-down type overlaps two radio buttons below it.

IMulticellcanvas with Combination Boxes - canvas\mccombo\mccombo.cpp
#include <iapp.hpp>
#include <icombobx.hpp>
#include <iframe.hpp>
#include <imcelcv.hpp>
#include <iradiobt.hpp>
#include <istring.hpp>
#include <icconst.h>
void main ()
(

IFranewindow
frame(''Multicell Canvas with Combination Boxes") ;

IMulticellcanvas
client(IC_FFLZRE_CLIENT_ID, &frame, &frame) ;

330 Power GUI programming with visualAge for c++

// Create a combination box without a drop-down list box that
// does not overlap any sibling windows. Also create one with
// a drop-down list box that overlaps some radio buttons.
ICorfooBox

simplecombo(1, &client, &client),
dropDowncombo(2, &client, &client, IRectangle() ,

IComboBox : : classDefaultstyle
& ~IBasecomboBox: : simpleType
I IBasecomboBox: :dropDownType) ;

simplecolhoo
. enableTabstop () ;

dropDouncombo
.setMinimumRows(8)
. enableTabstop () ;

// Fill the combination boxes with some items.
simplecombo

.addASFirst(''Simple-type combination box") ;
simplecombo

.addASLast("Second item") ;
simplecorfroo

.addASLast(`'Third item") ;
simplecolrfoo

.setText(simplecombo.itemText(0));
dropDouncolnbo

. adchsFirst (
dropDouncolhoo

. adchsLast (
dropDouncorfroo

. addLASLast (
dropDouncorhoo

. adchsLast (
dropDouncorhoo

. adchsLast (
dropDouncombo

. addASLast (
dropDouncombo

. adchsLast (
dropDouncorhoo

. addLASLas t (
dropDouncolfroo

`'Drop-down type combination box") ;

"Second item") ;

`'Third item") ;

`'Fourth item") ;

Fifth item") ;
Sixth item„) ;

`'Seventh item") ;

Eighth item„) ;

.setText(dropDowncombo.itemText(0)) ;

// Create radio buttons below the drop-down combination box.
IRadioButton

leftl(3, &client, &client),
1eft2(4, &client, &client);

1eftl
.setText(`'Button 1")
. enableTabstop ()
. enableGroup () ;

1eft2
.setText(`'Button 2");

// Create radio buttons
IRadioButton

rightl
right2
right3
right4
right5
right6

to the right of the combination boxes.
&client) '
&client) '
&client) '
&client) '
&client) '
&client) ;ri9htl

.setText(`'Button A")

. enableTabstop ()

. enableGroup () ;
right2

.setText(''Button 8");

Chapterl5 Ca[INaLses 331

right3
.setText(`'Button C") ;

right4
.setText("Button D");

right5
.setText("Button E");

right6
.setText(''Button F");

// Position the child windows in the canvas. Note that we place
// the drop-down combination box in a single row. We control the
// height of its list box using its setMinimumRows function.client

addTocell (
addTocell (
addTocell (
addTocell (
addTocell (
addTocell (
addTocell (
addTocell (
addTocell (
addTocell (

&simplecombo,
&dropDouncolhoo
&1eftl'
&1ef t2 ,
&rightl '
&right2 ,
&right3 '
&right4 ,
&right5 ,
&right6 '

// Grow the canvas vertically between the radio buttons;
// grow the combination boxes horizontally.client

setRowHeight
setRowHeight
setRowHeight
setRowHeight

1
3
5
7

setRowHeight (9,
setRowHeight (11,
setRowHeight (13 ,
setcolumnwidth (2

// Size and show the window now.
frame
.setclient(&client)
.movesizeToclient(IRectangle(IPoint(100, 200) ,

client.minimumsize()))
. setFocus ()
. show () ;

IApplication : : current () . run () ;
)

Group Boxes
In the IMulticellcanvas version of the lunch dialog, we used group boxes but did nothing
special to add them to the canvas. As a result, these group boxes use the default row height to
reserve space to hold their labels' text. Changing the font that these controls use or that the
dialog uses can cause a control in a row below it to overlap that text. Use the following class,
GroupBoxForMulticell, to solve this problem. This class derives from IGroupBox and requires
you to identify the starting row that it occupies in its parent multicell canvas.
GroupBoxForMulticell uses this information to set the height of the row to fit the height of its
text whenever its font changes. It overrides Iwindow: : setLayoutDistorted to provide this
support. See the topic, "Processing `Layout Events' with the setLayoutDistorted Function,"
for more information.

332 Power GUI programming with visualAge for c++

IMulticellcanvas with Smarter Group Boxes - canvas\mcgroup\mcgroup.hpp
#include <ifont.hpp>
#include <igroupbx.hpp>
#include <imcelcv.hpp>
class GroupBoxForMulticell : public IGroupBox {
public :

GroupBoxForMulticell (unsigned long windowld,
IMulticellcanvas* parentAndowner ,
unsigned long row = 0)

: IGroupBox(windowld, parentAndowner, parentAndowner) ,
fRow(row)

()
GroupBoxForMulticell
&setMulticellRow (unsigned long row)

(
fRow = row;
return this->setRowHeight () ;

)

protected:virtual GroupBoxForMulticell
&setLayoutDistorted (unsigned long flagson,

unsigned long flagsof f)
(

if (flagson & Iwindow: :fontchanged)
(

this->setRowHeight () ;
)
this->IGroupBox: :setLayoutDistorted(flagson, flagsoff) ;
return *this;

)

private :
GroupBoxForMulticell (const GroupBoxForMulticell&) ;

GroupBoxForMulticell
&operator=

GroupBoxForMulticell
&setRowHeight ()

(
if (fRow)
(

(const GroupBoxForMulticell&) ;

IFont
font(this);

IMulticellcanvas*canvas = (IMulticellcanvas*) (this->parent()) ;
(*canvas)
.setRowHeight(fRow, font.maxcharHeight()) ;

)return *this;
)

unsigrned long
fRow;

} ; // GroupBoxForMulticell

The ISplitcanvas Class
+

Use the ISplitcanvas class to separate windows with a split bar that a user can move by
dragging it with button 1 of the mouse. The split bar looks and acts much like the one an OS/2
container control displays in the details view.

Chapter 15 Ca[INalses 333

Features of a Split Canvas
A spJz.f c¢7avcIf manages the position and size of its child windows, so that together with the
split bars they occupy the entire area of the canvas. If the split canvas changes size, it resizes
its child windows so they still fill it, maintaining the ratio of their sizes. In the simplest case
of a single child window, the split canvas keeps the size of the child window identical to its
size, and does not draw a split bar.

A split canvas arranges its child windows in their sibling order, either horizontally from left to
right in a single row or vertically from top to bottom in a single column. Between its child
windows it draws split bars. Therefore, if a split canvas has N child windows, it creates N-1
split bars. Vertical split bars separate horizontally-arranged child windows; horizontal split
bars separate vertically-arranged ones. A split canvas does not limit the number of child
windows it supports and requires no calls to add a child window.

When a user positions the mouse pointer over a split bar, the pointer changes to a double-
headed arrow. A user can drag a vertical split bar left or right; a horizontal split bar, up or
down. Moving a split bar causes the split canvas to change the sizes of the two windows that
the split bar separates. A user cannot move the split bar using the keyboard.

Figure 15-14 shows a split canvas with five child windows. Vertical split bars separate the
child windows. The mouse pointer is over the split bar separating the fourth and fifth child
windows. The code that creates the window follows.

Figure 15-14. Split Canvas with Vertical Split Bars.

334 Power GUI programming with visualAge for c++

Simple Split Canvas Example - canvas\splittxt\splittxt.cpp
#include <iapp.hpp>
#include <ibmpctl.hpp>
#include <iframe.hpp>
#include <isplitcv.hpp>
#include <istattxt.hpp>
#include <icconst.h>
void main ()
(

IFranewindow
fralne("Split Canvas Example") ;

ISplitcanvas
client(IC_FRAME_CLIENT_ID, &frame, &frame) ;

// Create five child windows.IstaticText
stl(1, &client, &client),
st2(2, &client, &client);

IBitmapcontrol
bmp(3, &client, &client, IsystemBitmapHandle: :folder) ;

IstaticText `
st4(4, &client, &client),
st5(5, &client, &client);stl

.setText(''First")

.setAlignment (IstaticText: :centercenter) ;
st2

.setText(`'Second")

.setAlignment (IstaticText: :centercenter) ;
st4

.setText("Fourth")

. setAlignment (IstaticText: :centercenter) ;
st5

.setText(`'Fifth")

.setAlignment (IstaticText: :centercenter) ;
// Size and show the window now.
frame
.setclient(&client)
. setFocus ()
. show () ;

IApplication : : current () . run () ;
)

Manipulating Split Bars
The distinguishing feature of a split canvas is its split bars. ISplitcanvas gives you some
control over their look, including placement, thickness, and color.

A split canvas draws either vertical or horizontal split bars. You can specify which type of
split bars you want by using a style when constructing the canvas or by calling
ISplitcanvas : : setorientation after creating the canvas. Setting the orientation of the split
bars determines whether the split canvas arranges its child window horizontally or vertically.
Although you cannot create a split canvas that uses both vertical and horizontal split bars, you
can simulate this look by using a second split canvas as the child window of the first, where
each uses a different orientation for its split bars. The canvas\complex program on the
examples disk shows this combination. However, users are limited to being able to move only
one split bar at a time. They cannot move a horizontal split bar from one split canvas and a
vertical split bar from another by dragging them from the point where they meet.

Chapterl5 Ca[INaises 335

You can position split bars but only by setting the relative sizes of the child windows that they
separate. Use the ISplitcanvas member function, setsplitwindowpercentage, to set them.
Similarly, never change the size of a child window except by calling
setsplitwindowpercentage.

If the split canvas has vertical split bars, the percentage that you pass to
setsplitwindowpercentage only affects the width of a child window. Its height remains the
height of the canvas. Similarly, this value only affects the height of a child window separated
by horizontal split bars. If you do not assign percentages, the split canvas sizes its child
windows equally.

If you set the percentage of one child window, set the percentage of all of them. If you set the
percentage of only one window, you can get unpredictable results because you cannot predict
what percentages the other child windows will use. A user can change the original percentages
by dragging a split bar. Additionally, while the sum of the percentages returned by
splitwindowpercentage for each child window is always 100%, the sum of the percentages
you pass to setsplitwindowpercentage may not be.
If the sum of the percentages you specify is not 100%, ISplitcanvas treats the percentages as
ratios. For example, you can assign percentages of 5, 5, and 10 for the three child windows of
a split canvas with vertical split bars. The canvas then sizes the first and second child
windows to occupy 25% of the available width and the third child window to occupy 50%.

Because you can treat the percentages you pass to setsplitwindowpercentage as ratios, you
can accomplish near-exact positioning of split bars by passing, in pels, the size that you want
each child window sized to. You can account for the amount of screen space each split bar
occupies by calling ISplitcanvas : : splitBarThickness.

Adding Special-Case Child Windows
A split canvas does not paint between its split bars. Its child windows paint the entire area of
the canvas except for its split bars. As a result, windows that adjust the size of their rectangles
or do not paint their entire rectangles do not work well in a split canvas. Such windows
include combination boxes, icons that use screen or inverse colors, group boxes, and outline
boxes.

In the OS/2 operating system, frame windows also do not work well as child windows of a split
canvas, but for a different reason. A split canvas relies on the sibling order of its child
windows to not change, but users do precisely this when they activate a child frame window.

You can compensate for both situations by adding a multicell canvas between the split canvas
and the problem child windows. Make the multicell canvas a child window of the split canvas,
make the problem window the only child window of the multicell canvas, and place the
problem window into an expandable row and column of the multicell canvas. Also, use
setMinimumsize to give the problem window a small minimum size so that the user sees no
difference between how the split canvas sizes this window and an actual child window. The
canvas\splitprb program on the examples disk illustrates this technique.

336 Power GUI programming with visualAge for c++

The Iviewport Class
The Iviewport class supports the scrolling of any window, such as a bitmap, notebook,
drawing canvas, or canvas with child windows. A user can scroll the window using the
keyboard. If you specify styles to add scroll bars, a user can also scroll the window using the
mouse. In this case, the view port creates a vertical scroll bar to the right of and a horizontal
scroll bar below the window being scrolled. Iviewport manages the size of the scroll bars'
scroll boxes, and updates their positions as it scrolls your window.

Iviewport thus gives you functional scroll bars. Open Class Library provides the base scroll
classes: IScrollBar, IScrollHandler, and IScrollEvent. However, unless you implement a
handler class derived from IScrollHandler, any scroll bar you create does not actually scroll
data. Iviewport uses the IScrollHandler class to provide an easy-to-use implementation for
scrolling a window.

Iviewport also gives another way to implement windows that a user can size freely. With a
view port, a user can scroll the contents of a frame window or notebook when the window is no
longer large enough to display it all.

Terms and Features of a View Port
You usually treat the view port as a single window, but it is actually four different windows.
The first is the view port itself, which is the parent and owner window of the remaining
windows. The next two windows are horizontal and vertical scroll bars. The last window is a
1;I.ew recfcz7®gJe. The view rectangle is the area of the view port not occupied by the scroll bars
and the little square where the scroll bars meet. The Iviewport class creates all four windows
when you construct a view port.

The 1;I.ew wz.73dow is the window that a view port scrolls. You supply the view window and
identify it by making it a child window of the view port. Open Class Library uses the term
v{.ew wz.7®dow rather than cfez.Jd wz.7cdow because the view window does not remain a child of the
view port. Once you display the view port, Iviewport changes the parent window of the view
window to the view rectangle. The view port scrolls the view window within the view
rectangle. Only the portion of the view window that lies within the view rectangle is visible.

A view port supports only one view window. To replace the view window, remove it from the
window hierarchy of the view port by destroying the window or changing its parent window.
Then, you can add a new view window by making it a child window of the view port.

Figure 15-15 shows the parent-child relationship of the different windows combined in a view
port. Note that the parent window of the view window is the view rectangle. The figure also
shows the window identifiers that Iviewport assigns to its component windows. Open Class
Library defines these window identifiers in ICCONST . H.

Figure 15-16 shows a view port scrolling a bitmap. The component windows of the view port
are labeled. Although the portion of the view window (the bitmap) outside of the view port is
not actually visible, the figure shows it superimposed behind the view port to illustrate the
relative portion of the bitmap displayed in the view rectangle. As the view port scrolls the

Chapter 15 C8IINz\ses 337

View portOnfromtheIviewporicoustructor)

I

View rectangle Vertical scroll bar
ap=Ic_`vquwpoRT_vmwRECTANGLE) ap = Ic_vREwpORT_vERTscROILBAR)

View widow

Horizontal scroll bar
0 = IC_VIEWPORT_HORZS CROLLBAR)

Figure 15-15. Hierarchy of Windows Managed by a View Port.

bitmap, Iviewport moves the bitmap around and users see only the portion positioned within
the view rectangle.

Creating a View Port
The following example displays the view port shown in Figure 15-16. We create the view port
to always show its horizontal and vertical scroll bars by using the
Iviewport : : alwaysHorizontalscrollBar and Iviewport : : alwaysverticalscrollBar styles
(it never displays its scroll bars if you use the styles Iviewport : :noHorizontalscrollBar and
Iviewport: :noverticalscrollBar, and only displays them when the view window can be
scrolled if you specify Iviewport::asNeededHorizontalscrollBar and
Iviewport: :asNeededverticalscrollBar). We take care not to specify conflicting styles,
such as the combination of Iviewport::asNeededHorizontalscrollBar and
Iviewport: :alwaysHorizontalscrollBar. If we do use conflicting systems, the Iviewport
constructor throws an IInvalidparameter exception.

This example also uses the Iviewport: :noviewwindowFill style to optimize the drawing of
the view window. This style is generally equivalent to using Iwindow: :clipchildren. It
prevents the view port from clearing the old image of the view window as it is being scrolled.
The window being scrolled does this when it paints. Do not use this style` with view windows
that do not paint their entire rectangles, such as icons that use screen or inverse colors.

Ei=

338 Power GUI programming with visualAge for c++

Bitmap in a View Port - canvas\vportbmp\vportbmp.cpp
#include <iapp.hpp>
#include <icconst.h>
#include <ibmpctl.hpp>
#include <iframe.hpp>
#include <iscroll.hpp>
#include <ivport.hpp>
#include "vportcmd.hpp"
#include "vportbmp.h"
void main ()
(

// Create the fralne window and its client view port.
IFranewindow

frame (IFramewindow: : classDefaultstyle
I IFramewindow: :menuBar) ;

Iviewport
vport (IC_FRAME_CLIENT_ID, &frame, &frame, IRectangle () ,

Iviewport : : classDefaultstyle
& ~Iviewport : : asNeededHorizontalscrollBar
& ~Iviewport : : asNeededverticalscrollBar
I Iviewport : : alwaysHorizontalscrollBar
I Iviewport : : alwaysverticalscrollBar
I Iviewport: :noviewwindowFill) ;

// Set up the bitmap for the view port to scroll. We make it
// the view window by making it the child window of the view
// port. By not sizing the view window, the view port sizes
// it to its minimuln size.
IBitmapcontrol

bmp(1, &vport, &vport, ID_DEFAULTBMP) ;

// Double the amount of a "line" scroll and increase by half
// the width of the scroll bars.
unsigned long

scrolllncrement =
vport.verticalscrollBar() ->minscrolllncrement () * 2;

(*(vport.verticalscrollBar()))
. setMinscrolllncrement (scrolllncrement)
sizeTo (Isize (IScrollBar: :systemscrollBarwidth

(*(vport.horizontalscrollBar()))
. setMinscrolllncrement (scrolllncrement)
.sizeTo(Isize(0,

IScrollBar: :systemscrollBarwidth(false)
* 3 / 2))

// Add command handlers for the menu bar choices.
NewBitmapcmdHandler

cmdlldrl (&bmp) ;
cmdHdrl

.handleEventsFor(&vport) ;
SizeBitmapcmdllandler

cmdHdr2(&bmp, &vport) ;
cmdHdr2

.handleEventsFor(&vport) ;
ScrollviewcmdHandler

cmdHdr3 (&vport) ;
cmdHdr3

.handleEventsFor(&vport) ;

// Show it all now.
frame

. setFocus ()
• show () ;

IApplication : : current () . run () ;

Chapterl5 Canyaises 339

Figure 15-16. Screen View of Windows Managed by an Iviewport.

Scrolling the View Window
If the view window is larger than the view rectangle, you can scroll the view window. Other-
wise, the view port disables scrolling because all of the view window is already visible, and it
positions the view window in the upper-left corner of the view rectangle. Any white space in
the view rectangle appears below and to the right of the window being scrolled. This is the
only case where a view port displays any white space in the view rectangle. This is also the
default position for the view window view when you display a view port, so any position you
initially give the view window is discarded.

A view port allows scrolling with the keyboard or mouse. Table 15-3 shows which keys the
view port translates into scrolling actions (assuming neither the view window nor any of its
child windows processes the key first), and it shows how they compare to using the mouse.
The table also shows the default scroll amounts that each scroll bar uses, which are based on
the average character width and maximum character height of the initial font of the view port.
Changing the font of a view port after it has beeri constructed does not change these scroll

340 Power GUI programming with visualAge for c++

Table 15-3. View Port Scrolling

Scroll Type Key Mouse Action Default S croll Amount
Vertical page scroll Page Up' P8Up, Click the shaft of the The height of the view

Page Down, PgDn vertical scroll bar above or rectangle minus the vertical
below the scroll box. line scroll amount

Vertical line scroll Up arrow, down Click the scroll arrows of Half of the maximum
arrow the vertical scroll bar. character height of the initialfontoftheviewport

Horizontal page scroll Ctrl+Page Up, Click the shaft of the The width of the view
Ctrl+Pgup' horizontal scroll bar left or rectangle minus the horizontal
Ctrl+Page Down,Ctrl+PgDn rigbt of the scroll box. line scroll amount

Horizontal line scroll Left arrow, right Click the scroll arrows of The average character width of
arrow the horizontal scroll bar. the initial font of the view port

amounts. See the next topic, "Accessing the Scroll Bars," for how to change these scroll
amounts.

You can also scroll the view window from your application by calling the view port's
scrollviewverticallyTo and scrollviewHorizontallyTo functions. These functions cause a
view port to both scroll the view window and update the position of the scroll box in the
appropriate scroll bar. The value you pass to these functions is the offset in pels from the
top-left corner of the view window to the point that you want to see in the upper-left corner of
the view rectangle. For example, to show the upper-left corner of the view window, pass a
value of 0 to both scrollviewverticallyTo and scrollviewHorizontallyTo. Calling moveTo
on the view window does not update the scroll boxes of the scroll bars.

The following code shows how you can scroll a view window horizontally so that the middle
portion of the view window is displayed in the view rectangle. Figure 15-16 shows the view
window scrolled this way. This code uses the viewwindowsize and viewwindowDrawRectangle
functions of Iviewport. viewwindowsize returns the size of the view window;
viewwindowDrawRectangle returns the portion of the view window currently visible in the
view rectangle. The clviewport variable is a pointer to an Iviewport object.

Bitmap in a View Port - canvas\vportbmp\vportcmd.cpp
®,,

IRectangle
viewwindow(IPoint () , clviewport->viewwindowsize()) ,
visibleview (clviewport->viewwindowDrawRectangle ()) ;

visibleview
.centerAt(viewwindow.center()) ;

(*clviewport)
.scrollviewHorizontallyTo (visibleview.left ()) ;
®,

Chapterl5 CaLINaises 341

Accessing the Scroll Bars
Access the scroll bars of a view port using the Iviewport functions, horizontalscrollBar and
verticalscrollBar. By using IScrollBar functions on the objects that these functions return,
you can customize the scroll bars. For example, the canvas\vportbmp\vportbmp.cpp code
you saw earlier increases the widths of the scroll bars and the amount they scroll the view
window when a user selects their scroll arrows.

Setting the Size of the View Window
Iviewport provides three ways for you to set the size of the view window. The size of the view
window determines if the view port enables scrolling and how it sizes the scroll boxes of the
scroll bars.

To size most view windows, give them a non-zero size. Specify an IRectangle argument when
you construct the view window or call the sizeTo or movesizeTo functions before you first
show the view port. You will probably do this for all view windows except multicell canvases
and set canvases, and you will possibly do this for notebooks, drawing canvases, and bitmaps.
Note that Iviewport cannot scroll a view window with an actual width or height greater than
32,767 pels.

If you change the size of the view window after you display the view port, notify the view port
of the change by calling its setLayoutDistorted function. See the topic "Processing `Layout
Events' with the setLayoutDistorted Function" for details on using this function.

The second way to size a view window is to use its minimum size. If the size of the view
window is Isize (0 , 0) when you first show the view port, the view port sizes the view window
to its minimum size. In the case of using IMulticellcanvas and Isetcanvas, the minimum
size is large enough to show all of their child windows. Iviewport automatically detects if the
minimum size of its view window changes and updates its scroll bars accordingly. Note that
Iviewport cannot scroll a view window with a size greater than 32,767 pels.

Some windows size especially well when grown larger than their minimum size, such as a
multicell canvas with expandable rows or columns. When using a view port to scroll such a
window, construct the view port with the Iviewport : : expandableviewwindow style. When the
size of the view rectangle is larger than the minimum size of the view window, the style causes
Iviewport to grow the view window to fill the view rectangle. As a result, this style causes
Iviewport to grow and shrink the view window as its size grows and shrinks. However,
Iviewport stops shrinking the view window at its minimum size, enabling it for scrolling at
that point. Note that for VisualAge for C++ for OS/2, 3.0, Open Class Library added the
Iviewport : : expandableviewwindow style in a Fixpak. See the canvas\complex program on
the examples disk for usage of this style.

The final way to size a view window is to call Iviewport : : setviewwindowsize, specifying a
logical size for the view window. The next topic describes this technique.

342 Power GUI programming with visualAge for c++

Giving a View Window a Logical Size
Calling Iviewport : : setviewwindowsize gives the view window a logical size. The view port
treats the view window as if it were sized to its logical size rather than its actual size. The two
sizes can be quite different. Iviewport continues to create, size, and position the scroll bars
for you, and it notifies you when a user scrolls the view window. Iviewport also continues to
size and position the scroll boxes of its scroll bars but does this based on the logical size of the
view window. However, you must manage all aspects of the view window's appearance,
perhaps even giving it the look of being scrolled.

So, why use a logical size? You use it primarily to avoid creating a full-size view window
while taking advantage of the scroll bar management code that Iviewport provides. One case
where you might want to use a view window with a logical size is to scroll a large graphic
object. Perhaps instead of creating and drawing the entire object, you want to draw only the
part a user is currently viewing. Perhaps you want to scroll a large array of entry fields.
However, you can neither afford the start-up time needed to create all of the controls nor the
resulting depletion of system resources. You only want to create the controls that the user sees
at one time and to give the appearance that you are scrolling many more. Perhaps you want to
scroll a window whose width or height exceeds 32,767 pels, which is the physical size limit
that Iviewport handles.

To implement a view window with a logical size, in addition to calling
Iviewport: : setviewwindowsize, create a class derived from Iviewport and override the
Iviewport: :positionviewwindow function. Iviewport calls this function whenever the
application or a user scrolls the view window. You are responsible for the appearance of the
view window based on the position information that the view port reports. Use
positionviewwindow, which ordinarily scrolls the view window, to provide this specialized
processing. The Iviewport class has already updated the position of the scroll boxes when it
calls posi tionviewwindow.

The canvas\vportlog example creates a view window with a logical size. Figure 15-17 shows
the resulting window, a view port scrolling a view window that appears to be Ox40000
(262,144) pels wide and Ox80000 (524,288) pels high. The physical size of the view window is
only as large as the display, however. The example overrides the virtual function
Iviewport : : positionviewwindow to do the following:

1. Update the contents of the drawing canvas view window based on the logical portion of
the view window that the view port reports is currently visible (the buildGraphicList
function relies on Iviewport : :viewwindowDrawRectangle to identify the logical portion
of the view window now visible)

2. Force the paint handler for the drawing canvas to be called by calling Iwindow: : refresh

3. Prevent the Iviewport class from actually scrolling the view window by not calling
Iviewport : :positionviewwindow, which scrolls the view window

In this code, clviewwindow represents the view window with a logical size:

Chapter 15 CalINaises 343

View Window with a Logical Size - canvas\vportlog\vportlog.cpp
Logicalsizeviewport& Logicalsizeviewport : :positionviewwindow

(const IwindowHandle& viewwindow,
const IRectangle& viewRectangle)

(
// Do not call Iviewport: :positionviewwindow, which scrolls
/ / thy:fie wirii3!cIN .

// Prepare the view window so it appears to scroll when it
// paints; then force it to paint.
this->buildGraphicList () ;
clviewwindow

. refresh () ;

return *this;
)

Figure 15-17. View Window with a Logical Size.

Iviewport supports logical sizes exceeding 32,767 pels by scaling the logical size units to a
different set of units for the scroll bars to use. This approach imposes some restrictions on the
application, however. First, recognize that the values passed to and returned by Iviewport are
in logical size units. Second, IScrollBarfunctions that handle the scrollable range, scroll box
range, scroll box position, and visible count use scaled values. The IScrollBar functions that
handle scrolling amounts such as setpagescrolllncrement use logical size units. Third, to
modify the page scroll amount, override Iviewport: : setupscrollBars to set the new scroll
amount. Do this after calling Iviewport: : setupscrollBars, which resets the page scrolling
increment to use the default value in logical size units. The canvas\vportlog example shows
the use of these techniques.

344 Power GUI programming with visualAge for c++

Canvas Class Combinations
You can mix and match the canvas classes because Open Class Library imposes no restrictions
on which windows you can make the child window of another. Many of these combinations
work well, allowing you to create complex windows using the technique of composition.
Others offer benefits but require some tips to make them work right. Several of these combi-
nations are used in the canvas\complex program on the examples disk. Still, others provide
little benefit. This section groups the possible combinations into these different categories.

These combinations work well:

• Isetcanvas in an Isetcanvas, IMulticellcanvas, or Iviewport

• IMulticellcanvas in an IMulticellcanvas

• ISplitcanvas in an Isplitcanvas

• Iviewportin an Icanvas or an Isplitcanvas

• Icanvas in an Icanvas, Isetcanvas, IMulticellcanvas, or Iviewport

These combinations can work effectively but need additional code:

• ISplitcanvas in an IMulticellcanvas or Iviewport

You must provide the split canvas with a reasonable minimum size. You could also
explicitly size the split canvas before it is displayed when it is in a view port.

• Iviewport in an IMulticellcanvas or Isetcanvas

You must assign a reasonable minimum size to the view port.

• IMulticellcanvas in an Iviewport

To support expandable rows and columns in the multicell canvas, specify the
Iviewport : : expandableviewwindow style when creating the view port. See a previous
topic, "Setting the Size of the View Window," where we discuss the Iviewport class for
more information.

These combinations either do not work well or provide little or no value:

• Isetcanvas in an Icanvas or Isplitcanvas

Icanvas neither sizes nor positions an Isetcanvas. If the minimum size of the set
canvas changes (because of a font change for example), Icanvas does not change the
size of the set canvas accordingly. An Isetcanvas only has one best size, so an
ISplitcanvas will likely cause the set canvas to clip its child windows.

Chapter 15 CzlINalses 345

IMulticellcanvas in an Icanvas, Isetcanvas, or ISplitcanvas

Icanvas neither sizes nor positions an IMulticellcanvas. If the minimum size of the
multicell canvas changes (because of a font change for example), Icanvas does not
change the size of the multicell canvas accordingly. Neither Icanvas nor Isetcanvas
support dynamically growing a multicell canvas with expandable rows or columns. An
ISplitcanvas will likely cause the multicell canvas to clip its child windows.

ISplitcanvas in an Icanvas or Isetcanvas

ISplitcanvas tends to work best in situations where it can be dynamically sized, such as
when it is used as the client window of a frame window. Neither Icanvas nor
Isetcanvas provides support for growing a child window this way. You must also
provide the split canvas with a minimum size for it to work decently on a set canvas.

• Iviewportin an Iviewport

A double set of scroll bars offers little value.

• Icanvasin an Isplitcanvas

An Icanvas only has one best size, so an ISplitcanvas will likely cause it to clip its
child windows.

Behind the Scenes
This section describes two areas of support that are key to implementing the canvas classes.
Both areas build canvas support into the entire window hierarchy; their interface appears in
the Iwindow class. With minimum size support, you can add any window to a multicell or set
canvas. Canvases use the Iwindow: :setLayoutDistorted function to determine when to
update their contents. Some examples in this chapter have already touched on these areas.

Using Minimum Sizes in Open Class Library
IMulticellcanvas and Isetcanvas use minimum sizes as the basis for how they size their
child windows.

For each child window, you can use the minimum size Open Class Library provides or supply
your own. The minimum size that Open Class Library provides suffices in most cases because
most control classes dynamically factor in the size needed by its fixed-size and variable-sized
elements, such as text. The most notable exceptions are IContainercontrol, IListBox,
IMultiLineEdit, IOutlineBox, and ISplitcanvas. Your application needs to set their
minimum sizes. Supply a minimum size for these to use them as child windows of a multicell
or set canvas; otherwise, their minimum sizes default to Isize (100 , 100) .

If you supply a minimum size, be aware that IMulticellcanvas and Isetcanvas typically size
a child window to its minimum size. Therefore, consider a minimum size to be the smallest
size you want a control sized to but pick a size that gives a usable control. Do not use the
smallest size that a control can be. For example, although you could size a list box so that it

346 Power GUI programming with visualAge for c++

displays only a single character at a time, no user would tolerate using it to scroll through
several hundred items.

You have two ways to supply a minimum size for a window. The easiest is to call the window' s
setMinimunsize function. Because this function fixes the value of the minimum size until you
call it again, it is not well suited for a minimum size that can be changed outside of your code
(unless you are calling it from a handler). Alternatively, you can create a derived control class
that provides an implementation of the calcMinimumsize function. This solution can poten-
tially return a different minimum size whenever it is called, based on the current environment.

IMulticellcanvas and Isetcanvas get a child window's minimum size by calling its
minimumsize function. Iwindow: :minimumsize returns the value set by calling
Iwindow: : setMinimunsize. If there is no such value or the value has been reset by a call to
Iwindow: :resetMinimumsize, Iwindow: :minimumsize calls the virtual calcMinimumsize
function. However, a class' implementation of calcMinimunsize can potentially be a time-
consuming operation that typically returns the same value for the same object.

To improve the performance of IMulticellcanvas and Isetcanvas, Open Class Library caches
calculated minimum sizes. For VisualAge for C++ for OS/2, 3.0, Open Class Library added
this support in a Fixpak. As a result, once a multicell or set canvas gets the minimum size of a
child window, it uses that value instead of requiring another call to the child window's
calcMinimumsize function. It uses this value until the child window indicates that its
minimum size has changed. Specifically, Iwindow::minimumsize calls
Iwindow: :savedMinimumsize to retrieve a value it previously cached, and it calls
Iwindow: :saveMinimumsize to cache a value obtained by calling calcMinimumsize. In this
way, Iwindow: :minimunsize avoids calling calcMinimumsize until the minimum size changes.
To notify a parent canvas that the minimum size value it calculates has changed, a window
must call its own setLayoutDistorted function, passing the Iwindow: :minimumsizechanged
flag. See the next topic for details on this function. To disable the caching of minimum size
values for a window, call its Iwindow: : disableMinimumsizecaching function.

Processing "Layout Events" with the setLayoutDistorted Function
A key to implementing the canvas classes is using the Iwindow member function
setLayoutDistorted. This function provides a canvas with notifications that potentially
require it to update the position and sizes of its child windows. The canvas classes provide
implementations of this virtual function to process significant layout events reported as flags
passed to the setLayoutDistorted function. Canvases use this mechanism to react to changes
at run time, such as changes to the text or font used by a child window.

Any window can generate these "layout events" simply by calling its own
setLayoutDistorted function or that of its parent window. Although a window calls
setLayoutDistorted to report a change that can affect how it appears on a canvas, the
function does not require the window to be a child window of a canvas. The window calls the
function to report a change; the window being called determines if the change has any
relevance. Open Class Library already contains many calls to setLayoutDistorted to report a
variety of layout events.

Chapter 15 CaiINases 341

Most windows do not process most, if not all, of the flags passed to their setLayoutDistorted
function. Similarly, each canvas class checks for only those events that affect how it manages
its child windows. For example, IMulticellcanvas and Isetcanvas update the layouts of
their child windows whenever any of their minimum sizes change. These canvas classes detect
minimum size changes by testing for the Iwindow: : childMinimunsizechanged flag in their
setLayoutDistorted functions. Icanvas and ISplitcanvas ignore this flag, however, because
they do not size or position child windows based on their minimum sizes. As a result, the way
each canvas implements its setLayoutDistorted function determines how responsive it is to
changes at run time, and reflects those characteristics that are important to its layout routine.

Some of the differences between how the various canvas classes process setLayoutDistorted
account for the traits shown in Table 15-4. Table 15-4 describes the flags you can pass to
setLayoutDistorted, the Iwindow: :Layout enumerations. You can pass a single flag or
several bitwise flags ORed together. The first argument to setLayoutDistorted is the set of
flags being enabled, and the second is the set of flags being disabled. Note that many entries in
the table have a number next to the text. The meaning of these numbers is explained following
the table.

If a window overrides setLayoutDistorted, it must pass any flags it does not process to the
setLayoutDistorted function of the class it derives from. In many cases, this turns out to be
Iwindow: : setLayoutDistorted; in other cases, Icanvas : : setLayoutDistorted. Both have
important implementations.

Iwindow: :setLayoutDistorted applies the flags being enabled to the flags it has stored,
removes the flags being disabled, and then stores the new result. You can subsequently test for
flags it stores using Iwindow: :isLayoutDistorted. It then routes some flags on to the
setLayoutDistorted function of the parent window. For example, if a window calls its own
setLayoutDistorted function, passing the Iwindow: :minimumsizechanged flag,
Iwindow::setLayoutDistorted stores this flag and calls the parent window's
setLayoutDistorted function, passing it the Iwindow: : childMinimumsizechanged flag. If the
parent window is an Isetcanvas or IMulticellcanvas, the canvas runs its layout routine to
update the appearance of its child windows. This, in turn, can cause the minimum size of the
canvas to change, which can result in its parent canvas running its layout routine, as a result
of more calls to setLayoutDistorted. To see how,1et's examine how canvases implement
setLayoutDistorted.

Unlike a minimum size change, most functions that change a canvas do not cause it to
immediately update the layout of its child windows. For example, calling
IMulticellcanvas: :addTocell does not cause a multicell canvas to immediately run its
layout routine, which allows you to call addTocell numerous times with little performance
cost. Instead the following occurs:

1. IMulticellcanvas : :addTocell calls IMulticellcanvas : : setLayoutDistorted to turn
on the canvas' Iwindow: : 1ayoutchanged flag.

2. IMulticellcanvas: :setLayoutDistorted calls the Icanvas: :setLayoutDistorted
function.

348 Power GUI programming with visualAge for c++

3. Icanvas : : setLayoutDistorted calls Iwindow: : setLayoutDistorted, which stores the
Iwindow: : 1ayoutchanged flag to indicate that it has an update pending.

4. If the Iwindow: :immediateupdate flag is not enabled, as is the case when calling
IMulticellcanvas: :addTocell, the update remains pending until the next time the
canvas paints. Thereafter, making the canvas visible or calling Iwindow: :refresh to
force the canvas to paint causes it to run its layout routine.

Therefore, to force a canvas to update its layout when it has no update pending, you must also
call its setLayoutDistorted function, passing the bitwise OR of Iwindow: : 1ayoutchanged and
Iwindow: :immediateupdate. For example, if you change the size of the window that a view
port is scrolling, you must explicitly report the change in this manner. Otherwise, even when
you force the view port to paint, it will not call its layout routine.

Because a canvas runs its layout routine only when it receives the Iwindow: : layoutchanged
or Iwindow: : ilrmediateupdate flags, you can also prevent a canvas from updating its child
windows by intercepting these flags in the setLayoutDistorted function of a class derived
from a canvas. One scenario for doing this would be to prevent a multicell canvas from
running its layout routine multiple times when you update the text of several child button
controls. By overriding setLayoutDistorted, you can block the canvas from temporarily
detecting these changes reported as Iwindow: : childMinimumsizechanged flags, so it can later
run its layout routine only once to incorporate all changes.

The final consideration applies to control classes you create that provide a calcMinimunsize
function. For a multicell or set canvas to detect when the minimum size of the control
changes, the control must call its setLayoutDistorted function, passing
Iwindow: :minimumsizechanged. All window classes in Open Class Library do this. With the
introduction of minimum size caching, discussed in the previous topic, not calling
setLayoutDistorted this way can cause a multicell or set canvas to not detect changes to the
minimum size.

Table 15-4 (Part 1 of 2). Flags to Pass to setLayoutDistorted

Iwindow::Layout Usage Iwindow::setLayout- Canvases That
Enumeration Distorted Behavior Process lt
windowcreated Automatically turned on when Calls the parent window, None.

you construct a window object. passing theIwindow::childwindow-Createdflag.

childwindowcreated Turned on by None. Icanvas (1),
Iwindow::setLayoutDistorted. Isetcanvas (1),ISplitcanvas(1),Iviewport(1).

colorchanged Automatically turned on whenyouconstructawindowobjectandbyIwindow::dispatchwhenyouorauserchangesacolor. None. N/A.

Chapter 15 Ca[INz\ses 349

Table 15-4 (Part 2 of 2). Flags to Pass to setLayoutDistorted

Iwindow::Layout Usage Iwindow::SetLayout- Canvases That
Enumeration Distorted Behavior Process lt

sizechanged Turned on by IMulticellcanvas, None. ISplitcanvas (1),
ISplitcanvas, and Iviewportwhentheyareresized. Iviewport (2).

minimumsizechanged Turned on by a window Calls the parent window, N/A.
(including Icanvas, Isetcanvas, passing the
and IMulticellcanvas) when its Iwindow::childMinimum-
minimum size has changed. Sizechanged flag.

childMinimumsize- Turned on by None. Isetcanvas (2),
Changed Iwindow::setLayoutDistorted. IMulticellcanvas(2),Iviewport(3).

fontchanged Automatically turned on when Calls the parent window, Isetcanvas (4).

you construct a window object passing the
and by Iwindow: :dispatch when Iwindow::fontpropogated
you or the user changes a font. flag, if the new font isinheritedfromtheownerwindow.OtherwiseitturnsofftheIwindow::fontpropogatedflag.

fontpropogated Automatically turned on byIwindow::setLayoutDistorted. None. All (5).

1ayoutchanged Turned on by some functions ofacanvasthataffectitslayoutorbyitssetLayoutDistortedfunction(seethelastcolumn). None. All (6).

immediateupdate Turned on by some functions ofacanvasthataffectitslayout. None. All (7).

windowDestroyed Automatically turned on when Calls the parent window, None.

you delete a window object. passing theIwindow::childwindow-Destroyedflag.

childwindowDestroyed Turned on by None. Icanvas (1),
Iwindow::setLayoutDistorted. Isetcanvas (1),ISplitcanvas(1),Iviewport(1).

350 Power GUI programming with visualAge for c++

The following notes apply to Table 15-4:

1. The canvas enables the Iwindow: : 1ayoutchangedflag.

2. The canvas enables the Iwindow: : 1ayoutchanged and Iwindow: : immediateupdate
flags.

3. If the view window initially has a size of (0, 0), the Iviewport enables the
Iwindow : : 1ayoutchanged and Iwindow : : ilinmediateupdate flags.

4. If the Isetcanvas is displaying text for a group-box label, it .enables the
Iwindow : : 1ayoutchanged flag.

5. Once its Iwindow: :fontpropogated flag is enabled, a canvas stops running its layout
routine until Iwindow: :setLayoutDistorted resets the flag. In the OS/2 operating
system, this minimizes the amount of reformatting when a user drops a font.

6. When the canvas receives a paint event, it runs its layout routine.

7. If the canvas is visible, it runs its layoutroutine.

Table 15-4 also identifies some other uses for the setLayoutDistorted function, such as
overriding it in a derived class to detect when a user changes the font or color of the window.
You can check for a notification of a font change by testing the first argument for the
Iwindow: :fontchanged flag and a color change by testing the first argument for the
Iwindow: : colorchanged flag. For example:

Mywindow& Mywindow : : setLayoutDistorted
(unsigned long flagson, unsigned long flagsof f)

if (flagson & Iwindow: :fontchanged)

// Process a change in font here.
f (flagson & Iwindow: :colorchanged)

// Process a change in color here.

Iwindow: :setLayoutDistorted(flagson, flagsoff) ;
return *this;

Chapter 16

Tool Bars, Fly-Over Help, and Custom
Buttons

• Describes how you buildtool bars using the classes IToolBar, IToolBarButton,
IToolB arFramewindow, and IToolB arcontainer

• Describes the fly-over help support that the classes IFlyoverHelpHandler and
IFlyText provide

• Describes how you use the tool bar building blocks, ICustomButton,
ICustomB uttonDrawHandler, and ICustomButtonDrawEvent to build your own
specialized button classes

• Describes how you build animated push buttons using the class IAnimatedpush-
Button

• Read chapters 10 and 15 before reading this chapter.
• Chapters 5, 7,17, 23, and 24 contain related information.

In just a few years, tool bars have become a ubiquitous feature in user-interface design. Don't
even think about building an application without a tool bar to provide your users with a fast
path to their most common tasks. In this chapter, you learn how Open Class Library makes
building this portion of your application easy. You also learn the design points of the tool bar
and ,how to use its building blocks in windows other than tool bars and how to extend them
with your own unique features.

Tool Bar
Although we usually describe a tool bar as if it is a single entity, Open Class Library imple-
ments its tool bar using two different Isetcanvas-derived tool bar classes. The first of these,
IToolBar, usually contains special buttons called tool bar buttons, but it can also contain any
class derived from Iwindow. When you see the words "tool bar" in this chapter, think
IToolBar. IToolBar has the interface for adding and removing windows and for determining
the location of a tool bar relative to its owning frame window.

The second Isetcanvas-derived tool bar class, IToolBarcontainer, contains IToolBar
objects. You learn about IToolBarcontainer in this chapter, but you don't create these objects
yourself. Open Class Library creates IToolBarcontainer objects as it needs them to contain
the tool bars you create.

351

352 Power GUI programming with visualAge for c++

A Tool Bar Is a Set Canvas
As you see in Figure 16-1, both IToolBar and IToolBarcontainer derive from Isetcanvas.
This derivation provides many of the important characteristics of IToolBar and
IToolBarcontainer.

For example, because IToolBar derives from Isetcanvas, it can contain any class derived
from Iwindow. Even though IToolBar has an explicit add and remove interface that
Isetcanvas does not, it is Isetcanvas that makes this possible by handling the layout of the
windows in a tool bar. In practice, besides the tool bar buttons that the class IToolBarButton
provides, the only other control you use in a tool bar is a drop-down combination box. To
simplify our discussion in the remainder of this chapter, we discuss the tool bar as if it
contained only tool bar buttons. Because tool bar buttons are such an important component of
the tool bar, we discuss their use and design prior to discussing the tool bar itself.

I Iwindow I
I

11IIControlIIIFranewindow I1',I

I ITextcontrol I I Icanvas I I rroolBarFranewindow I
I I

I muiton I , I Isetc[anvas I I .

I ICustondButton I I IToolBar I I IToolBarcontainer I

IAminatedButton IrroolBarButtonI I IControlEvent IIIIHandlerIIIcustomButtonDrawEvent IIIICustonmuttomDrawHandlerI

Figure 1611. Tool Bar Classes.

Cfe¢pfer J6 Tool Bars, Fly-Over Help, and custom Buttons 353

Creating Tool Bar Buttons with Text and Bitmaps
IToolBarButton has a single constructor with the following declaration:

IToolBarButton (unsigned long id,
Iwindow* parent ,
Iwindow* owner ,
const IRectangle& initial = IRectangle() ,
const Style& style = defaultstyle()) ;

This constructor is the same constructor that Open Class Library provides for all classes that
derive from Iwindow. Because IToolBarButton is a control that only Open Class Library
provides and not a wrapper for an operating system control, you cannot create an
IToolBarButton using either an IwindowHandle or a numeric identifier and the Iwindow
pointer of its parent window. Table 16-1 summarizes the IToolBarButton: : Style values you
use to construct tool bar buttons.

If you create an IToolBarButton with the IToolBarButton: :useldForBitmap style, the
IToolBarButton constructor attempts to find a bitmap resource that matches the numeric
identifier you provide it. If the identifier is not in the range of bitmaps that Open Class
Library provides (Open Class Library reserves the range above IC_ID_BASE), the constructor
attempts to load the bitmap using the application's resource library that is returned from
IApplication: :current () .userResourceLibrary(). Conversely, if the identifier is in the
range of bitmaps that Open Class Library provides, the constructor tries to load the bitmap
using the resource library returned from IApplication : : current () . resourceLibrary () .

Similarly, if you create IToolBarButtons with the IToolBarButton: :useldForText style, the
IToolBarButton constructor attempts to find a text resource that matches the numeric
identifier you provide it. If the identifier is not in the range of string table resources that Open
Class Library provides, the constructor attempts to load the text using the application's
resource library. Conversely, if the identifier is in the range of string table resources that Open

Table 16-1. IToolBarButton Style Values

IToolB arButton Styles Description
bitmapAndTextvisible Displays both the bitmap and text in the button

bitmapvisible Displays only the bitmap in the button

classDefaultstyle The combination of IToolB arButton: :bitmapvisible,
IToolBarButton::useldForBitmap,IToolBarButton::useldForText,
IToolB arButton: : standardFormat, IButton: :nopointerFocus, and
Iwindow::visible

noDragDelete Does not allow a user to drag the button to the desktop shredder

standardFormat Displays the button using the rules for standard formatting (see the topic
"Standard Tool B ar Buttons")

textvisible Displays only the text in the button

usedldForBitmap Attempts to load a bitmap using the ID value

useldForText Attempts to load a text string using the ID value

354 Power GUI programming with visualAge for c++

Class Library provides, the constructor tries to load a string table resource using the library's
resource library.

Alternatively, you can call IToolBarButton : : setBitmap to specify either a numeric identifier
to load a bitmap using the same rules that the IToolBarButton constructor uses, or you can
provide the IBitmapHandle of an existing bitmap. You can specify the text for the tool bar
button in the same way, but you call the setText functions of ITextcontrol to do so.

Three construction styles affect the appearance of the bitmap and text displayed in a tool bar
button. You can create tool bar buttons with only the text visible using the
IToolBarButton::textvisible style, only the bitmap visible using the
IToolBarButton: :bitmapvisible style, or both the text and bitmap visible using the
IToolBarButton: :bitmapAndTextvisible style. The constructor throws an
IInvalidparameter exception if you specify more than one of these styles.

You can also call IToolBarButton: :setview with one of the IToolBarButton: :View
enumeration values of IToolBarButton: :bitmapview, IToolBarButton: :textview, or
IToolBarButton: :bitmapAndTextview after you construct the tool bar button to change the
contents of the button.

Although you can construct tool bar buttons to show only bitmaps, only text, or bitmaps and
text together, and you can call IToolBarButton: :setview to change what these buttons
display after you construct them, you usually change the view of the entire tool bar rather than
changing individual buttons. To change the view of all buttons on a tool bar, call
IToolBarButton: : setButtonview and supply one of the IToolBarButton: :View enumeration
values described in the previous paragraph. You can also create an IToolBar with one of the
IToolBar styles buttonBitmapvisible, buttonTextvisible, or
buttonBitmapAndTextvisible. IToolBar : : buttonBitmapvisible is the default style.

Using Thansparency with Tool Bar Buttons
Jco7cs are a special type of bitmap that the operating system draws transparently on top of
existing data on the display. In addition to the bitmap of the primary image, an icon also
contains a mczSk bz.£773czp. The operating system uses the mask bitmap to change some of the bits
in the primary bitmap to the color already on the display. In effect, the mask bitmap identifies
every bit in the primary bitmap that should remain the color of the bit already on the display.
With this support, you can create images that appear to be nonrectangular on the display.

The operating system also uses the mask bitmap to draw the transparent bits of the primary
bitmap using colors that are the inverse of those on the displ.ay. The primary use of this feature
is to draw selection emphasis around the icon' s primary image.

One restriction that you need to be aware of when you use icons is that the operating system
predefines their size and changes them to this predefined size when you load them from a
resource file. This makes it difficult for you to use icons for images in a wide variety of sizes.

Tool bar buttons support the transparency that icons provide without the restriction the
operating system imposes on the size of icons. When you create a tool bar button that uses
transparency, IToolBarButton creates an IGBitmap object that examines the bitmap you

Cfe¢pfe].J6 Tool Bars, Fly-OverHelp, and custom Buttons 355

supply and builds a mask bitmap based on the location of the bits in the bitmap that are in the
transparent color. It then uses this mask bitmap to draw the tool bar button transparently in a
way that is similar to the way that the operating system draws icons.

To use this transparency support, choose an infrequently used color as the transparent color
and use it as the background of your bitmap images. Then, call
IToolBarButton: : setTransparentcolor to set the transparent color for a single button, or
call the static function IToolBarButton: : setDefaultTransparentcolor to set the default
transparent color for all subsequent tool bar buttons.

Open Class Library provides you with a set of built-in bitmaps that already has a transparent
color. You use these bitmaps by constructing an IToolBarButton with one of the tool bar
button constants defined in ICCONST.H. These constants are described in the "Constructors"
topic of the IToolBarButton class in the Ope7® CJczss Lz.brclry Re/ereJ®ce. If you don't call
IToolBarButton: : setDefaultTransparentcolor, the value returned by the static member
IToolBarButton: : defaultTransparentcolor is the color that these built-in bitmaps require
for transparency. This color is IColor: :pink and has the RGB values of Red=255, Green=0,
and Blue=255. If you want to use some of the Open Class Library-provided bitmaps in your
application, create your bitmaps with the same pink transparent color that Open Class Library
uses. Alternatively, you can call setTransparentcolor on each button you create with its own
transparent color, or, if you change the default transparent color to match your bitmaps, call
setTransparentcolor (IColor: :pink) on the buttons that use Open Class Library-provided
bitmaps.

If you do not want to use transparent bitmaps, call the IToolBarButton static function
clearDefaultTransparentcolor to disable support for transparency. If you disable the
support for transparency, do not use Open Class Library-provided bitmaps because the
background color of the bitmaps remain pink. Also, if you disable support for transparency,
use a separate latched bitmap for each latchable tool bar button so that your users can distin-
guish the difference between the latched and unlatched states. By default, IToolBarButton
uses the mask bitmap to draw a different transparent color in the latched state; without support
for transparency in the button, it is cannot to do this. See "Latchable Tool Bar Buttons" later
in this chapter for further details.

L

Standard Tool Bar Buttons
To help you achieve a consistent look and feel in the tool bar buttons of an application and to
optimize the drawing of tool bar buttons, Open Class Library provides the
IToolBarButton : : standardFormat style to construct tool bar buttons. Sfcz73dclrd /or7#czffz.jog
refers to the size of tool bar bitmaps, the width of tool bar text, and the number of lines of tool
bar text. Call the IToolBar static functions setstandardBitmapsize, setstandardTextLines,
and setstandardTextwidth to set the standard parameters that IToolBar uses to create all tool
bar buttons with the IToolBar: :standardFormat style. IToolBar uses these static values to
draw the bitmap and text of all standard tool bar buttons at the same size.

Because tool bar buttons with the IToolBar: :standardFormat style have a consistent,
unchanging size, the drawing routines in IToolBar use this information to optimize the
drawing of these buttons. They do this by creating and caching a bitmap for each standard tool

356 Power GUI programming with visualAge for c++

bar button. After the brief initial delay in crea.ting these bitmaps, standard tool bar buttons
paint faster than tool bar buttons without the style.

Latchable Tool Bar Buttons
Because IToolBarButton inherits from ICustomButton, you can create tool bar buttons with
the ICustomButton: :latchable style. Latchable buttons toggle between a latched and an
unlatched state each time a user presses the button. By default, Open Class Library changes
the background of a latched button and transparently draws the button's bitmap and text on top
of the new background. You must create tool bar buttons using a transparent color for
IToolBarButton to correctly draw the latch state of these buttons. See the topic "Transparent
Tool Bar Buttons" earlier in this chapter for details on creating transparent tool bar buttons.
Alternatively, you can call IToolBarButton: : setLatchedBitmap to use a different bitmap in
the latched state.

In the topic "Grouping Buttons on the Tool Bar," you learned how to use the IControl : : group
style to arrange tool bar buttons into groups on a tool bar. The IControl : : group style not only
groups buttons visually, it also affects the behavior of tool bar buttons with the
ICustomButton: : autoLatch style. Buttons in the same group with the auto-latch style behave
like a set of radio buttons. When a user presses one button in a group of auto-latch buttons, the
button enters into and then displays the latched state. At the same time, other auto-latch
buttons in the same group return to the unlatched state.

Creating Tool Bars
With IToolBar, you can group buttons on the tool bar, specify the amount of space, or pczd,
between these groups of buttons, specify the amount of pad between buttons, and specify the
amount of pad around the sides of the tool bar. Again, it is Isetcanvas that provides the
interface for and implementation of all of these features. When you indicate that you want to
create a new group of buttons bn the tool bar, IToolBar adds the IControl : : group style to the
first window in the group by calling IControl: :enableGroup. Isetcanvas uses this style,
along with the group pad you've specified, to lay out the windows in the correct groups. For
further details, see the topic "Grouping Buttons on a Tool Bar" later in this chapter.

You create tool bars using the following two constructors:
IToolBar (unsigned long

IFramewindow*
Location
Boolean
const Style&

IToolBar (unsigned long
IToolBar*
Boolean
const Style&

identifier,
Ouner,
location = aboveclient,
groupwithpreceding = false
style=defaultstyle ()) ;identifier,
precedingToolBar ,
groupwithpreceding = falsestyle=defaultstyle ()) ;

Use the first of these constructors to create a single tool bar in one of the IToolBar : : Location
areas. Use the second constructor to create a tool bar after an existing tool bar (the
precedingToolBar argument in this constructor) in the IToolBar: : Location of the preceding
tool bar. Table 16-2 summarizes the IToolBarButton: : Style values that you use to construct
tool bars. The following topics discuss tool bar locations and tool bar grouping in more detail.

Cfeapfer J6 Tool Bars, Fly-Over Help, and custom Buttons 357

Table 16-2. IToolBar Style Values

IToolBar Styles Description
buttonBitmapAndTextvisible Displays both the bitmap and text in all tool bar buttons

buttonBitmapvisible Displays only the bitmap in all tool bar buttons

buttonTextvisible Displays only the text in all tool bar buttons

classDefaultstyle The combination of IToolBar: :filterMisfits, IToolB ar: :bitmapvisible, and
Iwindow::visible

filterMisfits Automatically removes windows in a horizontal tool bar that exceed the
misfit width

noDragDrop Disables direct manipulation to and from the tool bar and its tool bar
buttons

Tool Bar Locations
When you create a tool bar for a frame window, you specify the location where you want the
tool bar placed relative to that frame window, You specify the location on the IToolBar
constructor with one of the following values of the enumeration IToolBar : : Location:

IToolBar : : aboveclient
IToolBar : : belowclient
IToolBar : : 1ef tofclient
IToolBar : : rightofclient
IToolBar : : f loating
IToolBar : : hidden

IToolBar: :hidden creates an invisible tool bar. The remaining tool bar locations are
displayed in Figure 16-2.

Frame Extension Tool Bars
When you use one of the first four IToolBar : : Location values to create a tool bar or to change
its location using IToolBar : : setLocation, IToolBar positions itself inside the frame window
relative to the client window. The first time you create an IToolBar object in one of the four
client-related areas, IToolBar creates an IToolBarcontainer and calls
IFramewindow: :addExtension to put the IToolBarcontainer into the appropriate frame
extension area. IToolBar then makes itself a child window of the tool bar container. As we
explain shortly, it is this use of IToolBarcontainer that allows you to create more than one
tool bar in each client-related area.

Because most applications position their tool bars above the client window,
IToolBar::aboveclient is the default location used if you do not specify an
IToolBar : : Location value on the constructor.

358 Power GUI programming with visualAge for c++

Left of client Above client Right of client

-±iiiL|:i-,Li-.-:i=,L:LL±L:::ii.LJI-i-.-A----.:|>-.-=f::.::i=:i=::I::.-::=i=-i[=:I::i:i..::i:i._==:_-i.I:3=_I:.J-,III]inI=mlE--I: HfflEH

a

¥-|EL , . , . . . t] I
---~-..

.ffiiffii:RE<'..``^--..'`'.'.'`.''''"-...`."'^`.``....''.`^i

_.___-..I.

EREEL„``-`--r--.-`--------------_I

+

\ J* _£` r *S¥.{v`:::¥t;.:`*i¢.*`::t:.rfe^`rf~q?Sx£ ¢++,* :v.„

E

E_
H_+}+ ++1+\'i

`'ir i,6/¢ .` `k..i`^ <*``,tf¢` €-,1, ;^-;:`+v3+•\C,\-.,..***

ERERE rna,RE'REi
...+.i,--..*..^-.+-..>.-:...:~,-,...`.5;+:i:-:`,I.:,:`+:J=.:.-.=J:::.v,_`_._ __i _. ___-J_.__ _ ____I___,, ,:_ _ ., ` ,., .-_. .

\Flo
thng B eiow cfient

Figure 16-2. Tool Bar Locations in the Windows qeft) and OS/2 Operating Systems.

Floating Tool Bars
When you create a tool bar with the location IToolBar: : floating, or when you change the
location to floating using IToolBar: : setLocation, IToolBar puts the tool bar into the client
area of a separate frame window. It creates this frame window by calling
IToolBar : : f loatingFrame the first time that the tool bar needs a floating frame window. This
function creates and returns an IToolBarFramewindow. IToolBar then calls
IFramewindow: : setclient to make itself the client window of the floating frame window.
Unlike tool bars created in one of the frame extension areas, an IToolBar in a floating frame
window is not the child of an IToolBarcanvas. Because of this, you can only put a single tool
bar inside the client area of a floating frame window.

If you want to create a different floating frame for your tool bars, you can derive a class from
IToolBarFramewindow and build a different frame window. Then, derive another class from
IToolBar and override the function IToolBar: : floatingFrame and create and return your
floating frame window replacement.

Depending upon which operating system you use, IFloatingFramewindow has several useful
functions. In both the Windows and OS/2 operating systems, IToolBarFramewindow has
buttons that allow a user to show and hide the tool bar contained in the client window. With
this feature, shown in Figure 16-3, your users can "roll up" the buttons in the tool bar to
conserve screen real estate when they are not using them, and then they can roll them back
down when they need to use them.

Cfea!pfer J6 Tool Bars, Fly-Over Help, and custom Buttons 359

Figure 16-3. Buttons in Floating Tool Bar Frame Windows.

In the OS/2 operating system, IToolBarFramewindow has a "pin" button that allows the floating
tool bar to be attached to its owning frame window so that it moves with the frame window.
This button is not currently supported in the Windows operating system.

Grouping Buttons on the Tool Bar
For many of your applications, you do not need to create more than a single tool bar. Just
create a default tool bar as a frame extension above the client window and use the group
behavior of IToolBar to separate the buttons on the tool bar into logical groups. You start a
new group of buttons by setting the startNewGroup parameter to true when you add a new
button or move an existing button to a new location.

By default, IToolBar leaves 8 pixels of space between groups of buttons. You can call
IToolBar : : setGrouppad to change the group pad for a single tool bar or call the static function
IToolBar: :setDefaultGrouppad to change it for all subsequently created tool bars.
Figure 16-4 displays groups of buttons on a tool bar with the group pad set to 16 pixels.

Adding Decks to a Tool Bar
We started our discussion of tool bars by pointing out that IToolBar inherits its layout
behavior from its Isetcanvas parent class. As you learned in Chapter 15, "Canvases,"
Isetcanvas supports laying out its child windows into decks. As you would expect, you can
take advantage of this feature in the tool bar. In the code following, we create the same tool

360 Power GUI programming with visualAge for c++

Figure 1614. Using Group Pad with Tool Bar Buttons.

bar as the one shown in Figure 16-4 except that we create it to the left of the client window,
and we call Isetcanvas: :setDecks to change the layout to two decks. Figure 16-5 displays
this tool bar.

Tool Bar with Decks - toolbar\tbardeck\tbardeck.cpp
#include
#include
#include
#include
#include
#include

< i f rare . hpp>
= i tbar . hpp=
<i tbarbut . hpp>
=imle.hpp=
=iapp.hpp=
< iccons t . h>

void main ()
(
IFramewindow

fralne ("Tool Bar With Decks Example") ;

// Create an ELE for the client area.
IMultiLineEdit

mle (IC_FRAME_CLIENT_ID, &frame, &frame) ;

Figure 16-5. Tool Bar with Two Decks to the Left of the Client.

Cfeapfe7. J6 Tool Bars, Fly-OverHelp, and custom Buttons 361

// Create a tool bar to the left of the client window.
IToolBar

leftofclient(OxO1, &fralne, IToolBar: :1eftofclient) ;

// Create some library-supplied tool bar buttons.
IToolBarButton
cutButton
copyButton
pasteButton
openButton
saveButton
printButtonlocateButton
helpButton
boldButton
italicButton

(IC_ID_CUT '
(IC_ID_COPY '
(IC_ID_PASTE ,
(IC_ID_OPEN '
(IC_ID_SAVE ,
(IC_ID_PRINT ,
(IC_ID_LOCATE ,
(IC_ID_HELP ,
(IC_ID_BOLD ,
(IC_ID_ITALIC ,

&1eftofclient,
&1eftofclient,
&1eftofclient,
&1eftofclient,
&1eftofclient,
&1eftofclient,
&1eftofclient,
&1eftofclient,
&1eftofclient,
&1eftofclient,

&1eftofclient)
&1eftofclient)
&1eftofclient)
&1eftofclient)
&1eftofclient)
&1eftofclient)
&1eftofclient)
&1eftofclient)
&1eftofclient)
&1eftofclient)

underscoreButton (IC_ID_UNDERSCORE , &1eftofclient , &1eftofclient)
settingsButton (IC_ID_SETTINGS, &1eftofclient, &1eftofclient) ,
copyTOBut ton (IC_ID_COPYTO ,

// Add the buttons to the toolleftofclieit
adchsLast (
adchsLast (
adcIASLast (
adchsLast (
addisLast (
adchsLast (
adchsLast (
addASLast (
adchsLast (
addASLast (
adchsLast (
addASLast (
addASLast (

&1eftofclient, &1eftofclient) ;
bar.

&cutButton)
©Button)
&pasteButton)
&openButton, true)
&saveButton)
&settingsButton)
©TOButton)
&printButton, true)
&1ocateButton)
&helpButton)
&italicButton, true)
&underscoreButton)
&boldButton) ;

1eftofclient . setDeckcount (2) ;
frame

.setclient (&mle)

. setFocus ()

. show () ;
IApplication : : current () . run () ;

)

Using Multiple Tool Bars
For those times when you need more flexibility, either because you have a lot of buttons on
your tool bar or because you want to control the display of different sets of buttons on the tool
bar, Open Class Library allows you to put any number of tool bars into one of the frame
extension areas. You can do this because the top-level window in every frame extension area
is an IToolBarcontainer and, like its parent Isetcanvas, IToolBarcontainer can lay out and
display any number of child windows.

When you create the first IToolBar in one of the client-related locations, the IToolBar
constructor automatically creates an IToolBarcontainer, calls IFramewindow : : addExtension
to put it into the correct frame extension area, and creates the new IToolBar as a child of the
IToolBarcontainer. If an IToolBarcontainer already exists in the frame extension, the
IToolBar constructor creates the new IToolBar as a child of the existing IToolBarcontainer.

362 Power GUI programming with visualAge for c++

Figure 16-6 shows a tool bar that looks almost exactly like the tool bar in Figure 16-5. In
Figure 16-5, we got two columns of buttons by setting the deck count of a single tool bar to 2.
If you look carefully at Figure 16-6, you see that there are four tool bars inside a tool bar
container. In most situations, your users would not notice the difference, but there is an
important distinction between the two examples. Because we built the second example with a
separate tool bar for each group of buttons, we can manipulate these groups as a whole. For
example, we could add a settings notebook to our program that allowed our users to choose
which tool bars they wanted to use and under what circumstances they needed them. It is also
a simple matter to hide and show entire tool bars. And even more important, your users can
directly manipulate these tool bars using the mouse. The code for this tool bar follows:

Multiple Tool Bars - toolbar\tbarmult\tbarmult.cpp
#include
#include
#include
#include
#include
#include

< i f rare . hpp>
= i tbar . hpp=
< i tbarbut . hpp>
=imle.hpp=
=iapp.hpp=
<icconst . h>

void main ()
(
IFranewindow

frame (`'Tool Bar Container Example") ;

// Create an MLE for the client area.
IMul tiLineEdi t

mle (IC_FRAME_CLIENT_ID, &frame, &frame) ;

// Create a number of tool bars to the left of the client.
IToolBar

1eftofclientll
leftofclientl2
1eftofclient21
1eftofclient22

IToolBar : : 1ef tofclienE) ,
IToolBar: :1eftofclient, true) ,
IToolBar : : 1eftofclient) ,
IToolBar: :1eftofclient, true) ;

// Create some library-supplied tool bar buttons.
IToolBarButton
cutButton
copyButton

(IC_ID_CUT, &1eftofclientll, &leftofclientll) ,
(IC_ID_COPY, &1eftofclientll, &1eftofclientll) ,

Figure 16-6. Multiple Tool Bars to the Left of the CHent Window.

Cfeapfer z6 Tool Bars, Fly-OverHelp, and custom Buttons 363

pasteButton
openButton
saveButton
settingsButton
copyTOButton
printButtonlocateButton
helpButton
boldButton
italicButton

IC_ID_PASTE, &1eftofclientll, &1eftofclientll) ,
IC_ID_OPEN, &1eftofclientl2 , &1eftofclientl2) ,
IC_ID_SAVE, &1eftofclientl2 , &1eftofclientl2) ,
IC_ID_SETTINGS , &1ef tofclientl2 , &1ef tofclientl2
IC_ID_COPYTO, &1eftofclientl2
IC_ID_PRINT, &1eftofclient21,
IC_ID_LOCATE,&1eftofclient21,
IC_ID_HELP, &1eftofclient21,
IC_ID_BOLD, &1eftofclient22,
IC_ID_ITALIC , &1eftofclient22 ,

&1eftofclientl2
&1eftofclient21
&1eftofclient21
&1eftofclient21
&1eftofclient22
&1eftofclient22

unders coreButton (IC_ID_UNDERSCORE , &1 ef tofcl ient2 2
&1eftofclient22) ;

// Add the buttons to the tool bar.1ef tofclientll .
.adchsLast (
.adchsLast (
.adchsLast (

1eftofclientl2
.adcIASLast (
.adchsLast (
.adchsLast (
.adchsLast (

1eftofclient21
.adcIASLast (
.adchsLast (
.addASLast (

1eftofclient22
.adchsLast (
.adchsLast (
.addLASLast (

&cutButton)
©Button)
&pasteButton) ;

&openButton)
&saveBUEton)
&settingsButton)
©TOButton) ;

&printButton)
&1ocateButton)
&helpButton) ;

&italicButton)
&underscoreButton)
&boldButton) ;

frame
.setclient (&mle)
. setFocus ()
. show () ;

IApplication : : current () . run () ;

)

Direct Manipulation Support
Unlike many other controls in Open Class Library, the tool bar is enabled for direct manipu-
lation by default. With direct manipulation enabled, your users can use the mouse to do the
following tasks:

• Reorganize the buttons within atoolbar
• Movebuttons to a differenttoolbar
• Reorganize the tool bars within a frame extension area
• Move a tool bar to a different frame extension area or make it a tool bar within a floating

frame window
• Change the bitmap displayed within a tool barby dropping a bitmap file onto it

Although Open Class Library enables all of these direct-manipulation features by default,
before your users can take advantage of them, you must first do some work. For example, if
you want to allow your users to be able to rearrange the buttons on the tool bar or move them to
a different tool bar, add code to save their new locations in a profile and use them to create the
tool bars on subsequent uses of your application. If for any reason you do not want to do this,
turn off the direct-manipulation support in your tool bars. To disable that support, either

364 Power GUI programming with visualAge for c++

create the IToolbar object with the style IToolBar::noDragDrop or call
IToolBar : : disableDragDrop after you create the tool bar.

Removing Misfits in Vertical Tool Bars
Until now, we have not discussed the fact that tool bars can contain any Iwindow-derived class.
In most cases, you put these windows into a tool bar in the same way that you do tool bar
buttons. In practice, many Iwindow-derived classes such as list boxes, notebooks, and
containers serve no function in a tool bar. The drop-down combination box and the entry field
are controls that you might find useful, but only on a horizontal tool bar. Their width makes
them unsuitable for a vertical tool bar. For this reason, IToolBar includes 77®z.F/I.£ /z.Jferz.jog.
IToolBar filters, or temporarily removes, any control from a vertical tool bar that exceeds the
value that you supply for a misfit width. By specifying an appropriate misfit width, you can
add combination boxes and entry fields to a vertical tool bar that do not display if your user
drags the tool bar to one of the vertical frame extension areas.

You control misfit filtering with the IToolBar: :filterMisfits style. This style is on by
default. You can call IToolBar:enableMisfitFiltering and disableMisfitFiltering to
turn filtering on and off after constructing a tool bar, and you can call
IToolBar : : isMisfitFilteringEnabled to determine whether filtering is active.

You can also set the misfit width used to construct new tool bars, but you cannot control the
misfit width of an individual tool bar. Call the static function
IToolBar: :setDefaultMisfitwidth to change the misfit width for tool bars and call
IToolBar : : defaultMisfitwidth to determine the misfit width for new tool bars.

Fly-Over Help
Open Class Library provides classes that you can use to add support for Jzy-oi;er (or hoverJ
help to your applications. Fly-over help displays brief informational or instructional text for
the window that is underneath the mouse pointer. Using this form of help, users can quickly
identify the function of or get instructions for using a graphical button or any other element in
a user interface by moving the mouse to that window. Users neither request help by pressing
the Fl key or a mouse button nor explicitly dismiss it. More important, users do not have to
move the input focus to the control for which they want help, and the window with input focus
does not lose that focus to a help window. As a result, users do not have to change the state of a
window. The frame window, however, does have to be active (a control that has the frame in
its parent window chain must have input focus) before fly-over help can be displayed.

The text displayed in fly-over help is not in the form of a traditional help panel (see
Chapter 23, "Using Help".) Instead a user sees a short, single line of text displayed in an
IFlyText window, a longer text string displayed in any control derived from ITextcontrol, or
both. Figure 16-7 shows an example of both short and long text strings. The fly-over text
window is positioned near the window that is beneath the mouse pointer. In practice, neither
the short nor long text string can be very long. As a result, it is perhaps best to use fly-over
help to inform or to suggest usage rather than to provide details.

Cfe¢pfe7. J6 Tool Bars, Fly-OverHelp, and custom Buttons 365

Figure 16-7. Fly-Over Help Features on the Windows qeft) and OS/2 operating systems.

Fly-over help is particularly well suited for tool bar buttons that typically do not accept input
focus. (Without input focus, a user cannot request contextual help with the Fl key.) In
addition, these buttons generally do not display text; they display bitmaps or icons whose
meanings may not be obvious to a user. We include an example of fly-over help for a tool bar
later in this chapter.

Adding fly-over help to your application requires minimal changes to your user interface (for
example, an added control to display the long text or a menu choice for a user to be able to
enable or disable this feature). You also need only add a minimum of code to support fly-over
help because you can use the IFlyoverHelpHandler and IFlyText classes without having to
derive your own classes. You do, however, need to plan how to assign window identifiers to
ensure that the appropriate fly-over help is displayed for the appropriate controls. We describe
the role of window identifiers in the section, "Specifying Fly-over Help Text."

You do not have to provide fly-over help text for every window and control in your applica-
tion. In fact, you probably do not want to provide fly-over help for relatively unimportant
elements in your user interface, such as static controls. A good first step is to supply fly-over
help only on tool bar buttons.

Creating and Attaching the Fly-Over Help Handler
IFlyoverHelpHandler is the most important class for supporting fly-over help. Unlike using
most event-handling classes, you do not have to create your own class derived from
IFlyoverHelpHandler to add fly-over help support. You simply construct an

366 Power GUI programming with visualAge for c++

IFlyoverHelpHandler object and attach it to appropriate windows in your application. You
create an IFlyoverHelpHandler using one of the following constructors:

IFlyoverHelpHandler (IFlyText* flyText,
unsigned long initialDelay = 100,
unsigned long delay = 100);

IFlyoverHelpHandler (ITextcontrol* 1ongText,
unsigned long initialDelay = 100,
unsigned long delay = 100);

IFlyoverHelpHandler (IFlyText* flyText,
|Textcontrol* 1ongText,
unsigned long initialDelay = 100,
unsigned long delay = 100);

Displaying Long Fly-Over Text
Before you create the fly-over help handler, you need to create the controls that display the
help text. You can create an IFlyText object for short text, an ITextcontrol-derived object
for long text, or both controls to display short and long text simultaneously.

You typically use an IstaticText object or an IInfoArea object for displaying long text. If
you do not specify a window to display long fly-over help, the text is never shown to the users.
Therefore, to stop displaying long fly-over help, pass a 0, which indicates no window, to
IFlyoverHelpHandler : : setLongTextcontrol.

Displaying Short Fly-Over Text
IFlyoverHelpHandler only displays short fly-over text in an IFlyText window or an object of
a class derived from IFlyText. IFlyText includes enough standard behavior that you typically
do not need to derive from it.

The fly-over text window that IFlyText creates appears only when there is short fly-over text
to be displayed. When the mouse pointer is over a window without short fly-over text, or if the
mouse has not yet stopped over a window with short fly-over text, the fly-over text window is
not visible. When it is visible, the fly-over help handler sizes it so that the short fly-over text
appears on a single line. If the text contains carriage-return and line-feed characters (CR/LF),
IFlyText strips them off prior to displaying the text.

In the Windows operating system, IFlyText displays its text using the Tool Tip control. This
control positions itself relative to the mouse pointer.

Currently, in the OS/2 operating system, IFlyoverHelpHandler positions the fly-over text
window on a corner of the window that is beneath the mouse pointer. The handler first tries to
place the fly-over text window below and to the right of the window beneath the pointer. If the
fly-over text window does not fit on the display, the handler then tries to position it below and
to the left of the window. The final two positions that the handler tries are above and to the left
and above and to the right. As you see in Figure 16-7, a corner of the fly-over text window
contains an arrow that points to the window underneath the mouse pointer.

Cfeapfer z6 Tool Bars, Fly-Over Help, and custom Buttons 367

While this positioning in the OS/2 operating system ensures that the fly-over text window
never covers the window that a user wants to learn about, it has some weaknesses. The first
drawback is that the fly-over text window can be displayed far from the mouse pointer and,
consequently, far from a user's attention. Second, the entire fly-over text window does not
appear entirely within the boundaries of the display if the window beneath the mouse pointer is
too large. Third, the fly-over help window may appear to be positioned far from the right
boundary of a window because the edge of a window can extend beyond where you expect it to.
For example, the right edge of a check box or radio button might extend considerably past the
end of the text.

The fly-over text window is always a child window of the desktop window. This allows it to be
placed anywhere on the screen, including outside your application's frame window. You can
specify the owner of the fly-over text window, however. In practice, the owner needs to be
either a frame window or 0. Using 0 allows you to use the same IFlyText object for multiple
frame windows. Using a frame window as the owner allows you to limit the lifetime of the
presentation system window of the IFlyText object to that of its owning frame window (a
frame window destroys all windows that it owns when it is destroyed). If you call
Iwindow: : setAutoDeleteobject on the IFlyText object, Open Class Library deletes the C++
object when the presentation system window is destroyed. The owner window has no other
significance beyond this.

Most of the preceding fly-over text attributes, including window location and size, arrow
shape, and window border, are not configurable. If this standard behavior is acceptable, using
IFlyText is extremely easy because typically you only need to constr.uct a fly-over text
window and pass it to an IFlyoverHelpHandler. And, you only need to call a function of an
IFlyText object to change the font or color of its text.

If you do not specify a window to display short fly-over help, the text is never shown to the
user. Likewise, to stop displaying short fly-over help, pass a 0, which indicates no fly-text
window, to IFlyoverHelpHandler : : setFlyTextcontrol.

Specifying the Timer Delay
To control the display of help text, use the IFlyoverHelpHandler constructors to specify two
time-delay intervals. The delays exist so that a user who is randomly moving the mouse
(without intending to explore the user interface), does not see a series of fly-over help text
windows. The initialDelay parameter controls the initial display of fly-over help. This is
the delay between when users stop the mouse pointer over a window and when they first see
the fly-over help displayed. The default initialDelay is 100 milliseconds. The delay
argument controls subsequent displays of fly-over help. Its default is also 100 milliseconds.

Attaching the Fly-Over Help Handler
After you create the controls for displaying help text and the fly-over help handler, attach the
handler to appropriate windows so that the handler can detect when a user positions the mouse
pointer over a window or one of its child windows. If you plan to add fly-over help only to
your tool bar buttons, simply attach an IFlyoverHelpHandler object to the tool bar.

368 Power GUI programming with visualAge for c++

If you plan to add fly-over help to other controls in your application, the process is more
complicated. The design of fly-over help might require you to attach the handler to lower-
1evel child windows. If you do not want to provide fly-over help for all controls on a given
frame window, attach the handler to the windows that have fly-over help text further down the
parent and owner chain. You might want to do this because you cannot ensure that all windows
that need unique fly-over help text use unique window identifiers or because the combination
of window identifiers and offsets might not identify the correct strings in all cases. See the
topic "Providing Unique Window Identifiers" for further details.

Specifying Owner Windows
Before you can provide fly-over help for a window, ensure that its owner window chain leads
to a window where you have attached a fly-over help handler. That window in the owner chain
must also exist in the parent chain of the window for which you are providing fly-over help.
Therefore, you can only provide fly-over help for child windows.

Do not expect a fly-over help handler attached to a window in the owner chain of a frame
window to process fly-over help requests for the frame window. Because frame windows do
not ordinarily pass the messages that the fly-over help handler uses (WM_MOUSEMOVE,
WM_CONTROLPOINTER in OS/2 operating system or WM_SETCURSOR in the Windows operating
system) to their parent or owner window, such a handler is not called when the mouse is over
the frame window.

Using a Flyl0ver Help Handler with a Mouse Handler
If you use an IFlyoverHelpHandler with an IMouseHandler, the fly-over help handler might
stop working. This happens because both handlers process the same mouse messages. If you
override IMouseHandler: :mouseMoved or IMouseHandler: :changeMousepointer,
IMouseHandler can process the WM_MOUSEMOVE message and either the WM_CONTROLPOINTER
message in the OS/2 operating system or the WM_SETCURSOR message in the Windows operating
system. This prevents an IFlyoverHelpHandler from being called. Note that this can occur
even if the mouse handler is not attached to the same window as the IFlyoverHelpHandler but
is somewhere in the owner chain.

Disabling Fly-Over Help
Users may want a way to stop fly-over help after they are familiar with an application. With
IFlyoverHelpHandler, you can independently disable the display of short text and long text.
Call IFlyoverHelpHandler: :setFlyTextcontrol(0) to disable short text or call
IFlyoverHelpHandler: :setLongTextcontrol(0) to disable long text. You can also call
IHandler : : disable to disable the handler itself, thus disabling both short and long text.

Cfeapfe7. Z6 Tool Bars, Fly-OverHelp, and custom Buttons 369

Composite Controls
A control implemented with multiple windows is a co77®poSz.fe co73£roJ. Typically, you program
to such controls without knowing this. Composite controls appear and act as a single window.
For example, the combination box is a composite control. To design a composite control, you
usually expend considerable effort to make the windows behave as one window. Supporting
fly-over help for such controls, such as for the composite controls that Open Class Library
provides, requires additional work.

Specifying Fly-Over Help Text
The IFlyoverHelpHandler class gives you two ways to specify the help text it displays for a
window. The first is to associate the identifier of the window with a text string in a string table
resource. The second is to associate the handle of the window with a text string. Each method
has its advantages and disadvantages. Note that you cannot use both techniques for the same
window. For example, you cannot supply short text based on a window identifier and long text
via a window handle.

Specify Flylover Help Based upon Window Identifiers
The fly-over help handler checks if you specified help text for the window handle before
trying to load the text from a string table resource. To specify help text for a window handle,
call IFlyoverHelpHandler: : setHelpText and pass it the window handle and the short and
long text strings. (You can specify the help text either as an Istring or as an IResourceld.)
Calling this function is the only way you can provide help text for a window without a corre-
sponding C++ object. It is also the easiest way to display different fly-over help for windows
with corresponding C++ objects that have the same window identifier. For example, in the
OS/2 operating system, the child entry-field controls of combination-box controls always have
a window identifier of CBID_EDIT.

Specify Fly-Over Help using Resource Identifiers
If you do not call IFlyoverHelpHandler: :setHelpText for a window handle, the handler
determines the fly-over help text for a window from its window identifier. This is similar to
the design of IInfoArea that you use with menus (see Chapter 5, "Frame Window Basics," for
details on the IInfoArea class). Like IInfoArea, IFlyoverHelpHandler reads the help text
from a string table resource. IFlyoverHelpHandler determines the identifier of the help text
string in the string table by adding a numeric offset to the identifier of the window beneath the
mouse pointer. The offsets for retrieving the short and long help text strings both default to 0.
Short text is displayed in a fly-over text window; long text is displayed in a text control. If you
plan to show different short and long text strings, change at least one of these offsets. Call
IFlyoverHelpHandler : : setFlyTextstringTableof fset to set the offset of the short help text
strings, and call IFlyoverHelpHandler: : setLongstringTableoffset to set the offset of long
help text strings.

370 Power GUI programming with visualAge for c++

Each IFlyoverHelpHandler reads text strings from a single string table resource that is loaded
from a single resource library. Call IFlyoverHelpHandler : : setResourceLibrary to specify a
resource library for the handler to load these text strings. If you do not call this function, the
handler loads text strings from the application resource library, which you set by calling
IApplication : : current () . setuserResourceLibrary () .

Although each IFlyoverHelpHandler reads its strings from a single resource library, you can
use more than one fly-over help handler for the same frame window. Each handler can then
read its strings from a different resource library. However, this approach does not work well
unless both handlers write their text to different short and long help text controls. You can do
this easily for the short text because you simply construct another IFlyText control. The long
text is more of a problem because you typically do not want to use two controls to display the
long text.

Displaying Default Fly-Over Help Text
If the mouse pointer is over a window that has a fly-over help handler attached to it or a
window in its parent chain, but it has no fly-over help defined for it, IFlyoverHelpHandler
displays its default text. You can change the default text through the function
IFlyoverHelpHandler: : setDefaultText. If you do not call this function, no text is displayed
as the default text.

Providing Unique Window Identifiers
Perhaps the most difficult part of setting up fly-over help strings in a string table is using
window identifiers and offsets that result in a unique set of strings. This problem is further
complicated by a possible conflict with the strings that IToolBarButton and IInfoArea use. If
you use an IInfoArea window and display fly-over help by window identifiers, you must
ensure that menu identifiers do.not conflict with window identifiers to avoid using fly-over
help strings as information text for menus.

The following sample, shown in Figure 16-7, demonstrates how to complete the following
tasks:

• Specify a resource library for string resources

• Specify a short andlong offsetforresources

• Use text strings that are not automatically loaded from a resource library for short and
long help text

Basic Fly-Over Help Implementation - toolbar\flybasic\flybasic.cpp
#include
#include
#include
#include
#include
#include
#include
#include

< i frame . hpp>
< ipushbut . hpp>
= i imf oa . hpp=
=i f lytext . hpp>
<iflyhhdr.hpp>
< icoordsy . hpp>
<icanvas.hpp>" flybasic . h"

Cfe¢pfer J6 Tool Bars, Fly-Over Help, and custom Buttons 371

void main()
(

ICoordinatesystem: : setApplicationorientation (
ICoordinatesystem: : originupperLeft) ;

IFramewindow frame (''Basic Fly-over Help") ;
Icanvas client (IC_FRAME_CLIENT_ID, &frame, &frame) ;
frame . setclient (&client) ;

// Create the fly-over text for short text and an info area
// for long text.
IFlyText flyText (ID_FLYTEXT, &frame) ;
IInfoArea infoArea (&frame) ;

// Create the fly-over help handler and attach it to the
/ / f:rEENe;.
IFlyoverHelpHandler flyHandler (&flyText, &infoArea) ;
f lyHandler . handleEventsFor (&frame) ;

// Set the string table offsets into the handler.
f lyHandler . setFlyTextstringTableof f set (FLYTEXT_OFFSET) ;
flyHandler. setLongstringTableoffset (LONGTEXT_OFFSET) ;

// Create buttons that have fly-over and long text. The
// first button's text comes from the application resource
// file and the second button's text is specified here.
IPushButton resourceButton(ID_BUTTON1, &client, &client,

IRectangle(20,100,120,150));
resourceButton . setText (ID_BUTTON1) ;

IPushButton textButton (ID_BUTTON2, &client, &client,
IRectangle(140,100, 240,150));

textButton. setText (`'Stop") ;
flyHandler . setHelpText (textButton.handle () ,"Press to Stop",

''Press to stop the Web Browser.'') ;

// Show the window and start the application.
frame

. setFocus ()

. show () ;

IApplication : : current () . run () ;

)

Basic Fly-Over Help Constants - toolbar\flybasic\flybasic.h
#define FLYTEXT_OFFSET 5 00
#define LONGTEXT_OFFSET 10 00

#def ine ID_BUTTON1
#def ine ID_BUTTON2
#def ine ID_FLYTEXT
Basic Fly-Over Help Resources - toolbar\flybasic\flybasic.rc
#include "flybasic.h"
STRINGTABLE PRELOAD
BEGIN

ID_BUTTON1, „Start„
ID_BUTTON1+FLYTEXT_OFFSET, "Press to start"
ID_BUTTON1+LONGTEXT_OFFSET, `'Press to start the Web Browser. "

END

372 Power GUI programming with visualAge for c++

Providing Flylover Help for a Tool Bar
Providing additional help for tool bar buttons is perhaps one of the best uses of fly-over help
for the following reasons:

• These buttons may not otherwise have text associated with them.

• By default, these buttons do not accept input focus. Therefore, a user cannot request
contextual help with the Fl key.

In addition to providing fly-over help for the buttons on a tool bar, you might also consider
grouping your buttons logically into different tool bars and adding help for the group of
buttons by providing it for each tool bar.

If you support the ability to drag and drop menu items onto a tool bar, and if you provide
fly-over help for tool bar buttons, then you also need to provide fly-over help for these tool bar
buttons that a user can create.

The following example demonstrates the addition of fly-over help to a simple tool bar. It
shows you how to add fly-over help for both the buttons of the tool bar and the tool bar itself.

Tool Bar Fly-Over Help - toolbar\flytbar\flytbar.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include

< i f rare . hpp>
< ipushbut . hpp>
= i imf oa . hpp=
= i f lytext . hpp=
<iflyhhdr.hpp>
<icanvas.hpp>
= i tbar . hpp=
< i tbarbut . hpp>" f lytbar . h"

void main()
(

// Create the frame,
// the tool bar.

a canvas for the client, and
IFramewindow frame (`'Tool Bar Fly-over Help") ;
Icanvas client (IC_FRAME_CLIENT_ID, &frame, &frame) ;
frame . setclient (&client) ;

// Create the fly-over text for short text and an info area
// for long text.
IFlyText flyText (ID_FLYTEXT, &frame) ;
IInfoArea infoArea (&frame) ;

// Create the fly-over help handler for our own resources
// and attach it to the fralne.
IFlyoverHelpHandler flyHandler (&flyText, &infoArea) ;
f lyHandler . handleEventsFor (&frame) ;

// Set the string table offsets for our resources.
flyHandler . setFlyTextstringTableoffset (FLYTEXT_OFFSET) ;
flyHandler. setLongstringTableoffset (LONGTEXT_OFFSET) ;

// Create a tool bar for edit controls.
IToolBar editToolBar (ID_EDITTOOLBAR, &frame) ;

Cfe¢pfe7.J6 Tool Bars, Fly-OverHelp, and custom Buttons 373

// Create the edit buttons from IOC-supplied tool bar
// buttons and add them to the tool bar.
IToolBarButton cut (IC_ID_CUT, &editToolBar, &editToolBar) ;
IToolBarButton copy (IC_ID_COPY, &editToolBar, &editToolBar) ;
IToolBarButton paste (IC_ID_PASTE, &editToolBar, &editToolBar) ;
edi tToolBar

. addASLas t (&cut)

. addASLas t (©)

. addLASLast (&paste) ;

// Create a special application tool bar.
IToolBar launchToolBar (ID_LAUNCHTOOLBAR, &editToolBar, true) ;

// Create a tool bar button of our own and add it
// to the tool bar.
IToolBarButton launchBrowser

(ID_LAUNCHWEB, &1aunchToolBar, &1aunchToolBar) ;
1aunchToolBar. addASLast (&1aunchBrowser) ;

// Show the window and start the application.
frame

. setFocus ()
• show () ;

IApplication : : current () . run (') ;

)

Tool Bar Fly-Over Help - toolbar\flytbar\flytbar.h
#define FLYTEXT_OFFSET 500
#define LONGTEXT_OFFSET 10 0 0

#define ID_EDITTOOLBAR
#def ine ID_LAUNCHTOOLBAR
#def ine ID_FLYTEXT
#def ine ID_LAUNCIIWEB

Tool Bar Fly-Over Help -toolbar\flytbar\flytbar.rc
#include <icconst.h>
#include "flytbar.h"
STRINGTABLE PRELOAD
BEGIN

ID_EDITTOOLBAR , `' ''
ID_EDITTOOLBAR+FLYTEXT_OFFSET, "Editing Tools"
ID_EDITTOOLBAR+LONGTEXT_OFFSET, `'Tools used to transfer data

to and from the clipboard"
IC_ID_CUT , " Cut "
IC_ID_COPY , " Copy"
IC_ID_PASTE , `' Pas te"
IC_ID_CUT+FLYTEXT_OFFSET, "Cut selected text to clipboard"
IC_ID_COPY+FLYTEXT_OFFSET, "Copy selected test to clipboard"
IC_ID_PASTE+FLYTEXT_OFFSET, "Paste from clipboard to cursor"
IC_ID_CUT+LONGTEXT_OFFSET, "Removes text with selection

emphasis from document and stores
it in the system clipboard."

IC_ID_COPY+LONGTEXT_OFFSET, "Copies text with selection
emphasis from document and stores
it in the system clipboard."

IC_ID_PASTE+LONGTEXT_OFFSET, ''Pastes text from the system
clipboard to the cursor location in
the document. "

ID_LAUNCHTOOLBAR , `' ''
ID_LAUNCHTOOLBAR+FLYTEXT_OFFSET , `' Start external applications "
ID_LAUNCHTOOLBAR+LONGTEXT_OFFSET, `'Starts tools that run

outside of the document."

374 Power GUI programming with visualAge for c++

ID_LAUNCHWEB , "Web Browser"
ID_LAUNCHWEB+FLYTEXT_OFFSET ''Press to Start Web Browser"
ID_LAUNCHWEB+LONGTEXT_OFFSET ''Press to start web browser"

END

#ifdef IC_PM /* PM resources */
BITMAP ID_LAUNCHWEB web.bmp

#else /* Windows resources */
ID_LAUNCHWEB BITMAP web. bmp
#endif

Custom Buttons
C#SfoJ7® bz{#o7®S are buttons that you can use to replace or extend the drawing for a button while
retaining the button behavior of a push button. Open Class Library provides this capability in
the ICustomButton and ICustomButtonDrawHandler classes. In fact, IToolBarButton
achieves most of its specialized drawing by deriving fro`m ICustomButton.

ICustomButton adds several features not found in push buttons, and you do not need to derive
from ICustomButton to use them. For example, ICustomButton supports latching a button like
you do with IToolBarButton. In fact, IToolBarButton directly inherits its latch behavior from
ICustonButton.

ICustomButton also examines its text for newline (``\n") characters and flows characters that
follow to the next line. ICustomButton: : calcMinimumsize uses this information to determine
the size of the window needed to contain these multiple lines of text. If you include
ICustomButtons in a canvas class that allows child windows to determine their size, it
automatically sizes itself around its text.

ICustomButton also draws its borders in a 3D style. .

The following example demonstrates how to create an ICustomButton with multiple lines of
text and latching behavior. Figure 16-8 displays the results of this example.

Simple Custom Button Example - toolbar\cbutsimp\cbutsimp.cpp
#include <iframe.hpp>
#include <ianimbut. hpp>
#include <isetcv.hpp>
#include <iapp.hpp>
#include <icconst.h>
void main ()
(
IFramewindow

frame ("Simple Custom Button Example") ;

// Create a set canvas for the client area.
Isetcanvas

client (IC_FRAME_CLIENT_ID, &frame, &frame) ;

// Create the custom button as a latchable button.
ICustomButton

customButton(11, &client, &client) ;

customButton
. enableLatching ()
.setText("This is a \n latchable \n custom button!") ;

Cfea!pfe7. Z6 Tool Bars, Fly-OverHelp, and custom Buttons 375

// Put the canvas in the client area and show the application.
frame

. setclient (&client)

. setFocus ()

. show () ;
IApplication : : current () . run () ;

)

Figure 16-8. Simple Custom Button Example.

Building Enhanced Custom Buttons
Even though ICustomButton is a useful button as is, its real purpose is to allow you to code
your own custom drawing for a button. You do so by deriving from
ICustomButtonDrawHandler and overloading one or all of its virtual functions. You then
attach your new class to ICustomButton. Depending upon how much of the drawing behavior
of ICustomButtonDrawHandler you'd like to change, you might also need to derive from
ICustomButton. For example, if you want to do anything that changes the size of the window
for the button, you need to override ICustomButton: :calcMinimumsize so that your button
correctly determines its size for canvas windows.

When ICustomButtonDrawHandler detects that an ICustomButton needs to be drawn, it calls
ICustomButtonDrawHandler : : drawButton to handle the drawing.
ICustomButtonDrawHandler : : drawButton calls, in order, drawBorder, drawBackground, and
drawForeground. Then, if the button is disabled, it calls drawDisabledEmphasis.

In addition to drawing the border, ICustomButtonDrawHandler: :drawBor`der shrinks the
drawing area by the size of the border and the margin. It does this by calling
ICustomButtonDrawEvent : : setDrawingArea with the size of the new drawing area. Because
of this change to the drawing area, you do not need to know the size of the border when you
draw the background and foreground.

In the toolbar\cbuthdr program on the examples disk, we demonstrate how to extend a custom
button to change its drawing behavior. The example adds a bitmap to the text for the button
and changes the bitmap as it toggles between latched and unlatched. Because we have
increased the size of the custom button by the size of our bitmap, we derive from
ICustomButton to change its minimum size calculation and to store our latched and unlatched
bitmaps. To draw the bitmap, we only need to override a single function,

376 Power GUI programming with visualAge for c++

ICustomButtonDrawHandler : : drawForeground, to draw our bitmap onto the button. Because
we want to utilize the ability of drawForeground to split the text over multiple lines, we first
draw our bitmap, and then we reduce the size of the drawing area by the size of our bitmap and
call the inherited member drawForeground to draw the text.

Animated Buttons
IAnimatedButton extends ICustomButton to provide a simple but limited method for drawing
cz7ez.7#czfed p#Sfe bz¢££o73S. Animated buttons show motion by continuously displaying a set of
graphic images. You provide IAnimatedButton with a set of bitmaps to define these graphic
images. When you activate animation, the button cycles through the set and draws each
bitmap on a time interval.

Specify the bitmaps for IAnimatedButton by providing an IResourceld for the first button you
want to display and the count of all bitmaps. The numeric identifiers of the additional bitmaps
must be in exact numeric order following the first bitmap, and they must be in the same
resource library.

Call IAnimatedButton: :setAnimationRate to change the time interval. The default
animation rate is one per second.

Open Class Library also provides a number of animated buttons that you can use. Call
AnimatedButton::setBitmaps with one of the values of the enumeration
IAnimatedButton : : AnimatedButtons.

The toolbar\animated program on the examples disk demonstrates how to create animated
buttons using bitmaps in a resource file and how to create animated buttons using the
animation buttons that Open Class Library provides.

Location of Example Code for Figures
Many of the figures in this chapter are screen captures of example programs not included in
this chapter. Table 16-3 describes where you can find this code on the examples disk provided
with the book.

Table 16-3. Location of Example Programs for Figures

Sample LocationiF Figure\ Figure Description J¢

samples\toolbar\tbarlocs 16-2 Tool Bar Locations in the Windows and OS/2 Operating Systems

samples\toolbar\tbarfrms 16-3 Buttons in Floating Tool Bar Frame Windows

samples\toolbar\tbargrps 16-4 Using Group Pad with Tool Bar Buttons

samples\toolbar\tbardeck 16-5 Tool Bar to the Left of the Client with Two Decks

samples\toolbar\tbarmult 16-6 Multiple Tool Bars to the Left of the Client

Chapter 17

Reusable Handlers

Describes the event handler classes in Open Class Library that can be used witb
almost any of the window classes
Describes the ICommandHandler, ICommandconnectionTo<>, ICommandEvent,
IKeyboardHandler, IKeyboardconnectionTo<>, IKeyboardEvent, IMouseHandler,
IMouseconnectionTo<>, IMouseEvent, IMouseclickEvent, IMousepointerEvent,
IpaintHandler, IpaintconnectionTo<>, IpaintEvent, IResizeHandler, and
IResizeEvent classes

• Read chapter4 before reading this chapter.
• Chapters 5, 6, 9-16,19, and22-24 coverrelatedmaterial.

The windows and controls you can create with Open Class Library provide standard behavior
that will suit most of your needs. Still, you will find occasions when you need to use event
handler classes to modify or extend this default behavior. Chapter 4, "Windows, Handlers, and
Events," describes the architecture for event processing in Open Class Library.

This chapter describes event handler classes that you can use with any class in the Iwindow
class hierarchy and their corresponding event classes. These handler classes are as follows:

• Command handler (ICommandHandler and IcommandconnectionTo<>)
• Keyboard handler (IKeyboardHandler and IKeyboardconnectionTo<>)
• Mouse handler (IMouseHandler and IMouseconnectionTo<>)
• Window-paint handler (IpaintHandler and IpaintconnectionTo<>)
• Window-size handler (IResizeHandler)

At the time of this writing, the handler template classes-ICommandconnectionTo,
IKeyboardconnectionTo, IMouseconnectionTo, and IpaintconnectionTo-were not available
in VisualAge for C++ for OS/2, 3.0.

We describe other event handler classes in the following chapters:

• Chapter 6, "Menus and Keyboard Accelerators," for IMenuHandler and
IMenuDrawltemHandler

Chapters 9-12 for control-related handlers, including IEditHandler, IselectHandler,
IListBoxDrawltemllandler, IsliderArmHandler, and others

Chapter 13, "Container Control," for container-specific handlers

Chapter 14, "Notebook Control," for IpageHandler
377

378 Power GUI programming with visualAge for c++

• Chapter 16, "Tool Bars, Fly-Over Help, and custom Buttons," for IFlyoverHelpHandler

• Chapter 19, "Advanced Frame window Topics," for IFrameHandler

• Chapter 21, "Direct Manipulation," for drag and drop handlers

• Chapter 22, "Dynamic Data Exchange Framework," for IDDEclientconversation and
IDDETopicserver

• Chapter 23, "Using Help," for IHelpHandler

Command Handler
As described in Chapter 2, "Object-Oriented User Interface Fundamentals," an object-oriented
user interface presents visual objects to the user. A user performs tasks by acting on those
objects, such as selecting a menu choice. A number of these actions result in command events
in Open Class Library.

The ICommandHandler class provides a structured means for processing command events.
Command processing represents a higher level of abstraction than responding directly to the
user-interface events that generate command events. A command event can result from a user
selecting a choice from a menu bar or pop-up menu, from pressing an accelerator key, or from
selecting a push button. We describe these three sources of command events in Chapter 6,
"Menus and Keyboard Accelerators," and Chapter 10, "Button Controls." Typically, command

processing takes place at a frame window or its client window.

Open Class Library represents command events with the IColnmandEvent class. A command
can be either a nySfe7# co77c77®¢73d or an appJz.cczf!.o7® co77c77®cz#d. The operating system defines and
typically processes a system command. An example is the Close command that a user invokes
by selecting the Close choice from the system menu or pressing the Alt+F4 accelerator key.
This command closes a frame window. An application defines its own application commands
and must provide their implementation as well. An example is an Open or Save command,
which has a specific meaning to your application. When you create a menu item, accelerator
key, or push button that runs a command, you also identify if the command is a system
command.

To provide an implementation for an application or a system command, use the
ICommandHandlerclass or the template class ICommandconnectionTo, which derives from it.

Querying Command Information
To process a command, a command handler (or the function called by an
IColrmandconnectionTo object) relies on the information available from the IColnmandEvent
.object it receives. This object represents a command invoked by a user or the application.

The ICommandEvent: :commandld function returns the identifier for the command. The
co"7„¢73d I.de73£z.rfz.er matches the identifier of the user-interface element that generates the
command. For example, if a user selects a menu choice, the identifier of the menu item is the
identifier of the resulting command.

Cfe¢pfcrz7 ReusableHandlers 379

The IColrmandEvent : : source function returns an enumeration that identifies whether a user
invoked the command using a menu item, accelerator key, or push button. This information,
however, probably does not alter how you process a command.

Using ICommandHandler
To use the ICommandHandler class, create a class derived from it. In your derived class,
provide an implementation for one or more of the virtual functions of ICommandHandler.
Override the command virtual function to process application commands and override
systemcolnmand to process system commands. Both functions are passed a reference to an
ICommandEvent object that identifies the command and how it was invoked.

An example of a simple command handler follows.

Simple Command Handler Example - genhdrs\cmdhdrs\cmdhdrl.hpp
#include <ibase.hpp> // For IC_PM/IC_WIN.
#ifdef IC_PM

#define INCL_DOSPROCESS // For DosBeep.
#include <os2 .h>
#define BEEP (frequency, duration) (DosBeep (frequency, duration))

#else
#include <windows.h> // For Beep.
#define BEEP (frequency, duration) (Beep (frequency, duration))

#endif
#include <icmdhdr.hpp>
#include `'cmdhdrs.h"
class OneBeepcmdHandler : public ICommandHandler {
protected:
virtual Boolean

command (ICommandEvent& event)
(

Boolean dontpasson = false;
if (event.commandld() == ID_ONE_BEEP_CMD)
(

BEEP(100' 100);
dontpasson = true;

)
return dontpasson;

)
} ; // OneBeepcmdHandler

Using IC ommandc onnectionTo
An alternative to deriving from IColrmandHandler and overriding the command and
systemcommand functions is to use the template class ICommandconnectionTo. Use this class to
locate the code that processes a command in any class, rather than one derived from
IColinmandHandler. For example, you can use this support to add command processing to a
class derived from Iwindow without having to multiply inherit from ICommandHandler and
without having to create a protocol for a command handler to access data in the window class.
You can simplify design issues by using this class, although your command processing code
likely will not be reusable (command processing code generally is not very reusable because it
tends to be closely tied to window data anyway).

380 Power GUI programming with visualAge for c++

To use the ICommandconnectionTo class, instantiate the ICommandconnectionTo template and
create an object of the new template class. The constructor requires that you pass it an object
of the class you used to instantiate the template class and a member function of the object. The
member function must accept a reference to an ICommandEvent object as its only argument.
When Open Class Library calls an ICommandconnectionTo object to process a command event,
the template object calls the member function of the object you specified when you
constructed it. It calls this member function to handle both application and system commands.
Unfortunately, an ICommandEvent object does not identify whether it represents an application
or system command. As with a conventional command handler, you attach an
IColrmandconnectionTo object to a window by calling its handleEventsFor function.

The cmdhdrs\enablcmd example, which appears in the "Disabling Commands" topic later in
this chapter, uses the ICommandconnectionTo class.

Application Commands
Open Class Library reserves a number of application command identifiers, mostly for
predefined tool bar buttons. These cominand identifiers are defined in both ICCONST.H (such
as IC_ID_OPEN) and ICMD.HPP (such as ICommand: :kopenld). Because the values in ICCONST.H
are known at compile time, you can use them in switch statements and resource files. These
commands all have identifiers greater than IC_ID_BASE (Ox7000). Open Class Library leaves
the implementation of these commands to your application, because their meaning is specific
to an application.

As you learned in the topic, "Using Dialog Template Resources," in Chapter 5, "Frame
Window Basics," Open Class Library ignores application commands that are not processed by
a command handler. Therefore, if you display a window using the IFramewindow class and a
user invokes a command that your application does not explicitly process, no action occurs.

System Commands
Table 17-1 shows the system commands supported by both the Windows and OS/2 operating
systems. Chapter 6, "Menus and Keyboard Accelerators," lists the system commands that
appear on a default system menu.

Because the operating system provides an implementation for its system commands, you do
not need a cominand handler to get default processing for them. However, if you provide a
command handler and override the systemcommand function, you can replace the default
processing. By returning a value of true from systemcommand, you prevent the operating
system from processing the command. The Close system command, which corresponds to
IsystemMenu: : idclose, ICommand: :kcloseld, and IC_ID_CLOSE, is typically the only one you
might need to process. Chapter 5, "Frame Window Basics," provides an example of doing that.

Avoid using system commands outside of the system menu. The Windows operating system
does not support this, and Open Class Library on the Windows platform only supports the
Close system command on menu bars or pop-up menus. For a Windows application, Open
Class Library supports the OS/2 model of running system commands from push buttons and

Cfeapfe7.J7 Reusable Handlers 381

Table 17-1. Portable System Commands

Command Identifier Default Action

icconst.h Value ICommand Value
IC_ID_CLOSE kcloseld Closes the frame window

IC_ID_MOVE kMoveld Allows a user to move the frame window using the
keyboard or mouse

IC_ID_SIZE ksizeld Allows a user to size the frame window using the
keyboard or mouse

IC_ID_MINIMIZE kMinimizeld Minimizes the frame window if it has a minimize button
next to its title bar

IC_ID_MAXIMIZE kMaximizeld Maximizes the frame window if it has a maximize button
next to its title bar

IC_ID_RESTORE kRestoreld Restores the frame to its previous size and position if it is
minimized or maximized

IC ID SYSHIDE kHideld Hides the frame window (minimizes the frame window in
the Windows operating system)

accelerator keys, but only if you enable system command support through the IPushButton and
IAcceleratorKey classes.

Also, avoid trying to define your own system commands. The Windows operating system does
not support this. Even in the OS/2 operating system, your system command is essentially an
application command because the system does not provide any default behavior for it.

Routing of Command Events
Push buttons, menu items, and accelerator keys generate command events differently. A push
button routes a command event to its owner window. A menu item routes a command event to
the owner of the menu, which is typically a frame window. An accelerator key causes a
command event to be routed to the window owning the accelerator table, which also is
typically a frame window.

Icanvas, its derived classes, and IContainercontrol (if it has an IcnrMenuHandler attached to
it) forward command events that they receive to their owner windows. A frame window
forwards all unprocessed application commands to its client window. Although it processes all
system commands itself, a frame window also sends a Close system command to its client
window as a notification whenever it closes. No other type of window forwards command
events to another window.

These rules are the basis for choosing where to attach a command handler.

382 Power GUI programming with vlsualAge for c++

Attaching a Command Handler
Generally, the best window to attach a command handler to is a frame window or its client
window. Therefore, you can use these windows as focal points for processing command
events, regardless of their source. Call a handler's handleEventsFor function to attach the
handler to a window.

Most command handlers work equally well at either window. However, if your frame window
has no client window, attach your command handler to the frame window. If your command
handler processes system commands other than Close, attach it to the frame window. If the
client window is not an Icanvas, one of its derived classes, or an IContainercontrol with an
IcnrMenuHandler attached to it, attach the command handler to the client window. If the last
two criteria apply, you may need to attach your command handler to both windows or split it
into two classes.

You can also define commands and command handlers that are specific to a particular control.
For example, by creating a pop-up menu or accelerator table owned by a control you can cause
command events to be routed directly to that control. Controls do not generally pass the
command events that they receive to any other window. To process these commands, attach a
command handler to the control itself.

Avoiding Potential Pitfalls
Some subtle problems can cause your command handling to go awry. The following topics
describe these.

Conflicts with Other Classes
Both the IcnrMen.uHandler and IFrameHandler classes conduct specialized processing of
command events. IcnrMenuHandler causes a container to forward command events to its
owner window. IFrameHandler causes a frame window to forward command events to its
client window. As a result, these handlers can prevent command handlers that are attached to a
frame or container window from receiving a command event.

Consider this processing if you attach a command handler and either an IcnrMenuHandler or
IFrameHandler to the same window. Once the event dispatcher of Open Class Library calls
IcnrMenuHandler or IFralneHandler to process a command event, it does not call any subse-
quent handlers, including command handlers, attached to the same window. Therefore, if you
are using a container menu handler (and the container is not a client window) or your own
frame handler, attach all command handlers cI/fer it so that the command handlers are called
be/ore it. The genhdrs\cmdhdrs program on the example disk shows this technique.

Generating Your Own Command Events
You can invoke command processing from your application by explicitly sending or posting a
command event. Send and post events using the sendEvent and postEvent functions of
Iwindow or IwindowHandle. To create an application command event, specify an event

Cfe¢pfe7.J7 Reusable Handlers 383

identifier of WM_COMMAND or the Iwindow: :EventType enumeration, Iwindow: :command. To
create a system command event, specify an event identifier of WM_SYSCOMMAND (or the
Iwindow: : EventType enumeration, Iwindow: : systemcommand). Match the format of the event
parameters to the message parameters documented by the operating system for the WM_COMMAND
and WM_SYSCOMMAND messages.

The Windows and OS/2 operating systems require the message parameter data to be in
different formats. For example, in the Windows operating system, the IEventparalneter2
value must be 0 so that it can be distinguished from a control notification message, which also
uses WM_CormAND for its message identifier. The OS/2 operating system stores flags in
IEventparameter2.

An example of how to send your own command event follows.

Simple Command Handler - genhdrs\cmdhdrs\cmdhdr2.hpp
#include <ibase.hpp> // For IC_WIN/IC_PM.
#ifdef IC_PM

#define INCL_DOSPROCESS // For DosBeep.
#define INCL_WINWINDOWMGR // For CrmsRC_OTHER.
#include <os2.h>
#define BEEP (frequency, duration) (DosBeep (frequency, duration))

#else
#include <windows.h> // For Beep.
#define BEEP (frequency, duration) (Beep (frequency, duration))

#endif
#include <icmdhdr. hpp>
#include "cmdhdrs.h"
class TwoBeepcmdHandler : public ICommandllandler {
protected:virtual Boolean

command (ICommandEvent& event)
(

Boolean dontpasson = false;
if (event.commandld() == ID_TWO_BEEP_CID)
(

// Issue the first beep; then send a command event to
// invoke another command handler to do the second beep.
BEEP(200,100);
event . window ()

->sendEvent (Iwindow: : command,
#ifdef IC_PM

IEvenTparameterl (ID_ONE_BEEP_CDO) ,
IEventparameter2 (CIDSRC_OTHER, false)) ;

#else
IEventparameterl (|D_ONE_BEEP_CMD, 3) ,
IEventparameter2(0));

#endif
dontpasson = true;

)
return dontpasson;

)
} ; // TwoBeepcmdHandler

Because command events are relatively easy to send and because command handlers are easy
to create, you may be tempted to use a command event as a general notification event. Resist
doing this. Instead, use either an application-defined event and event handler class or the
notification framework.

384 Power GUI programming with visualAge for c++

There are several reasons for not using command events for this purpose. First, Open Class
Library treats the field that identifies the source of the command (the high word of
IEventparameterl in the Windows operating system or the low word of the IEventparameter2
value in the OS/2 operating system) as if it contains only that value instead of data that you
choose. Open Class Library reserves the high-order bit of that field when it processes appli-
cation and system commands. If you must store an unconventional value in this field (not a
source Value documented for WM_COMMAND or WM_SYSCOMMAND messages), send or post the
command event directly to the window that has the command handler attached to it so that it
processes the command. If you allow the command event to be passed from a canvas or
container client window to the frame or from a frame window to its client window, Open Class
Library alters the value in this field before your command handler receives it. If the value you
store has the high-order bit set, the frame window does not route the command event to its
client window as it normally does.

Second, in the Windows operating system, if you store a non-zero value in IEventparameter2,
Open Class Library does not call command handlers to process the event. The event instead
represents a control notification event, which may cause Open Class Library to call an edit
handler or select handler to process the event.

Third, in the OS/2 operating system, a frame window discards command events while a user is
moving or sizing it. As a result, a command handler (especially if it is attached to the frame
window) may never be called to process a command event posted to it from another thread,
depending on the user' s actions.

Disabling Commands
You must synchronize the availability of a command across all of its possible sources. Open
Class Library does not handle this; the operating system handles some but not all cases.

To disable a command, disable all menu items and push buttons that run that command. By
disabling a menu choice or push button, you not only give a user a visual indication that the
command is not available, but you also prevent the menu choice or push button from gener-
ating a command event.

The other command source you need to handle is an accelerator key. Both the Windows and
OS/2 operating systems enable and disable accelerator keys that run application commands
whenever an item in the menu bar that runs the same command is enabled or disabled. This
support does not help you if you are not using a menu bar or the accelerator key you want to
disable does not have a corresponding item in the menu bar. In these cases, consider notifying
the appropriate command handler not to process the command that you want to disable, or
consider using the IAcceleratorTable and IAcceleratorKey classes to remove the accelerator
key from the window.

Generally, the operating system manages the availability of system commands. For example,
it disables the Maximize system command when a frame window is maximized. The Windows
and OS/2 operating systems, however, do not handle accelerator keys that generate a system
command as effectively as accelerators that generate application commands. Both discard a
disabled system command that a user invokes with an accelerator key-but only after gener-

Cfoa!pfcrJ7 ReusableHandlers 385

ating a WM_SYSCOMMAND message that Open Class Library processes by calling your command
handlers. If you process system commands, add the appropriate checks to determine if the
system command is enabled or disabled. If you have a push button that runs a system
command, you similarly need to decide when to enable and disable the push button.

The following example enables and disables the Close system command. When a user selects a
push button, the IColnmandconnectionTo object calls the CloseTestwindow: :processcommand
function to process the resulting command. Note that this function can still be called to
process a Close system command (IC_ID_CLOSE) invoked by pressing Alt+F4, even after the
application disables the Close choice in the system menu.

Enabling and Disabling the Close Command - genhdrs\enablcls\enablcls.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

=iapp.hpp=
<icmdthdr.hpp>
< i f rame . hpp>
=irmitem.hpp=
<imsgbox.hpp>
< ipushbut . hpp>
=isetcv.hpp=
=istattxt.hpp=
<isysmenu.hpp>
<iccons t . h>

#ifdef IC_PM
// Define the system colnmand identifier not originally
// included in VisualAge for C++ for OS/2, V3.0.
#ifndef IC_ID_CLOSE

#define IC_ID_CLOSE 0x8004
#endif

#endif
#define ID_TOGGLE_CLOSE 100

class CloseTestwindow : public IFramewindow {
public :

CloseTestwindow () ;
protected:
Boolean

processcommand (ICommandEvent& event) ;
private :

CloseTestwindow (const CloseTestwindow&) ;
CloseTestwindow

&operator=
IstaticText (const CloseTestwindow&) ;

ins truc tions ;
Isetcanvas

buttons ;
IPushButton

closeButton,
enableDisableButton;

IsystemMenu
sys t emMenu ;

ICommandconnectionTo< CloseTestwindow >
cmdcormection;

static const Istring
closelnstructions,
cannotcloselnstructions,
enableclosestring,
disableclosestring;

}; // CloseTestwindow

386 Power GUI programming with visualAge for c++

void main ()
(

CloseTestwindow
f rare ;

frame
. setFocus ()
• show () ;

IApplication : : current () . run () ;
)

const Istringr
CloseTestwindow: :closelnstructions ("You can close the window. "" However, try disabling the Close command."),
CloseTestwindow: : cannotcloselnstructions ("You cannot close the"" window until you enable the Close command.") ,
CloseTestwindow: :enableclosestring("Enable the Close Command'') ,
CloseTestwindow: :disableclosestring("Disable the Close Command") ;

CloseTestwindow: :CloseTestwindow ()
: IFramewindow(`'Disabling the. Close System Command") ,

instructions (IC_FRAlffl_CLIENT_ID, this, this) ,
buttons(1, this, this),
closeButton(IC_ID_CLOSE, &buttons, &buttons) ,
enableDisableButton(ID_TOGGLE_CLOSE, &buttons, &buttons) ,
systemMenu(this) ,
cmdconnection (*this, CloseTestwindow: :processcommand)

(
instructions

.setText(closelnstructions) ;
closeButton

. enablesys temcommand ()

. enableDefault ()

.setText("Close the Window")

. enableTabstop ()

. enableGroup () ;
enableDisableButton

.setText(disableclosestring) ;
cmdconnection

.handleEventsFor(this) ;

(* thi s)
.setclient(&instructions)
.addExtension(&buttons, IFramewindow: :belowclient) ;

)

// This is the function that the ICommandconnectionTo<> object calls.
IBase : : Boolean

CloseTestwindow: :processcommand (ICommandEvent& event)
(

Boolean
stopprocessingEvent = false;

switch (event.commandld())
(

case IC_ID_CLOSE :
{ // Assume this is a system command.

IMessageBox
msgBox(this);

const char*text;

// When the Close system menu item is disabled, our command
// handler usually is not called to process this system
// command. However, it is called when a user presses an
// accelerator key for the Close command (Alt+F4)--even
// though the system eventually ignores this request. So
// we must check if the system menu choice is disabled before
// processing the Close command.

Cfeapferz7 Reusable Handlers 387

if (systelTMenu.isltemEnabled(IC_ID_CLOSE))
(// Close is enabled.

text = "The window is closing. Select OK to continue.";
)
else
(

text = "The Close command is disabled. You must enable"" it to close the window.";
)

ms9BOx
.show(text,

IMessageBox : : okButton
I IMessageBox: : informationlcon
I IMessageBox: :moveable) ;

break;
)
case ID_TOGGLE_CLOSE :
{ // Assume that this is an application command.

// Toggle the enabled state of Close on the system menu.
Boolean

enableclose = ! systemMenu.isltemEnabled(IC_ID_CLOSE) ;
// Negate the current state.

systemMenu
.enableltem(IC_ID_CLOSE, enableclose) ;

// Toggle the enabled state of the Close button.
closeButton

.enable(enableclose) ;
instructions

.setText(enableclose ? closelnstructions :
cannotcloselnstructions) ;

enableDisableButton
.setText(enableclose ? disableclosestring :

enableclosestring) ;
stopprocessingEvent = true;
break;

)
default:

break;
)
return stopprocessingEvent ;

)

When a Command Handler Is Not Called
In the Windows and OS/2 operating systems, a user can get the effect of running a system
command by using direct manipulation. In these cases, a user does not actually invoke a
system command, so a command handler is not called to process these actions. For example, a
user can size a frame window by dragging its sizing border with the mouse. This action
bypasses the Size choice on the system menu. A user can also move a frame window by
dragging its title bar with the mouse, bypassing the Move system command.

The Windows operating system also uses WM_COMMAND messages for control notifications (in
place of the WM_CONTROL message used by the OS/2 operating system). However, command
handlers do not process these notifications. Use control-specific event handlers, such as
IEditHandler and IselectHandler, to process these events.

388 Power GUI programming with visualAge for c++

Keyboard Handler
Use a keyboard handler to process the individual keystrokes that a window receives. With this
capability, you can alter the way any window processes keyboard input. For example, you can
restrict the characters that an entry field accepts or provide specialized cursor movement in or
between controls. Open Class Library supplies this support through the classes
IKeyboardHandler, IKeyboardconnectionTo, and IKeyboardEvent.

A keyboard handler, however, does not process some keys well. Generally, these keys relate to
command processing, or users can con figure them as part of their system so you cannot
hardcode them in your application. Table 17-2 shows some of these keys and how you can
process them.

For example, you may want a user to press F5 to run a Refresh command, or Ctrl+O to run an
Open command. The use of a keyboard handler to process these keys may seem an obvious
solution for implementing this support. However, it is better to implement such command keys
as accelerator keys whose resulting command actions you can then process with a command
handler. If you later decide to let a user run the same command from the menu bar or a pop-up
menu, you already have the code to process the command in place.

A keyboard handler is not called when a user presses an accelerator key. These events are
converted immediately into command events.

Table 17-2. Keys Best Handled with Other than a Keyboard Handler
tKey

RecommendedHandler Notes

Enter (to run a command) ICommandHandler The handler is only called if you have a default push
button.

Enter (to open a container IcnrHandler The handler is also called when the user double-clicks a
Object) container object.

Esc (to close a window) ICommandHandler The handler is only called if you have an entry for the
key in an accelerator table.

Other keys to run actions ICommandHandler The handler is only called if you have an entry for the
(such as Ctrl+O to run anopencommand) key in an accelerator table.

F1 (to request help) None Your application can satisfy these help requests using
help resource tables or the Iwindow: :setHelpld
function (see Chapter 23, "Using Help," for more
information).

Shift+Flo (to display a IMenuHandler These handlers are also called when a user uses a mouse
pop-up menu in the OS/2 IcnrMenuHandler to request a pop-up menu. The OS/2 operating system
operating system) allows a user to con figure this combination of keys.

Keys to select a button, None Specify a character in the text of the button, menu item,
menu item, or notebook tab or notebook tab to be a mnemonic.

Cfe¢pfe7.J7 Reusable Handlers 389

Using IKeyboardHandler
To use the IKeyboardHandler class, create your own class derived from it and implement one
or more of its virtual functions. Using these virtual functions, you can process common types
of keyboard events as well as any and all keyboard events. Each of these functions is passed a
reference to an IKeyboardEvent object that identifies the key (or combination of keys) being
pressed or released. These functions are scancodeKeypress, virtualKeypress,
characterKeypress, and key.

A keyboard handler can call more than one of its virtual functions to process a keyboard event.
However, it only calls those virtual functions that are appropriate for the event. For example,
IKeyboardHandler only calls its key function to process a key release; it calls its other virtual
functions only to process a key press. A keyboard handler calls its virtual functions in the
following order.

1. scancodeKeypress
2. virtualKeypress
3. characterKeypress
4. key

If you return a value of true from any of these virtual functions, Open Class Library does not
pass the event on to any other virtual functions of your keyboard handler or to any other
handlers for additional processing.

Using IKeyboardconnectionTo
An alternative to deriving from IKeyboardHandler and overriding its virtual functions is to use
the template class IKeyboardconnectionTo. The relationship between this class and
IKeyboardHandler is the same as between ICommandllandler and ICommandconnectionTo.

Key Press vs. Key Release

A key can be in one of four states, as shown in the diagram below: (1) up, (2) moving from
an up state to a down state, (3) held down, and (4) moving from a down state to an up state.

The diagram also shows the type of keyboard event (press or release) associated with each
key state. A key press event occurs when a key is in the up-to-down transition or is held
down to generate repeated key presses. A key release event occurs when a key is in the
down-to-up transition. No keyboard event is generated as a result of a key being in an up
state.

(1) (2) (3) (4) (1)

No event Press Press Release No event

390 Power GUI programming with visualAge for c++

To use the IKeyboardconnectionTo class, instantiate the IKeyboardconnectionTo template
and create an object of the new template class. The constructor requires you pass it an object
of the class you used to instantiate the template class and up to two member functions of that
object. One member function is for processing presses of character keys; the other is for
presses of virtual keys. The member functions must accept a reference to an IKeyboardEvent
object as their only argument. As with a conventional keyboard handler, you attach an
IKeyboardconnectionTo object to a window by calling the object's handleEventsFor
function. When Open Class Library calls an IKeyboardconnectionTo object to process the
press of a character or virtual key, the object calls the appropriate member function of the
object you specified when you constructed it.

Processing Keyboard Hvents
Keyboard handlers receive a reference to an IKeyboardEvent object. This object identifies the
key and determines if it was pressed or released. You can process a keyboard event using
either the IKeyboardHandler or IKeyboardconnectionTo class.

The value returned by the keyboard handler determines whether Open Class Library allows
any additional processing for the event. If you return a value of true, Open Class Library does
not pass the event on to another function of the keyboard handler or to any other handlers for
additional processing.

Note that Open Class Library calls a keyboard handler to process a key before the window
receives it and attempts to validate it. As a result, your keyboard handler is called to process
key events that the window may later discard. For example, an entry field discards character
keys that would cause the contents of the control to exceed its text limit. As a result,
depending on the purpose of your keyboard handler, you may need to duplicate the control's
validation logic.

Character Key Press
An IKeyboardHandler object calls its characterKeypress virtual function to process the press
of a cfeczrczcfer key, a key with an ASCII character code. Because you focus on character data
when using the characterKeypress function, this may be the virtual function of
IKeyboardHandler you override the most. Character data typically is the most important
information that your application's data objects, such as customer objects, collect from the
users. You can also process a key press that has an associated character code using the
IKeyboardconnectionTo class.

Although the Esc, Enter, Tab, Shift+Tab, and destructive backspace keys are keys with
character codes, process these key presses with the virtualKeypress function instead of the
characterKeypress function.

You can call the character or mixedcharacter function of IKeyboardEvent to retrieve the
character code of the key that a user pressed. You can only call the
IKeyboardEvent: : character function to process single-byte data. If you call this function
and the character is more than one byte, it throws an IInvalidRequest exception. Before your
program can process multi-byte keyboard input, such as when a user is running your appli-

CfeapferJ7 ReusableHandlers 391

cation on a Japanese, Chinese, or Korean version of the operating system, you must call the
IKeyboardEvent : :mixedcharacter function. mixedcharacter can return either a single-byte
or multi-byte character. To determine the type of character, check the length of the character
string or test the character using the Istring : : issBCS or Istring : : isDBCS function.

Note that a keyboard handler handles some Ctrl key combinations differently in the Windows
and OS/2 operating systems. For example, pressing Ctrl+h on the Windows operating system
causes the virtualKeypress function to be called (the virtual key is
IKeyboardEvent: :backspace and IKeyboardEvent: : isctrlDown returns true). In the OS/2
operating system, pressing Ctrl+h causes the characterKeypress function to be called (the
character is h and IKeyboardEvent: :isctrlDown returns true). The difference reflects
different keyboard models in the two operating systems.

The following code shows two examples of keyboard handlers that use characterKeypress to
provide specialized processing for character data. The first limits the character data that a
user types to hexadecimal digits. The second converts lowercase characters to uppercase as a
user types. Both keyboard handlers show how to replace a key (see the topic, "Replacing a
Keyboard Event and Other Information," for details), and the first also shows how to discard a
key press. The example uses the two handlers attached to the same windows and different
windows. They are also attached to entry fields, a combination box, and a multiline edit
control to show their versatility. In this example, we use the handlers to enhance a dialog
created with the Dialog Editor. Figure 17-1 shows the effect of the handlers; a user has typed
the same keys into all of the controls.

HexKeyboardHandler - genhdrs\keybd\hexkeybd.hpp
#include <ibase.hpp> // For IC_PM/IC_WIN.
#ifdef IC_PM

#define INCL_WINDIALOGS // For WinAlarm.
#define INCL_WININPUT // For KC_CHAR, VK_DELETE.
#include <os2.h>

#else
#include <windows.h>

#endif
#include <ikeyhdr.hpp>
#include <istring.hpp>
#include <iwindow. hpp>

// This keyboard handler restricts character input to
// hexadecimal digits (0-9, a-f , A-F) .
class HexKeyboardllandler : public IKeyboardHandler {
protected:virtual Boolean

characterKeypress (IKeyboardEvent& event)
(

Boolean badKey = true;
Boolean dontpasson = true;
Istring strchar = event.mixedcharacter() ;
if (strchar.issBCS())

// The character is single-byte.
if (strchar.isHexDigits())
I I/ '0'-'9'' 'PL'-'F' I 'a`-'f, .

badKey = false; // Valid hexadecimal digit.
dontpasson = false; // Pass the event to the window.
)I

392 Power GUI programming with visualAge for c++

else if (strchar ==
(

badKey = false;
#ifdef IC_PM

#else

#endif

)

`'„)

// Space bar is pressed.
// Replace it with the Delete key.

IEventparameterl
paraml (event.parameterl () .numberl () & ~KC_CHAR,

event.parameterl() .char3 () , 0) ;
(*event . window ())
. sendEvent (Iwindow: : character,

paraml ,
IEventparameter2(0, VK_DELETE)) ;

// Discard scan code and character data.
(* event . window ())
. sendEvent (Iwindow: : character,

IEventparameterl(0,1),
IEventparameter2 (VK_DELETE)) ;

// Discard scan code and character data.
)
// Throw away any other character key.

// End single-byte input.
if (badKey)
(

#ifdef IC_PM
WinAlarm (Iwindow: : desktopwindow () ->handle () ,

WA_WZENING) ;
#else

Beep(100' 100);
#endif

)
return dontpasson;

)
} ; // HexKeyboardHandler
Uppercase Keyboard Handler - genhdrs\keybd\uckeybd.hpp
#include <ikeyhdr. hpp>
#include <istring.hpp>
#include <iwindow. hpp>

// This keyboard handler example converts lowercase characters
// to uppercase as a user types.
class UppercaseKeyboardHandler : public IKeyboardHandler {
protected:virtual Boolean

characterKeypress (IKeyboardEvent& event)
(

Boolean dontpasson = false;
Istring strchar = event.mixedcharacter() ;
if (strchar.issBCS() && strchar.isLowercase())
{ // Single-byte `a'-'z' is pressed.

// Convert the character to uppercase by generating
// another keyboard event with its uppercase character.

#ifdef IC_PM
IEventparameter2 param2 (strchar.uppercase () [0] ,

event.parameter2 ().number2 ())
// Only change the character to uppercase

event .window () ->sendEvent (Iwindow: : character,
event . parameterl () ,
paran2) ;

CfeapferJ7 Reusable Handlers 393

#else
IEventparameterl paraml (strchar.uppercase() [0]) ;

// Only change the character to uppercase.
event .window () ->sendEvent (Iwindow: : character,

paranl ,
event.parameter2 ()) ;

#endif
dontpasson = true; // Don't pass on the original event.

)
return dontpasson;

)
} ; // UppercaseKeyboardHandler

UppErgaggandhE#adBcimalke#bDardhand!Ers.

un filtered ^rmput {n8 handler&]

I Fpercase input

H g#adgcima} t]Hlpr

Hppg[Gase,he#adec:imal.onlpr

I pperesse. hffiadgcimalSnlpr

uppEroase.hg*adgcimal-"lpr

i Inch = 2.54 [entimeters

i lH[H = 2.54 [EHTIHETEPl5

..^^,„.^.^^ ^,^.A,,,,^,^^+-,*-^^-:x--l[254[EEE

Figure 17-1. Window with Keyboard Handlers.

Because keyboard handlers only process keyboard data, you cannot use a keyboard handler to
verify all changes to the contents of a control such as an entry field. A keyboard handler does
not detect when a user cuts text from a control, pastes text from the clipboard into a control, or
drags text to or from your control. It also does not detect changes made via calls to setText,
SetwindowText, or WinsetwindowText. However, you can detect and verify all of these
changes to an entry field using the IEditHandler class.

Perhaps you are wondering if you also can process keyboard changes to an entry field with
IEditHandle±. You can. However, whereas you can use IKeyboardHandler to verify a key
before its effect is seen on the screen, an IEditHandler is not called until after the control has
been updated with a key.

394 Power GUIprogramming with visualAge for c++

Virtual Key Press
A 1;I.rf#¢J key generally does not have an associated ASCII character code so it cannot be
identified by a character code. Examples of virtual keys are Enter, Esc, Tab, Home,
Caps Lock, and F5.

An IKeyboardHandler object calls its virtualKeypress virtual function to process the
pressing of a virtual key. You can also process these key presses using the
IKeyboardconnectionTo class.

The IKeyboardEvent: :virtualKey function identifies the virtual key that is pressed. The
enumeration it returns corresponds to (but is not identical in value to) a VK_* virtual key value
defined in WINISER . H or PMWIN . H.

Note that you cannot detect an Fl or Flo key press using the virtualKey function because an
application does not detect these events during normal processing. The operating system
processes these keys as accelerator keys before a keyboard message is generated. Chapter 6,"Menus and Keyboard Accelerators," discusses accelerator keys, and Chapter 23, "Using

Help," discusses help support in more detail.

Although the Windows operating system provides virtual key values for alphanumeric keys,
IKeyboardHandler does not call its virtualKeypress function to process these key presses.
Override the characterKeypress virtual function to process these keys, which include the
space bar, a-z, A-Z, and 0-9 keys.

Many keyboards have redundant keys that you can process identically to or differently from
each other. For example, most have two Enter keys that are represented by different virtual
keys, IKeyboardEvent : : enter and IKeyboardEvent : :newLine. However, you cannot differ-
entiate between other keys duplicated on the numeric keypad, such as Insert/Ins, Delete/Del,
Home, End, Page Up/Pgup, and Page Down/PgDn using the virtualKeypress function. Use
the scancodeKeypress or key function to make these distinctions.

Scan Code Key Press
A sccI73 code is a value generated by keyboard hardware to identify a key, where each key top
on the keyboard has a unique value. Because the same key (and therefore, scan code) can
result in a different character, depending on the current code page, using scan codes is not an
ideal way to process most keys. Therefore, you might never find a need to use this function.
Nevertheless, an IKeyboardHandler object calls its scancodeKeypress virtual function to
process a key press based on its scan code value.

The IKeyboardEvent : : scancode function returns the scan code associated with the key press.
Do not assume that the key identified by the IKeyboardEvent passed to this function is a
character key or a virtual key. Test the event with the IKeyboardEvent : : ischaracter function
before attempting to query the character code of the event, and use
IKeyboardEvent : : isvirtual before querying the virtual key code.

Not all key presses have an associated scan code value. For example, an ASCII character
generated when a user presses the Alt key and keys a three-digit ASCII code on the numeric
keypad does not have a scan code value.

Cfea!pferJ7 Reusable Handlers 395

Key Releases and Other Miscellaneous Key Hvents
A keyboard handler calls its key virtual function to process all keyboard events that another
virtual function has not processed. As a result, this is a catchall function that does not filter
events. Do not assume that a keyboard event passed to this function is a key press (it might be
a key release), that it has an ASCII character code, that it is a virtual key, or that it has a scan
code. Test the event with functions such as IKeyboardEvent : : ischaracter to determine what
information it holds before calling functions to extract specific data. If you try to extract data
that the keyboard event does not contain, the function you call typically throws an
IInvalidRequest exception. You can test whether the event is a key release by calling
IKeyboardEvent : : isupTransi tion.

Some of the keyboard events you receive might appear to be useless, but they aren't. So,
return a value of false from your key function when it encounters a keyboard event it cannot
handle. In this way, the keyboard event can be passed on to another keyboard handler or to the
operating system, which can have dependencies on receiving seemingly useless keyboard
events.

Attaching a Keyboard Handler
You can attach a keyboard handler to any window, although generally you only attach a
keyboard handler to a window that accepts the input focus, such as an entry field. To under-
stand the options for attaching keyboard handlers, we next discuss message passing as it
relates to keyboard events. In the Windows operating system, Open Class Library does much
of this processing to emulate the processing that the OS/2 operating system provides. (In
describing this processing, we do not distinguish the behavior that the operating system
provides from the behavior Open Class Library provides.

When a user presses a key, the keyboard event is first checked against the accelerator keys of
the window with the input focus, the accelerator keys of the windows in its parent chain, and
those of the message queue. If the keyboard event is not an accelerator key, the window with
the input focus receives the event. If this window does not process the keyboard event, it is
passed to the window's owner. As long as a keyboard event goes unprocessed by handlers and
window procedures, it continues up the owner window chain. With this message-passing logic,
a window that never accepts the input focus can still receive keyboard events by being the
owner window of a control that can take the input focus.

Now, let's discuss entry fields specifically. Although an entry field processes almost all
character key presses itself, it typically does not process a Tab key. This key is passed to the
owner window of the entry field for processing. If the entry field is on a frame window or
canvas, that window receives the Tab key which enables it to supply tabbing support.

The previous code example uses a combination box control, which is a composite control made
up of an entry field, list box, and a window that provides overall management of the various
component windows. In the code example, we attach the keyboard handlers to the entry field
window of the combination box rather than to the combination box itself. Because the entry
field processes almost all character key presses, it does not pass them to its owner window. As
a result, had we attached our keyboard handlers to the combination box, the handlers would

396 Power GUI programming with visualAge for c++

have had no effect on the behavior of the control. Thus, when you attach a keyboard handler,
be aware of composite controls and potentially the keyboard message processing behavior of
windows in the owner chain.

How you want your keyboard handler to function determines which window you attach it to. If
the handler provides support for a specific window or if it processes a key that a control
typically processes, attach the keyboard handler to that window or control. If the handler
processes keys that controls do not typically process such as Tab or Enter, consider attaching it
to the window where the owner window chain of your controls converge.

Replacing a Keyboard Event
You cannot alter the keyboard event passed to a virtual function of IKeyboardHandler simply
by changing the value of its IEventparameterl or IEventparameter2 component. The event
handler classes that Open Class Library provides only allow a virtual function to change the
IEventResult component of an event; all other changes are discarded. As a result, to get the
effect of changing the event parameters of an IKeyboardEvent, send a new keyboard event to
the window to replace the original IKeyboardEvent. Then return a value of true to prevent
further processing of the original keyboard event. We illustrate this in the
GENHDRS\KEYBD\UCKEYBD . HPP file in the previous code example.

If you use this technique to send a new keyboard event to the window your handler is attached
to, be sure not to introduce an endless loop. In the previous example,
UppercaseKeyboardHandler avoids an endless loop by not creating a new keyboard event for a
valid key, one that already represents an uppercase character. If you cannot avoid an endless
loop when sending a new keyboard event to the same window, try passing the new keyboard
event to the window's Iwindow: :dispatchRemainingHandlers function or the handler's
IHandler : : defaultprocedure function and then returning true from your virtual keyboard
handler function.

Combining Keyboard Events
The operating system might combine several identical keyboard events into a single keyboard
event. You can detect if the system has done this by calling IKeyboardEvent: :repeatcount.
Typically, a single IKeyboardEvent represents more than one keyboard event only when your
application is no longer processing messages in a timely manner (within 0.1 seconds). For
example, your application could be overloaded with user input, or it could be delayed in
processing a message. You can ignore tbe repeatcount function to avoid overwhelming a user
with a flood of keyboard data when your application finally catches up on its input processing.

Cfeapferz7 ReusableHandlers 397

Mouse Handler
With a pointing device, usually a mouse, a user can perform actions directly on objects, thus
avoiding the need to access the menu bar. The Windows and OS/2 operating systems support
three uses for a mouse: to select and open objects, to move and copy objects using drag and
drop, and to display pop-up menus.

You can use the IMouseHandler class to detect when a user moves the mouse or presses and
releases any of the mouse buttons. With this handler, you can create a specialized role for the
mouse in your user interface beyond what the operating system provides. To use a mouse
handler, create your own class derived from IMouseclickHandler and implement one or more
of the virtual functions, mouseclicked, mouseMoved, and mousepointerchange. These
functions are passed a reference to an associated event object, IMouseclickEvent,
IMouseEvent, and IMousepointerEvent, respectively.

As an alternative to using the IMouseHandler class, you can create an IMouseconnectionTo
object that calls similar functions in any object you specify. The relationship between this
class and IMouseHandler is the same as between ICommandHandler and
IColrmandconnectionTo.

You do not need to use a mouse handler to get the mouse support already built into the
operating system, such as how clicking an entry field gives it the input focus, dragging a title
bar moves a frame window, or dragging the sizing border of a frame window changes its size.
Table 17-3 shows some of the standard mouse actions that a handler other than IMouseHandler
processes better.

Table 17-3. Mouse Actions Best Handled with Ot.her than a Mouse Handler

MouseAction RecommendedHandler Notes

Click a button ICommandHandler,IselectHandler This is equivalent to using the space bar or a mnemonic.

Click or double-click a listboxrow IselectHandler This is equivalent to using the space bar or Enter key.

Click a scroll bar IScrollHandler This is equivalent to scrolling with arrow keys or the
Page Up and Page Down keys.

Click a notebook tab IpageHandler This is equivalent to using tbe space bar or a mnemonic.

Click a menu item ICommandHandler This is equivalent to using the Enter key or a mnemonic.

Displaying a pop-up menu IMenuHandler, In the OS/2 operating system, users can display a
with button 2 IcnrMenuHandler pop-up menu using Shift+Flo (they can con figure the

mouse button and key combination).

Drag and drop IDMSourceHandler, There are no equivalent keys. In the OS/2 operating
IDMTargetHandler system, users can con figure the mouse button.

398 Power GUI programming with visualAge for c++

Processing Mouse Button Events
An IMouseHandler object calls its mouseclicked function whenever the state of a mouse
button changes. The IMouseclickEvent.object that is passed to this function identifies the
button, its new state, and the position of the mouse pointer, and it identifies whether a user
pressed an augmentation key (Shift, Alt, or Ctrl). You can also process a mouse button event
using the IMousecormectionTo class. It passes a reference to an IMouseclickEvent to the
member function it calls.

The IMouseclickEvent : :mouseNumber function identifies the mouse button that changed state.
It returns a button number based on whether the user con figured the mouse for left-handed or
right-handed use through the desktop. Mo#Fe b#££o7e I is the left mouse button on a right-
handed mouse and the right mouse button on a left-handed mouse. Moz4Fe b#££o# 2 is the right
mouse button on a right-handed mouse and the left mouse button on a left-handed mouse.

The IMouseclickEvent : :mouseAction function identifies the button state change. The event
can be a mouse button press, release, Sz.73gJe-cJz.ck (a press followed by an immediate release),
doztbJe-cJz.ck (two consecutive single-clicks), or cfeo7tz (the simultaneous pressing of button 1
and button 2).

Two other functions return information about the location of the mouse pointer. The
IMouseEvent: :windowunderpointer function returns the window that the mouse pointer is
over. This "top" window is not necessarily the window that the mouse handler is attached to
because the handler can be processing a mouse-click event that it received from an owned

Actions That Generate Multiple Mouse Events
The operating system generates single-click, double-click, and chord events based on
button press-and-release events that have occurred, but only after the system has already
dispatched some of the constituent events to the appropriate window. As a result, your
mouse handler processes these composite mouse events only after seeing all of the
component events. The following mouse actions generate the following mouse-click
events.

Single-click
1. Down
2.Up
3. Single-click

Double-click
1. Down
2.Up
3. Single-click
4. Double-click
5.Up

Chord
1. Down (firstbutton pressed)
2. Down (second button pressed)
3. Chord
4. Up (first button released)
5. Up (second button released)

Cfe¢pfe7.J7 Reusable Handlers 399

window or a transparent window (the topic "Attaching a Mouse Handler" provides more
information on transparent windows). The IMouseEvent : :mouseposition function returns the
location of the mouse pointer on the screen at the time of the event. The location is in device
units (or pels) relative to the origin of the window that the handler is attached to. (The origin
is dependent on the coordinate system currently in use, which you set via
ICoordinatesystem: : setApplicationorientation.) When the event is passed up the owner
chain, the top window remains the same, although the pointer location changes to become
relative to the new window receiving the event.

Processing Mouse Movements
An IMouseHandler object calls its mouseMoved function whenever a user moves the mouse
pointer in the window that the handler is attached to. You can override this function to track
the position of the mouse pointer and to perform processing based on that position. You can
also process the movement of the mouse pointer across a window using the
IMouseconnectionTo class. Both IMouseHandler : :mouseMoved and the member function that
IMouseconnectionTo calls are passed a reference to an IMouseEvent object.

In the following example, an IMouseconnectionTo object calls the
Shapewindow: :processMouseMovement member function to display a text string based on the
position of the mouse pointer. The window contains an IDrawingcanvas window that displays
a collection of geometric shapes. The Shapewindow: :processMouseMovement function deter-
mines which shape the mouse pointer is over. In the code, the graphicList data member is the
collection of shapes, and gc is a pointer to the IGraphiccontext that the drawing canvas uses.
Figure 17-2 shows the window.

Mouse Movement Example - genhdrs\mousemov\mousemov.cpp
// This is the function that the IMouseconnectionTo<> object calls.
IBase: :Boolean Shapewindow: :processMouseMovement (IMouseEvent& event)
(

if (event.windowunderpointer() ==
event.dispatchingwindow() ->handle ())
// The mouse pointer is over the drawing canvas.

IGraphic*graphicunderMousepointer =
graphicList. topGraphicunderpoint (event.mouseposition() , *gc) ;char*infoText = ''Move the mouse pointer over a shape.";

// Test if the mouse pointer is over a shape.
if (graphicunderMousepointer)

// Now figure out which shape.
switch (graphicunderMousepointer->id())
(

case ID_CIRCLE:
infoText = `'Circle";
break;

case ID_SQUARE:
infoText = "Square";
break;

case ID_RECTANGLE :
infoText = "Rectangle";
break;

400 Power GUI programming with visualAge for c++

case ID_TRIANGLE :
infoText = "Triangle"
break;

case ID_ELLIPSE:
infoText = `'E11ipse";
break;

case ID_PENTAGON:
infoText = "Pentagon"
break;

default:
break;

)
)

instructions
.setText(infoText) ;

)return false;

Figure 17-2. Mouse Movement Example.

Changing the Mouse Pointer
You can change the appearance of the mouse pointer for a single window by overriding the
IMouseHandler: :mousepointerchange function. This function receives a reference to an
IMousepointerEvent object. This object does not identify the position of the mouse pointer
within the window, however. You can also process the appearance of the mouse pointer in a
particular window using the IMouseconnectionTo class.

CfeapferJ7 ReusableHandlers 401

To identify a new mouse pointer to use, call IMousepointerEvent: : setMousepointer from
your mousepointerchange function or from the member function called by an
IMouseconnectionTo object; then, return true. Do not call IEvent: : setResult because this
overwrites the value that IMousepointerEvent : : setMousepointer stores.

You can also change the mouse pointer for a frame window and its child windows by calling
IFramewindow: : setMousepointer. You do not need to use a mouse handler in this case. The
frame window must own its child windows for this function to work because the frame window
must receive mouse-pointer change messages from the windows it owns.

If you build a custom control using multiple windows, attach the handler returned by
IMousepointerHandler : : defaultHandler to all of the component windows that are owned by
another window. This handler passes unprocessed mouse-pointer change events to the
window' s owner.

Attaching a Mouse Handler
You can attach a mouse handler to any window. The handler is called to process not only those
mouse events that occur while the mouse pointer is over the window it is attached to, but also
the mouse events that get passed to the window from a window that it owns.

1

The operating system routes mouse events to the topmost window that the mouse pointer is
over. The OS/2 operating system then routes unprocessed button-up, button-down, and
double-click events up the owner window chain. Open Class Library emulates this behavior on
the Windows operating system. So as long as these mouse-click events are not processed, they
continue to be passed up the owner window chain. Several controls routinely process mouse-
click events, such as buttons and scroll bars, so an owner window does not typically receive
every mouse-click event that its owned windows receive.

However, single-click, chord, and mouse move events are not sent up the owner window chain
in either operating system. Therefore, it is safest to attach a mouse handler directly to the
window you need to capture mouse events for. For composite controls, it is not always obvious
which window is receiving mouse events. For example, an OS/2 container control in the
details view has child windows to the left and right of the split bar. These windows intercept
most mouse events, keeping them from Teaching the container control itself.

You have one other variable to consider. A window can appear to be transparent to mouse
events, so that even though the mouse pointer is directly over the window, the operating
system dispatches mouse events to the window behind it. For example, a disabled control in
the Windows operating system typically functions as if it is transparent to mouse events. Also,
how a window processes the WM_NCHITTEST message in the Windows operating system or the
WM_HITTEST message in the OS/2 operating system can cause the operating system to treat it as
transparent. For example, IGroupBox and IOutlineBox windows are transparent to mouse
events. The operating system routes all mouse events that occur over these controls to the
window that is behind them at the position of the mouse pointer.

402 Power GUI programming with visualAge for c++

The genhdrs\mouseclk example uses a mouse handler that logs all mouse button events it
receives to a list box. Because it attaches this handler to all controls on the window, you can
see how the rules for the passing of unprocessed mouse events influence which windows
receive which events.

Capturing the Mouse
Sometimes, it is useful to receive mouse events even when the mouse is not over your
window. Although this is not the default behavior of the operating system, your mouse
handler can process such events if you call Iwindow: : capturepointer. This function call
causes the window to capture all mouse events. The operating system routes them to the
capturing window, regardless of what window the mouse pointer is over. This can prevent
the users from being able to interact with the system and other applications, so capture the
mouse only when you need all mouse events and only for a limited time.

Window Paint Handler
Provide painting logic for a window by attaching a paint handler to the window. Any painting
you do with any other event handler will likely get overwritten when the window processes a
paint event. To create a paint handler, derive from the IpaintHandler class and override the
paintwindow virtual function. Alternatively, you can create an object of the class
IpaintconnectionTo, identifying the member function of an object that you want called to
process a paint event.

The operating system sends a WM_PAINT message (which maps to a paint event, the
IpaintEvent class, in Open Class Library) to a window whenever the window must update an
I.7®i;¢Jz.d¢fed portion of its screen. The invalidated portion of a window is the part of it that is
visible but does not accurately represent the window. A window is only called to be painted
when it is both visible and has non-zero dimensions.

A window can be invalidated whenever a user or the application sizes it larger or causes it to
be uncovered by another window, or when the application makes it visible or explicitly
invalidates it. Calling drawing functions, such as Textout, WinDrawText, or graphics Apls of
the operating system, does not cause a window to become invalidated. To invalidate a window
from your application, call Iwindow : : refresh, the InvalidateRect or Redrawwindow windows
Apls, or the Winlnvalidatewindow or Winupdatewindow OS/2 Apls. Never explicitly send a
WM_PAINT message to a window.

Some window classes provide draw-item handlers, which enable you to do specialized painting
of a specific part of a control window. Draw-item handlers provide finer granularity than a
paint handler. Where these classes are available, use them instead of a paint handler for
customizing the drawing of a specific kind of window.

Cfeapfe7.J7 Reusable Handlers 403

Using a Paint Handler
Open Class Library calls a paint handler when the operating system determines that a window
it is attached to needs to be updated. The IpaintEvent object passed to the handler provides
information functions and functions that allow you to do rudimentary painting. The
clearBackground and drawText functions provide implementations for simple painting opera-
tions such as drawing a rectangle of color or string of text. For more complex painting, use the
2-D graphics classes of Open Class Library or the graphics Apls of the operating system.

The IpaintEvent : :presspaceHandle function gives you a surface that you can apply painting
operations against. This function returns the handle of a display device context on the
Windows operating system and of a presentation space on the OS/2 operating system (by
default, the handle of a cached-micro presentation space). If you use the graphics Apls of the
operating system, pass this handle to those calls. You can also use this handle to construct an
IGraphiccontext object that the 2-D graphics classes need. We use "graphic context" in the
rest of this chapter to represent an IGraphiccontext object, a display device context, or a
presentation space.

The IpaintEvent : : rect function identifies the portion of the window that requires updating.
Actually, this rectangle is the boundary of the invalidated portion of the window as well as the
boundary of the clip region set into the graphic context that IpaintEvent : :presspaceHandle
returns. (The invalidated region and clip region might have a more complicated shape than a
rectangle, however.) Any drawing you do into this graphic context is consequently limited to
this rectangle; therefore, any drawing you do outside this rectangle does not appear on the
screen. You can modify the clip region by calling IGraphiccontext: : setclipRegion so that
your painting is not limited to replacing only invalidated portions of the window.

You can also provide your own graphic context for painting by using one of the following
Options.

• Derive from the window class that the paint handler is attached to and override
Iwindow::presspace to return the graphic context of your choice.
IpaintEvent : :presspaceHandle calls this function before using the invalidated portion
of the window to set the clip region of the graphic context. IpaintEvent calls
Iwindow: : releasepresspace in its destructor.

• In your paint handler's paintwindow function (or in the function called by an
IpaintconnectionTo object), pass the graphic context of your choice to
IpaintEvent: :setGraphiccontext. This function gives you the option of using the
invalidated portion of the window to set tbe clip region of the graphic context. There-
after, IpaintEvent : :presspaceHandle returns this graphic context. You must free this
graphic context.

If the window is an IDrawingcanvas, you can store the graphic context by calling
IDrawingcanvas : : setGraphiccontext. The genhdrs\mousemov example uses this
function. The drawing canvas uses this graphic context to paint its graphics list. You
must free this graphic context.

404 Power GUI programming with visualAge for c++

The clipping styles that you assign your window affect the invalidated area and consequently
the clip region that you get from a paint event. Iwindow: : clipsiblings causes the operating
system to exclude the area occupied by sibling windows that overlap the window from the
invalidated area. This style causes a window to remain visually behind its siblings.
Iwindow: :clipchildren causes the area occupied by a window's child windows to be
excluded from its invalidated area. Although the use of these styles adds performance
overhead, they can improve the look of how a window paints in certain circumstances.

The Boolean value you return from your paint handler determines if Open Class Library allows
any additional processing for the event.

The following paint handler uses the 2-D graphics classes to draw two diagonal lines over a
window after the window first paints itself. Figure 17-3 shows a window using this paint
handler along with another paint handler that inverts the colors of half of the window it is
attached to.

Paint Handler Example - genhdrs\painthdr\painthdr.cpp
class XwindowpaintHandler : public IpaintHandler {
public :
protected:virtual Boolean

paintwindow (IpaintEvent& event) ;
}; // XwindowpaintHandler
IBase : : Boolean

XwindowpaintHandler: :paintwindow (IpaintEvent& event)
(

Iwindow*windowTopaint = event. dispatchingwindow () ;

// Save the clip region in case the window clears it
// as part of its painting.
IGraphiccontext

gc(event.presspaceHandle()) ;
IRegionHandle

origclipRegion(gc.clipRegion()) ;

/ Let the window paint its contents.*windowTopaint)
.dispatchRemainingHandlers (event, true) ;

Reset the clip region in case the window cleared it
as part of its painting.

.setclipRegion(origclipRegion) ;

// Now draw the two diagonal red lines.
IRectangle

windowRect(windowTopaint->rect().moveTo(IPoint())) ;
IGLine

diagl (windowRect.bottomLeft() , windowRect.topRight()) ,
diag2 (windowRect.bottomRight() , windowRect.topLeft()) ;

IGraphicBundle
bundle(gc) ;

bundle
. setMixMode (IGraphicBundle: :overpaint)
.setpenType (IGraphicBundle: :solid)
. setpenEndingstyle (IGraphicBundle : : rounded)
.setpenwidth(2)
.setpencolor(IColor: :red) ;

Cfe¢pferJ7 Reusable Handlers 405

diagl
. setGraphicBundle (bundle)
.drawon(gc) ;

diag2
. setGraphicBundle (bundle)
.drawon(gc) ;

return true;

EIEnl]Erd EIEli[IEHt

1''.''` '' I .. iy'..i i '. !'..` .. `f" . I..'```. " y'`..`.i

ff Fairtt hffrlril€r

Figure 17-3. Paint Handler Example.

Attaching A Paint Handler
You can attach a paint handler to any window, but attach it only to the window or windows it
paints. Unprocessed paint events are not routed to any other windows for processing.

Avoiding Potential Pitfalls
Custom painting of some controls can be a problem because not all of their painting is
controlled by WM_PAINT messages. For example, the operating system updates the look of a
button when it is selected and the look of an entry field as the user types characters into
it-without generating a paint message. This action severely hampers your ability to alter the
look of these controls with a paint handler because your paint handler will not be called to
update the control in these cases. This, in turn, leads to out-of-sync conditions. The
genhdrs\painthdr example shows this problem with a paint handler attached to a push button.
Clicking the push button causes the operating system to directly update its screen contents.
The operating systems use this shortcut to provide immediate feedback to a user. You can use
this technique, too, but you must duplicate painting logic to be sure your window paints the
same, whether or not you paint via a WM_PAINT message. For a push button, a better solution
would be to use the ICustomButton and ICustomButtonDrawHandler classes. See Chapter 16,
"Tool Bars, Fly-Over Help, and Custom Buttons," for details.

A paint handler also has the potential of painting outside the window it is attached to and onto
the parent window. For example, the invalidated region of a window can include portions of
the parent window if you use the Windows CS_PARENTDC class style or the OS/2
Iwindow: :parentclip style or CS_PARENTCLIP class style. You can avoid this problem by only

406 Power GUI programming with visualAge for c++

painting into the rectangle formed by the intersection of the invalidated area and the boundary
of the window. You can calculate this rectangle using code similar to the following in your
paint handler:

IRectangle
windowRectangle (event.dispatchingwindow() ->rect ()) ;

windowRectangle
.moveTo(IPoint());

IRectangle
areaTopaint(event.rect() & windowRectangle) ;

Window Resize Handler
Chapter 2, "Object-Oriented User Interface Fundamentals," explains the importance of leaving
the users in control. Part of designing an application so that users can perform tasks in the
manner best suited for their needs is to allow them to freely size and position all frame
windows. Enabling sizing support is the tricky part of the two.. The canvas classes provide a
great deal of function for sizable client windows (see Chapter 15, "Canvases," for more
detail). Additionally, you can use the IResizeHandler class to create your own sizing code.

Virtual Functions
To use the IResizeHandler class, create a class derived from IResizeHandler and provide an
implementation for its pure virtual function, windowResize. A window resize handler calls its
windowResize function, passing it a reference to an IResizeEvent object, whenever a window
that the handler is attached to changes in size. Because the operating system has already
changed the size of the window by the time windowResize is called, the call serves as a notifi-
cation. The IResizeEvent object passed to the function identifies both the previous and new
window sizes. Call IResizeEvent: :oldsize and IResizeEvent: :newsize to obtain these
values.

The Boolean value returned by your windowResize function determines whether Open Class
Library allows any additional processing of the event. Generally, return false because many
control classes have private resize handlers that would not otherwise be called
(IMulticellcanvas, for example).

Attaching a Window Resize Handler
You can attach a resize handler to any window, but attach it only to the window whose size you
are monitoring. Unprocessed size events are not routed to any other windows for processing.

Chapter 18

Fonts and Views

• Describes open class Library classes that handle fonts and views
• Describes the IFont, IFontDialog andlFileDialog classes
• Read chapters 4, 5, and 7 before reading this chapter.
• Chapters 15 and23 coverrelatedmaterial.

This chapter describes Open Class Library classes that work with fonts, font selection, and file
selection. Use these classes to change text-based controls that present text for users to edit or
view.

What Is a Font?
A/o7if is a set of visual characteristics that can be applied to character-based text. Fonts are an
important part of user-interface design because they provide part of the visual "look," or
design, of the interface. Use different fonts to highlight important information or to guide
your user. Fonts can also improve readability. For example, a font with Serz.rty, the horizontal
strokes on the letters, improve readability for printed information such as this book because
the serifs lead the eye to the next character. A sicz7®s serz.f (without serifs) font improves
readability for characters displayed on a computer screen because they are easily distinguished
against the light of the cathode ray tube. If you look at the fonts depicted in Figure 18-1, the
Nimrod font is an example of a font with serifs, and the Arial font is an example of a sans serif
font. Each font has a set of one or more visual attributes that makes it unique. These attributes
are as follows:

:#p:c:#22fT;# N|Ni¥::Edl:o:4:::iF:|tnt

Figure 18-1. Examples of Font Typefaces and Sizes.

407

408 Power GUI programming with visualAge for c++

Typeface name, a specific type family, is the main identifier for a font. Some common
typeface names provided by the Windows or OS/2 operating systems are Arial, Courier,
Helvetica and Times Roman. Each typeface name shares common characteristics within
the family, such as the presence or lack of serifs, the spacing between characters or the
shape of the vertices. Typeface names are typically trademarked.

Size, a measurement of the height of a graphic character in a font. The standard unit of
measurement of type is the point. A point is 1/72 of an inch (or 72 points to the inch).
The width of the font is determined by the height defined and the aspect ratio of the font.
This ratio is the width-to-height relationship of each character in a font.

Style, additional information indicating the form and structure of the characters within a
typeface name. Style information can specify whether a font is upright or slanted, or can
indicate the weight of the characters. Weight is the degree of boldness of a typeface,
caused by different thicknesses of the strokes that form a graphic character.

A font can be uniquely identified in terms of the above attributes, such as Arial Bold 12-point
or Courier Italic 10-point. Figure 18-1 displays some examples of different typeface names
and sizes.

What Is a View?
A vz.ew is a window that displays a set of information to interact with. Both the Windows and
OS/2 operating systems supply a set of standard selection dialogs, which provide views of
system information. For example, you can retrieve a list of all installed fonts on the system or
all files on the system, and then choose from them. Figure 18-2 shows the classes in Open
Class Library that you use to work with fonts and views. IFont provides a standard set of
functions that you can use to create and manipulate fonts and to apply those fonts to windows
within your application. IFontDialog and IFileDialog are classes that provide a wrapper for
standard dialogs that the operating system provides. These view classes derive from the
common base class IFramewindow.

IFontDialogHandler, IFileDialogEvent, and IFileDialogHandler are classes that provide
advanced functions for interacting with font and file dialogs. You typically use these classes
to handle processing modeless dialogs or custom controls that you added to the dialog using a
custom dialog template.

Constructing Font Obj ects
Create an IFont object using one of the four constructors described below. Because fonts are
graphical and applied to windows, you typically use more than one type of constructor in an
application. Each one has a specific use, depending on what information you have available to
you at the time you need one.

CfeapferJB Fonts andview 409

I IVBase___I

IIIRE IIRE IIRE IIIIREIIRE IIRE IIRE
I `,,I .,,, ' I, , ` ,i:` , .

I preDialog _ I

I IFontDjalog _ I

Figure 18-2. Font Classes and View Classes.

Creating a Default Font
Both the Windows and the OS/2 operating systems have a system default font. This font is
used for all character-based displayed text unless you specify otherwise. In the Windows
operating systems, this is the same as the stock font object SYSTEM_FONT. In the OS/2
operating system, this is the System Proportional font. Open Class Library provides a default
constructor for IFont. The font object it creates represents the system default font.

Creating a Named Font
In addition to a default font, both the Windows and the OS/2 operating systems provide a
standard set of fonts to use in your applications. Although your users can install additional
fonts on their operating systems, you cannot rely on them doing so unless your application
ships those fonts. Even the standard set of fonts that the operating systems provide could have
been uninstalled, so there is no guarantee on them as well, although this is not a typical case.
Most applications only need the standard set of fonts. However, because users of editors,
browsers, and desktop publishing packages demand a variety of fonts, these applications
typically provide additional fonts.

So that you can select a specific font, Open Class Library provides a constructor for creating a
font object. You specify the name of the typeface, and any optional attributes such as size,
type information and a graphic context. You specify the size in points.

The next two parameters are useFixedFont and usevectorFont. When you set useFixedFont
to true, you get a fixed-space font; every character has the same width, making alignment and
formatting calculations simple. The default is false, which means a font can be either propor-
tionally spaced or fixed spaced.

410 Power GUI programming with visualAge for c++

The actual character information of a font is stored as either a bz.fmczp /o7®f or a vecfor/o#£, and
both operating systems ship with examples of both of these. A bitmap font is so named because
each character or symbol of the font is stored as a bitmap. This makes them fast to draw, but
the characters do not Sc¢Je well. Scaling refers to dynamically changing the size of the
character. Instead of scaling, bitmap fonts store a different bitmap for each size, meaning only
the specific sizes provided are available as choices. Vector fonts use line and curve
commands, specifically stretching, shearing, and shaping to render the characters. (These
functions are not available for bitmap fonts and are discussed a bit later in this chapter.)
Vector fonts are slower to draw, but the fonts are device-independent so they scale up or down
easily while maintaining the.ir original shape. Because each character is described only once
and scaled from that description, an infinite number of sizes are available to an application or
a user.

Thus, you use the second parameter, usevectorFont, to indicate how the fonts are drawn, or
rendered. Setting this parameter to true indicates that you want the font to use vectors to
render it. The default, false, means that the font can be rendered as a bitmap or vector font.

Also, because typeface names vary between operating systems, avoid specifying an exact
name within the code for portable applications. However, if your application needs to specify
the fonts for displaying text, one approach is to define the typeface names at the top of the file.
Then you can change them without searching through the code. Just remember that this still
does not guarantee portability.

Creating a Font from a Window
In many cases, you don't want to specify a font by name, but you want to use the same font that
another window uses. Open Class Library provides an IFont constructor for doing this. The
window you specify on the constructor is queried for the characteristics of the font that is
currently applied to that window. These characteristics are then used to create an IFont object
with the same typeface name, size, and attributes of the original font.

Creating a Font from a Graphic Context
Another way to create an IFont object is to use an existing graphic context, represented by an
IpresspaceHandle object. The graphic context you specified is queried for the font that is
currently selected into it. This information is then used to construct an IFont object with the
same characteristics.

Modifying Font Objects
The IFont class provides a wide range of member functions to modify an existing IFont
object. Change the typeface name using setName; set the point size to the desired size using
setpointsize. Your application can query the current typeface name for a font by using name
and the point size by using pointsize. Use setBold to add weight, setltalic to add a slant,
setunderscore to underline the text, and setstrikeout to draw a line through the text. Check

Cfea!pferJB Fonts andview 411

any of these attributes using isBold, isltalic, isunderscore, and isstrikeout. In the OS/2
operating system, use setoutline to draw only the character's outline and isoutline to check
if this attribute is set.

You can also check other attributes of the current font. Use isFixed to determine if the font is
a fixed-space font or a proportionally spaced font. Use isBitmap to determine whether the
font is rendered using bitmap or vector font technology.

After creating the IFont object, apply the font to a window in one of two ways. You can use
IFont: :setwindowFont, passing the Iwindow object to be modified, or you can use
Iwindow: : setFont, passing the IFont object to be applied to the window.

The following example demonstrates using the IFont class to modify the font used to display
the text of the sample application. First, an IFont object is created and applied to the main
frame window, changing the font of the title text. That same IFont object is then modified by
increasing the point size and is applied to the entry field. That IFont object is again modified
by changing the name and shrinking the point size and is applied to the first check box. A new
IFont object is created from the font in use by the first check box; its attributes are modified to
slant the font and increase the weight; it is then applied to the second check box. Finally, a
third IFont object is created, a default font, and applied to the last check box. Figure 18-3
displays the results.

Figure 18-3. Using Common Font Functions.

Using IFont Objects -fonts\genfont\genfont.cpp
#include
#include
#include
#include
#include
#include

=iapp.hpp=
<icheckbx.hpp>
<ientryfd.hpp>
= i font . hpp=
< i frame . hpp>
<imcelcv.hpp>

// Specific font names vary between operating systems,
// complicating the issue of writing portable applications.
// Avoid embedding the names in the code and instead define
// them at the top of the code as we do here.

412 Power GUI programming with visualAge for c++

#ifdef IC_PM
#def ine OS_FONT_1
#def ine OS_FONT_2

"Helvetica"
`'Courier"

#else // Windows
#define OS_FONT_1 "Arial"
#def ine OS_FONT_2
#endif

"Courier New"

void main ()
(

// Create the frame, client canvas, and client controls
IFramewindow aFrame(''Using Common Font Functions") ;
IMulticellcanvas aclient (IC_FRAlffi_CLIENT_ID,

&aFrame, &aFrame) ;
IEntryField myEntryField(1001, &aclient, &aclient) ;
IcheckBox mycB1(1002, &aclient, &aclient
IcheckBox myc82 (1003, &aclient, &aclient
IcheckBox myc83 (1004, &aclient, &aclient
aFrame.setclient(&aclient) ;

// Add the controls to the canvas.aclient
addTocell (&myEntryField,
addTocell (&mycB1,
addTocell (&myc82 ,
addTocell (&myc83 ,

// Set the text of the entry field.
myEntryField. setText ("ABCDEFGabcdefg") ;

// Set the text of the check boxes.
mycB1.setText("Choice 1") ;
myc82.setText(`'Choice 2") ;
myc83.setText("Choice 3");

// Create a font object, providing a typeface name
// and point size and apply it to the frame.
IFont fontl(OS_FONT_1,14);
aFrame.setFont(fontl) ;

// Increase the point size; then, apply it to the entry field.
fontl.setpointsize(24) ;
myEntryField.setFont(fontl) ;

// Change the typeface name; decrease the point size,
// and then apply it to check box 1.
fontl.setName(OS_FONT_2) .setpointsize(10) ;
mycB1.setFont(fontl) ;

// Create a new font from check box 1. Change the
// font characteristics, and then apply it to check box 2.
IFont f ont2 (&mycB1) ;
font2 . setBold () . setltalic () ;
myc82.setFont(font2) ;

// Create a default font, and then apply it to check box 3.
IFont font3;
myc83.setFont(font3) ;

// Show the fralne and run the application.
aFrane

. setFocus ()

. show () ;
IApplication : : current () . run () ;

CfeapferJB Fonts andview 413

Geometry Accessors
In addition to modifying an existing IFont object, your application often needs to query for
information about the font in use, such as the height of an individual character or the width of a
string of characters. This is important for formatting text or laying out text-based information.
Open Class Library uses several of these geometry accessors to calculate the minimum size of
windows that contain text in Icanvas and its derived classes. Note that all geometry accessors
return values in numbers of pixels rather than points.

The two most common accessors are maxcharHeight and avgcharwidth. The first returns the
maximum height of any character within the character set for the font, and the second returns
the average character width for the font. Use charwidth to determine the individual width of a
single character and textwidth to determine the width of an entire string of characters. The
IFont class also provides the following geometry accessors:

• externalLeading, which queries the recommended spacing between lines of text for the
font.

• internalLeading, which retrieves any space that the font designer includes in each
character of the font.

• maxAscender, which finds the maximum ascent of any character. This is the distance
between the baseline of the character and the maximum height that any character
reaches. It is typically the height of the largest uppercase letter, where the baseline is
the point at the bottom of an uppercase letter.

• maxDescender, which queries for the maximum descent. This is the distance between the
baseline and the bottom of the letter that drops the lowest below the baseline, typically
lowercase letters such as g, j, and y.

• maxsize, which determines the maximum size a character can be (the maximum width
and height of the character).

Note that the maximum character height is equivalent to the maximum ascender, maximum
descender, and the internal Jeczdz.jog value added together. Leading is the space, in points,
between the lines of type.

Advanced Font Topics
The previous topics describe what you need for most of your applications. However, IFont
provides additional functions if you need additional control over a font. This control is
especially important in graphic applications and in printing. These additional functions are
supported only for vector fonts; you cannot use them with bitmap fonts. If you try, an
exception is thrown.

Although you use the IFont function pointsize to change the size of each character, you may
want to specify the exact width or height of the cbaracters no matter how much it skews the
character shape. Modify the width of the cfeclrczcfer box with setcharwidth, modify its height
with setcharHeight, and change both at once using setcharsize. The character box is an

414 Power GUI programming with visualAge for c++

imaginary box, which, if drawn, would surround each character. All values are expressed in
pixels, which means that code written using these values is not device-independent. In
addition to changing the size of the character box, you can change the shape of the character
box or draw lines of characters at an angle. Use setFontshear for the former and
setFontAngle for the latter.

IFont also provides two nested cursor classes: IFont::FaceNamecursor and
IFont : : Pointsizecursor. Use IFont : : FaceNamecursor to navigate through a list of available
typeface names on the operating system. When creating the cursor, you can specify that you
want to look at all available fonts, all bitmap fonts, or all vector fonts. Use
IFont: :Pointsizecursor to provide a list of all available point sizes for a given typeface
name. This is only necessary for bitmap fonts because you can scale vector fonts to any size.

The following example demonstrates using several of these functions in a graphical applica-
tion. We use an IDrawingcanvas to paint a text string at a variety of angles and colors. Note
that we call both setFontshear and setFontAngle for a Windows program but only
setFontAngle for an OS/2 program. We do this because the OS/2 operating system imple-
ments automatic character rotation when you change the font angle, but in the Windows
operating system you need to do this yourself to get the same result. Figure 18-4 displays the
resulting window.

Advanced Font Techniques - fonts\advfont\advfont.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

=iapp.hpp=
=icolor . hpp=
< i f ont . hpp=
< i f rare . hpp>
<igrafctx.hpp>
= igl i s t . hpp=
=igstring.hpp>
=ipoint . hpp=
= i s tring . hpp=`' advf ont . hpp "

// Specific font names vary between operating systems,
// complicating the issue of writing portable applications.
// Avoid hardcoding the names in the code as follows.
#ifdef IC_PM
#define OS_FONT_1 "Helvetica"
#else // Windows
#define OS_FONT_1 "Arial "
#endif
IColor colArray[8]={IColor: :blue, IColor: :red, IColor: :green,

IColor: :black, IColor: :cyan, IColor: :yellow,
IColor: :pink, IColor: :darkGray };

IPoint ptArray[16]= { IPoint(0,4), IPoint(1,3), IPoint(2
IPoint(3,1), IPoint(4,0), IPoint(3
IPoint(2,-2), IPoint(1,-3), IPoint
IPoint (-1, -3) , IPoint (-2 , -2) , IPoint
IPoint(-4,0), IPoint(-3,1), IPoint
IPoint(-1'3))j

void main ()
(

// Create the frame and a canvas client to draw on.
IFramewindow aFrame (`'Using Advanced Font Functions") ;
FontDrawingArea aclient (IC_FRAMELCLIENT_ID,

&aFrame, &aFrame) ;
aFrame.setclient(&aclient) ;

CfeapferJB Fontsandview 415

wig
i+i*

'

rdrt

?egg-

:¥:h:::ffi=TT¥T#pgt€cooLi

I

erffiu! PFseff prarmrmimff Bs ffaeasEL£*S>faeeytede::Sae;#aifeapsra:Sysdi
=+rA^

u

peg

¥ iH:Hdr`

LE~A®S*Qfafa+DfeaT¥#Sesfaj
¥¥i

i. _aBQ{,
%¥p

#+}EGetry¢+#fadya*¢a¥tr*+q
¥¥ct

T*i
1

**Sas_testhdeasid_asas£*:*'ae*£±6

dF.

of}£+

f3Saeae#

§iesass sE fiRE!unou"85"di !ffiesrd±

I.oo9E+quThTff:T¥:::ng:#I+

d¥JI

=*HHrsq* ¥-

Figure 18-4. Using Advanced Font Functions.

// Size and show the frame and run the application.
aFrame

.movesizeToclient(aclient.rect())

. setFocus ()
• show () ;

IApplication : : current () . run () ;
)

FontDrawingArea : : FontDrawingArea (unsigned long windowld,
Iwindow* parent, Iwindow* owner, const IRectangle& initial)

: IDrawingcanvas (windowld, parent, owner, initial,
IDrawingcanvas: :defaultstyle () I Iwindow: :clipsiblings)

(
// Initialize string with a catchy phrase.
Istring str(`'PowerGUI Programming is COOL!") ;

416 Power GUI programming with visualAge for c++

// Get the graphic .context of the canvas for drawing.
IGraphiccontext gc(this->handle()) ;

// Create a graphic bundle for setting colors.
IGraphicBundle gb (gc) ;

// Create a graphic list for saving graphic strings.
this->setGraphicList(new IGList()) ;

// Create a font object, providing name and point size.
IFont font(OS_FONT_1,14, false, true);
font . setBold () ;

// Calculate the size of the displayed string in this font
// and size the window accordingly, adding a buffer each way.
unsigned long strsize = font.textwidth(str) ;
IRectangle drawRect(IPoint(20, 30),

Isize(2*strsize+30, 2*strsize+30));
this->movesizeTo (drawRect) ;

// Get the center point of the font drawing area.
IPoint point(drawRect.centerxcenterY()) ;
point -= IPoint(20, 20);

// Iterate through the list of angles and colors, changing the
// font and graphic attributes, and build a list of graphic
// strings drawn at that angle with those colors.int i;
for (i=O; i<16; i++)
(

#ifdef IC_WIN
font.setFontshear(ptArray[i]) ;

#endif
font.setFontAngle(ptArray[i]) ;
gb.setpencolor(colArray[i%8]) ;
// Create a graphic string, starting at point
// with text and font you want
IGstring* text = new IGstring(str, point, font);
text->setGraphicBundle (gb) ;
text->drawon (gc) ;

// Add the graphic string (with attributes) to the list.
this->graphicList() ->addASLast(*text) ;

)
)

FontDrawingArea : : ~FontDrawingArea ()
(

// Delete all the graphic objects in the drawing canvas.
IGList: :Cursor graphicscursor(*graphicList()) ;
for (graphicscursor.setTOFirst() ;

graphicscursor . isvalid () ;
graphicscursor. setTONext ())

(
IGraphic*

graphic (& (graphicList () ->graphicAt (graphicscursor))) ;delete graphic;
)
delete graphicList () ;

)

CfeapferJB Fonts andview 417

Font Selection
At the beginning of the chapter we discussed the nonportability of many of the typeface names
between operating systems. Another solution to this is to allow the application user to select
the font to use. This is important for applications like editors, browsers, and desktop
publishing packages. To meet this need, Open Class Library provides the IFontDialog class,
which enables an application to create and display font dialogs in your application. A/o#f
dz.czJog is a selection dialog that enables users to view a list of font typeface names, styles, and
point sizes available on their systems and to select from them. In addition to a selection list,
the selection dialog also contains a preview area that contains some sample text demonstrating
what the currently selected typeface name, point size, and attributes looks like.

Creating a Font Dialog
Before you create an IFontDialog, you need to learn about another class first, the nested class
IFontDialog: : Settings. You use it to define the initial data, styles, and attributes of a font
dialog. The IFontDialog: : Settings object controls the appearance and use of the font dialog,
and it also returns the font that the users choose.

To create an IFontDialog: :Settings object, you typically pass an initial font on the
constructor. If a font is not passed, the default font is used. Once the object is created, you
customize the initial values using a variety of member functions. Use setFont to replace the
initial font. Specify the new IFont value that you want to use to replace the current one. As
mentioned earlier, the! dialog contains a preview area that shows how the selected font will
appear. Use setpreviewText to specify the string of text that will be used as the sample. Use
setposition to set the initial position of the dialog. Specify the position relative to the parent
window of the dialog. Specify the text that will appear in the title of the dialog by using
setTitle.

You may want some of your applications to use this dialog to select fonts for a specific display
or printer device. In these cases, they can use setDisplayps or setprinterps and specify the
graphic context to query for the available fonts.

Your application can extend the font dialog functions by adding additional controls onto the
dialog. An application uses setDialogTemplate and specifies the custom dialog template
resource desired. Retrieving information from these controls is accomplished through the use
of a handler.

Now that the settings object is initialized, you create the dialog from it. To create an
IFontDialog object, provide the owning and parent window of the dialog and the settings
object created above. Optionally, you can specify several dialog styles to control the
appearance and functions of the dialog, as well as a handler to be attached to the dialog when it
is created.

The font dialog by default is a J73odczJ dz.czJog. This means that you cannot interact with the
application until you dismiss the font dialog. Modify this behavior by specifying the
IFontDialog: :modeless style. See the "Displaying Application-Modal Frame Windows"
topic in Chapter 5, "Frame Window Basics," for more information on modal windows.

418 Power GUI programming with visualAge for c++

The graphic engine of the Windows operating systems and the OS/2 operating system can
synthesize a font. It does .this when it cannot find an exact match for a requested set of
parameters but through synthesis can come close. For example, suppose your application uses
the font "MyFavoriteFont." In one part of that application, you want to use a bold version of
this font. If "MyFavoriteFont Bold" does not exist, you cannot do this. However, using
synthesis, the graphic engine could make the font appear bold by drawing each character
twice, first in the original position and then again one pixel to the right. For most applications,
it is important that certain attributes are reflected in the font as requested, which is why this
feature is important. However, because font quality may degrade using this feature (for
example, character outlines may not be as precise), you may want your applications to list only
real fonts. To do this, an application sets the style IFontDialog: :nosynthesize.

A number of additional buttons can be added to the font dialog. You can select from several
styles to add these buttons. Use IFontDialog: :helpButton to add a button to the dialog,
which, when a user presses it, generates a request for help. See Chapter 23, "Using Help," for
more information on using help. Use IFontDialog : : applyButton to add a button that the user
can use to apply the current selection without dismissing the dialog. Use this style with
modeless dialogs. In the OS/2 operating system, use IFontDialog: :resetButton to provide a
button that resets the dialog to the initial values that were set when it was first displayed.

There are also several styles that you can use for filtering the types of fonts that will appear in
the dialog list. If you want to list only those fonts rendered with bitmaps, specify
IFontDialog: :bitmaponly. If you want to list only those fonts rendered with vectors, use
IFontDialog: :vectoronly. For Windows operating systems, this includes both TrueType
fonts and those vector fonts used in earlier versions of Windows. In the OS/2 operating
system, this includes Adobe Type Manager fonts and vector fonts from early versions of the
OS/2 operating system. Use IFontDialog: : fixedwidthonly to filter the list to display only
fixed-space fonts. In the OS/2 operating system, use IFontDialog: :proportionalonly to list
only proportionally spaced fonts.

Retrieving the Selection
After users dismiss a dialog, check whether they selected a font from the choices provided or
whether they cancelled the dialog without making a selection. Check the users' actions with
IFontDialog: :pressedoK. If the users ended a dialog by pressing the OK push button, this
member returns true. A value of false indicates that the users pressed Cancel or an error
occurred.

If the users selected a font and pressed OK, then the font object that was used to initialize the
settings object is modified to now represent the users' selections. This IFont object can then
be applied to textual information in your application using IFont: :setwindowFont or
Iwindow: : setFont.

Cfe¢pferJB Fonts andview 419

Adding a Handler
An important way to use the font dialog is to keep the dialog displayed while the results of any
selections are applied. Do not dismiss the dialog until the users decide on their final choices.
Open Class Library provides the IFontDialogHandler class to do this. Use this class, coupled
with a font dialog created with the IFontDialog: :modeless and IFontDialog: :applyButton
styles, to handle this trial-and-error method. The IFontDialogHandler class is also useful
when you want your application to extend the functions of the font dialog by adding additional
controls. User interaction with these new controls is handled by overriding
dispatchHandlerEvent and adding the appropriate event-processing logic.

The following example shows a command handler that uses IFontDialog to enable users to
select the font and attributes for displaying the graphic string in the previous example. It also
demonstrates a class derived from IFontDialogHandler, MyDlgHandler, that you use to apply a
selection without dismissing the dialog. Figure 18-5 displays the font dialog on the Windows
operating system.

Selecting Fonts Using the Font Dialog - fonts\fontdlg\fontdlg.cpp
IBase : : Boolean FontDialogExample : : command (

ICommandEvent& cmdEvent)
(

switch (cmdEvent.commandld())
(

case MI_FONTDLG :
(

// Create a font dialog handler, passing the frame
// window for use during modeless processing.
MyDlgHandler applyHandler(this) ;

// Initialize a settings ob].ect with the current font.
IFontDialog: :Settings settings (¤tFont) ;
// Set the preview text, title, and initial position.
settings.setpreviewText("PowerGUI is COOL!") ;
settings.setTitle(`'Select a New Font") ;
settings.setposition(IPoint(450, 2));

// Create a modeless dialog containing an apply button,
// and only list vector fonts. Attach the font dialog
// handler created above to handle the apply button.
IFontDialog fntDlg(Iwindow: :desktopwindow() , this,

&applyHandler,
IFontDialogr: :modeless I
IFontDialog: : applyButton I
IFontDialog: :vectoronly, settings) ;

// Check if the user selected a font and if so, update
// the drawing area using the new font.
if (fntDlg.pressedoK())

this->updateDemo (currentFont) ;
return (true) ;

)

case MI_EXIT:
this->close () ;
return (true) ;

)
)

420 Power GUI programming with visualAge for c++

IBase : :Boolean MyDlgHandler: :modelessApply (
IFontDialog* modelessDialog, IFont* appliedFont)

(
fhwnd->updateDemo (*appliedFont) ;
return true;

)

Figure 18-5. Font Dialog in the Windows Operating System.

File Selection
Although this chapter has focused on using and selecting fonts, many applications also work
with information that is stored in files. Users of these applications need to be able to list
existing files, select from them, and either load information or save new work. To meet this
need, Open Class Library provides the IFileDialog class, which enables an application to
create and display a file dialog in your application. A/I.Je dz.cIZog is a selection dialog that
enables users to view the names of files available, both on their systems or across a network.
Users can select from a list of drives, directories, and files, or they can enter a file name
directly.

Creating a File Dialog
As in IFontDialog, you use the nested class IFileDialog: : Settings to define the initial data,
styles, and attributes of a file dialog. The IFileDialog: :Settings object controls the
appearance and use of the file dialog, and you can also use it to return the file name or names
the users choose.

CfoapferJB Fonts andview 421

Use the default constructor to initially create an IFileDialog: :Settings object. After the
object is created, customize the dialog values using any of the following member functions.
Most importantly, set the type of file dialog you want to create. Use setopenDialog to
indicate that the dialog will be an Open dialog. Use setsaveASDialog to request a Save As
dialog. The default type of dialog is an Open dialog.

Also as in IFontDialog, set the initial position of the dialog using setposition. Specify the
position relative to the parent window of the dialog. Specify the text that appears in the title of
the dialog by using setTitle, and indicate that a custom dialog template is to be displayed
with setDialogTemplate.

There are several member functions that affect the initial information displayed by the dialog.
Specify the initial file name and directory to be displayed by using setFileName. Use
setlnitialDrive to select the initial drive that you want to list the contents from. In the OS/2
operating system, use setlnitialFileType to indicate the initial extended attribute (EA) to
filter the file name list with, and use addFileType to add additional EA descriptions to the
filtering list.

Because a file dialog can be Open or Save As, your application can provide the users with an
additional visual clue as to what actions will be performed when they choose a file. To do this,
use setoKButtonText to change the text of the OK button to something more descriptive, such
as "Open file" or "Save as."

After initializing the settings object, use it to create the dialog. To create an IFileDialog
object, provide the owning and parent window of the dialog in addition to the settings object.
You can modify the appearance and functions of the dialog by using several different styles,
and you can specify a handler to be attached to the dialog.

You can also use IFileDialog: :helpButton to add a help button to the dialog. When users
press it, it generates a request for help.

Some applications such as editors and brows.ers work with multiple files at once. In this case,
users may want to select more than one file at a time. Use IFileDialog: :multiselection to
enable the dialog to support this. The default file dialog is a single-selection dialog, meaning
that users can select only one file at a time.

Retrieving the Selection
After the users dismiss the dialog, check whether they selected a file name or names from the
list, or whether they canceled the dialog without making a selection. Check the users' actions
by using IFileDialog: :pressedoK. If the users ended the dialog by pressing the OK push
button, this member returns true. A value of false indicates that the users pressed Cancel or
that an error occurred.

If the users selected a file name and pressed OK, then you can retrieve the file name or names.
For a single selection style of dialog, use IFileDialog: :fileName to get the selected file
name. For a multiple selection style of dialog, first query for the-count of the number of files
selected using IFileDialog: :selectedFilecount. Then, after you have retrieved the file

422 Power GUI programming with visualAge for c++

count, iter.ate the list from 1 to the total number of files by using IFileDialog: : fileName and
by passing the index of the file to be retrieved.

Adding a Handler
As with IFontDialog, additional control over a file dialog is enabled through the use of a
handler. Open Class Library provides both the IFileDialogHandler and IFileDialogEvent
classes to facilitate adding this support to your application. Use the IFileDialogHandler
class when you want your application to extend the functions of the file dialog by adding
additional controls to the dialog. Or, use it to validate the users' file name selection before the
dialog is dismissed. Handle the users' interactions with these new controls by overriding
dispatchHandlerEvent and by adding the appropriate event-processing logic. Use
IFileDialogHandler to validate a selected file name and override validateName. The first
parameter of the event is an Istring containing the file name that the user selected. If
validateName returns true, the file dialog is dismissed and this file name is returned. If it
returns false, your application does not accept the file name and the dialog is not dismissed.

The following example demonstrates using IFileDialog to create an Open dialog so users can
select a file name that they will use to populate an edit window. It also shows how to create a
Save As dialog that they can use to select a file name to save the contents of the edit window.
Figure 18-6 displays the file dialog on the Windows operating system.

Selecting Files Using the File Dialog - fonts\filedlg\filedlg.cpp
#include
#include
#include
#include
#include
#include

= lapp . hpp=
<ifiledlg.hpp>
< imsgbox . hpp>
= i s tring . hpp=" f i 1 edlg . hpp "
" filedlg . h"

void main ()
(

// Create a primary window that contains a read-only MLE.
IFramewindow primary("Using the File Dialog" , MAIN_WINDOW,

IFramewindow: :defaultstyle () I IFramewindow: :menuBar) ;
IMultiLineEdit

mle (IC_FRAME_CLIENT_ID, &primary, &primary,
IRectangle () ,
(IMultiLineEdit : : classDefaultstyle

I IMultiLineEdit: :horizontalscroll
I IMultiLineEdit: :readonly)

& ~IMultiLineEdit: :wordwrap) ;
primary.setclient(&mle) ;
// Create a command handler for the menu bar.
MycommandHandler cmdHandler (&primary, &mle) ;
cmdHandler.handleEventsFor (&primary) ;

// Set the input focus, and show the window.
primary

. setFocus ()

. show () ;

// Start event processing.
IApplication : : current () . run () ;

)

Cfeapfe].JB Fonts andview 423

FileHamg:

•!.i'I.E'9.,*g<:g.g.ed_.-'|.,`+"-.+I..-I...}qu..,J'"`"."

FILEDLfi.[PP
FILEDLfi<H
FILEDLE.HFP
FjLEDLE.fig
fflfiKEF]LE
tiiehola§
§tgphanie

€*|.*r*.tA+.{{TtL+*Ilr¥**t£.ts**£**l**.i.f**..i`Jl..+.„,^*&.

List files ®F givpE5:

4ll Fngs r
+jL, - „

Eg7ders:
h:isamp!egtfflritstfiiedlg

ff h:i
E± samples
E± fonts
E± rHEdlg
EI o$2
i:win h~I#

TEE h: JABKSONHOLE fir
v+®---fl€Ejforfa-,

Figure 18-6. File Dialog in the Windows Operating System.

IBase : : Boolean Mycommandllandler : : command (
ICommandEvent& cmdEvent)

(
switch (cmdEvent.commandld())
i

case MI_OPENDLG: // Open dialog processing.
(

// Initialize a dialog settings object.
IFileDialog: : Settings settings;
// Set the initial file nalne, title and position.
settings.setFileName(_FILE_) ;
settings.setoKButtonText (''Open") ;
settings.setTitle(`'Select File to View") ;
settings.setposition(IPoint(50, 50));

// Create a file dialog using the default styles.
IFileDialog fileDlg (Iwindow: :desktopwindow() ,

frame, settings) ;
// Check if a file nalne was selected.
if (fileDlg.pressedoK())
(

// Empty any contents of the ELE.
mle->removeA11 () ;

// Retrieve the file name selected.
Istring selectedFile = fileDlg.fileName() ;
// Read the contents of the file into the ELE
// and scroll to the top of the file.
mle->importFromFile (selectedFile) ;
mle->setcursorLineposition(0) ;

)
return (true) ;

)

case MI_SAVEASDLG :
(

// Save As dialog processing.
// Initialize a dialog settings object.
IFileDialog: : Settings settings;

424 Power GUI programming with visualAge for c++

// Set the initial file name, title, and position.
settings.setFileName("TEMPFILE") ;
settings.setTitle("Select File Name to Save As") ;
settings.setposition(IPoint(50, 50));

// Make this dialog a Save As dialog.
settings . setsaveASDialog () ;

// Create a file dialog using the default styles.
IFileDialog fileDlg (Iwindow: :desktopwindow() ,

fralne, settings) ;
// Check if a file name was selected.
if (fileDlg.pressedoK())
(

// Retrieve the file name selected.
Istring selectedFile = fileDlg.fileName() ;

// Double check with the user before overwriting file.
IMessageBox msgBox(frame) ;
IMessageBox: :Response reply =

msgBox.show("Are you sure you want to overwrite
this file?", IMessageBox: :okcancelButton I
IMessageBox: : querylcon) ;

If user concurs, overwrite the file.
(reply == IMessageBox: :ok)

// Write the contents of the ELE to the file.
mle->exportTOFile (selectedFile) ;

)
)
return (true) ;

)

case MI_EXIT:
frame->close () ;
return (true) ;

)

return (false) ;

Chapter 19

Advanced Frame Window Topics

• Describes topics dealing with frame windows not covered in chapter 5
• Describes the IFramewindow, IFrameExtension, and IFrameHandler classes
• Read chapter 5 before reading this chapter.
• Chapters 20 and 25 coverrelated material.

Chapter 5, "Frame Window Basics," provides a description of the Open Class Library
IFramewindow class and the most-used features of frame window objects. This chapter
describes some of those aspects in greater detail, covers less commonly used features, and
provides a robust example of primary and secondary frame windows in an object-oriented
application.

Frame Window Constructor Arguments
When you construct an IFramewindow you must specify a certain set of frame attribute values.
These attribute values are a subset of the complete set of frame attribute values. The subset
contains those attribute values that roughly correspond to the set of attributes you would be
required to provide for the creation of a frame window using the presentation system directly.

You do not need to explicitly specify all of these attribute values. In fact, most of the time you
do not need to specify more than one or two. With IFramewindow, you can control the default
behavior of the objects so that construction of most frame windows is very simple. The
examples in Chapter 5, "Frame Window Basics" illustrate this. Most of the time, you can
construct your frame windows without having to handle the details and complexity covered in
this chapter.

You can specify up to six different arguments on tbe IFramewindow constructors: resource
identifier, owner window, parent window, style, initial size and position, and window title.
The next six topics describe each of these attribute values.

Specifying a Resource Identifier
The resource identifier constructor argument identifies the resources used to construct your
frame window. You might need some or all of the resources described in Table 19-1 to
construct a frame window. Even if your IFramewindow does not need these resources, you still

425

426 Power GUI programming with visualAge for c++

Table 19-1. Frame Window Resource Types

ResourceType How and When Used

dialog Some IFramewindow constructors attempt to load the frame window definition from a
template, dialog template resource with the specified resource identifier. These are the three

constructors with signatures:
IFralnewindow (unsigned long id = IC_DEFAULT_FRAME_ID,

Framesource source = tryDialogResource) ;
IFramewindow (const IResourceld& resld,

Iwindow* owner = 0,
Fralnesource source = tryDialogResource) ;

IFramewindow (const IResourceld& resld,
Iwindow* parent ,
Iwindow* owner ,
Framesource source = tryDialogResource) ;

Note: IFramewindow does not attempt to load a dialog template resource if you use any of
the other constructors or if you use IFramewindow: :noDialogResource as the value for the
source argument.

icon If you construct the frame window with the IFramewindow: :minimizedlcon style, it loads
an icon resource with the specified resource identifier. This icon appears in the frame
window's system menu button. The system also uses this icon to represent the frame
window when a user minimizes it.

If you require this resource, and the constructor cannot find it in the resource library, the
IFramewindow constructor throws an IAccessError exception.

menu If you construct the frame window with the IFramewindow: :menuBar style, then a menu
resource with the argument identifier is loaded. This menu defines the content of the frame
window' s menu bar.

If you require this resource, and the constructor cannot find it in the resource library, the
IFramewindow constructor throws an IAccessError exception.

accelerator If you construct the frame window with the IFramewindow: :accelerator style, an accel-
table erator table is loaded from the resource library and attached to the frame window. This table

defines shortcut keys a user can press to select command choices.

If the accelerator table cannot be found, the IFramewindow constructor throws an
IAccessEnor exception.

string If you do not provide a title string as a constructor argument, then IFramewindow attempts
to load a string with the argument resource identifier. If the frame window can load the
string, it uses it as the frame window's title text.

If the frame window cannot find the string resource, then Open Class Library gives the
frame window a default title. Normally, this is the name of the application's .EXE file.

Cfe¢pfe7. J9 Advanced Frame window Topics 427

must provide a resource identifier argument on the IFramewindow constructor. There are two
exceptions: you do not need one for the constructor you use to attach an IFramewindow object
to an existing frame window or for the default constructor.

+

The resource identifier argument has type IResourceld. Construct it from a numeric identifier
if you want Open Class Library to load the resources from the default user-resource library.
Alternatively, you can also just specify the numeric identifier so tbat Open Class Library
constructs the IResourceld objec`t automatically. Use the following expression to get the
default resource library.

IApplication : : current () . userResourceLibrary ()
To load the frame's resources from a different resource library, construct the resource
identifier argument using both a numeric identifier and a resource library. Do this by
explicitly specifying the library using an expression such as this:

IResourceld(RES_ID, "resource.dll")
Chapter 24, "Using Resources" p.rovides details on how to control the loading of resources.

The IFramewindow object uses the numeric portion of the resource identifier as the frame's
window identifier. If you need to obtain this identifier from the frame window, use the
Iwindow: : id function to obtain its value instead of operating system provided functions.

Using an Owner Window
Frame windows can have an owner window. We group IFramewindows into one of two
categories based upon whether they have an owner. Prz.J7®clry windows are. frames without an
owner; s'eco73dczry windows are frames with an owner.

The ownership of a frame window affects the behavior of the frame in important ways. When
your application displays a modal dialog, the operating system enforces modality by disabling
the owner window of the dialog. This prevents users from interacting with the owner until they
dismiss the modal dialog. Ownership also affects the behavior of frame windows in the
following ways:

• When a user minimizes, restores, or closes a primary window, the primary window
minimizes, restores, or closes its associated secondary windows.

• Open class Library performs some special processing when it detects the closing of the
last primary window on a thread. When that happens, Open Class Library posts a
WM_QUIT message to that thread. This causes a return from any pending calls to the
ICurrentApplication: :run or the ICurrentThread: :processMsgs functions. By
creating your application's windows as secondary windows owned by your application' s
main window, you cause event processing for your application to continue until its main,
or primary, window is closed. See the "Closing Frame Windows" topic in Chapter 5 for
greater detail.

A frame window always brings secondary windows it owns to the foreground-to the top
of the presentation system Z-order-when a user gives it the input focus.

428 Power GUI programming with visualAge for c++

This last feature has both positive and negative aspects. On one hand, this enables you to
construct dialogs related to your primary window and to ensure that whenever a user activates
the primary window, those related windows become visible, too. This is desirable for tool
palettes and nonmodal utilities, such as an editor's search dialog. On the other hand, those
secondary windows can get in the way, overlaying and obscuring the primary window with
which a user really wants to interact. Because they are always displayed in the foreground,
make secondary windows movable and sizable. In this way, a user can move them out of the
way if they cover up something important on the primary window.

Use secondary windows to view actions and components of the objects being viewed in a
primary window. Provide an owner argument only when constructing secondary frame
windows. In other cases, you construct the frame window without an explicit owner, thus
making it a primary window. You do this by passing a value of 0 for the owner window
argument of the IFramewindow constructor.

Using a Parent Window
Because they are just another type of presentation system window, frame windows have a
parent window, too. For the most part, a frame's relationship to its parent is the same as that
between any two presentation system windows. The child frame window is clipped to its
parent. Because of this, child frame windows cannot readily be moved beyond the borders of
their parent. The presentation system destroys the child frame window when it destroys the
parent frame.
Typically, frame windows have the desktop window as parent. Thus, users can position their
windows where they prefer. This means that you rarely provide a parent window constructor
argument when creating an IFramewindow. When you do not specify it explicitly, the frame's
parent is the desktop window. To explicitly use the desktop window as the parent, specify
either Iwindow : : desktopwindow () or 0 as the argument value.

Sometimes you need to construct frame windows that do not have the desktop as the parent.
These frames are child windows. In almost all cases, make the parent and owner the same
window. The following example shows how to load a child dialog as a page in an INotebook:

INotebook
noteBook;

INotebook : : Pagesettings
settings(myAttribute) ; // Set page settings with

// appropriate attributes.
noteBook. addLastpage (settings,

new IFramewindow(dialogld,
¬eBook, ¬eBook)) ;

A window arrangement containing child frame windows is characteristic of a rm#J£I.pJe
docz{77®e#£ I.#fer/czce (MDI). Many examples of MDI interfaces occur in Windows 3.x programs,
including the Program Manager itself. The user interface styles in the Windows 95 desktop
and the OS/2 Workplace Shell usually do not use MDI; they use secondary views or notebook
dialogs instead. , You can make a direct comparison of the two styles in the Windows 95
operating system by examining a similar function in the Explorer and File Manager programs.
Explorer appears by default in the Start->Programs menu, and you can find the File Manager
as fileman. exe in the Windows 95 directory. Explorer presents you with a list of the drives

Cfe¢pfe7. J9 Advanced Frame window Topics 429

and directories on your system in a tree view in the left panel. When you select something, you
see a detailed view on the right of what you have selected on the left. You can navigate the
entire file system by expanding the tree in the left panel. File Manager uses an MDI-style
interface. It presents you with a child frame window for each drive on your system. To move
to a different drive, select the drive's icon or activate its window using the menu. If you
minimize the view of a drive, the system draws its minimized icon at the bottom of the parent
frame.

You can construct child frame windows easily enough; there are two constructors that accept
parent window arguments. The standard IFralnewindow implementation provides basic child
window behavior sufficient for using IFramewindow objects as notebook pages, for example.
However, Open Class Library does not provide any specific support for implementing the
unique frame window behavior inherent in the MDI definition. You can only accomplish this
by processing the appropriate events yourself and by managing the child windows, as neces-
sary. Later in this chapter, you learn how to extend IFramewindow to take advantage of special
MDI support offered by the Windows operating system.

Specifying a Style
One of the most important attribute values of the frame window that you specify at
construction time is its style. Some IFramewindow styles control the appearance of the
standard frame window components, such as the system menu, title bar, and border, that users
use to interact with the frame window. The styles that control components roughly correspond
to the underlying system styles that perform these functions. Open Class Library adds
additional styles to give you control over the loading of menus, icons, and accelerators during
IFramewindow construction and in the initial positioning of the frame window.

Class IFramewindow contains constant data members, which enumerate the set of valid frame
window styles. These style members have type IFramewindow: : Style. This class is a derived
bit flag class. See Chapter 26, "Data Types," for more information on the IBitFlag class.

The "IFramewindow, Public Data" section of the Vz.sizJczJAge /or C++ OpeJ® CJczssi I,z.brczry
Re/ere#ce lists the frame window styles. In this section, you find important information about
how to use the styles when you construct frame windows. Consider the points in the following
list for using frame window styles:

• IFramewindow defines styles that correspond to each standard frame component. If you
want your frame window to have a given standard component, such as the system menu
or maximize button, turn on that style bit in the style argument that you pass to the
IFramewindow constructor. Conversely, turn off the style bit to remove the corre-
sponding component. You can add or remove components from a frame dynamically.
See Chapter 5 for information on how to do this.

If you use the styles minimizedlcon, menuBar, or accelerator, then resources of type
icon, menu, and accelerator table must be available to your application. These resources
must have the identifier of and reside in the resource library, which is specified by the
resource identifier argument provided to the frame window constructor. If you specify

430 Power GUI programming with visualAge for c++

these styles, and the corresponding resource cannot be found, the IFramewindow
constructor throws an IAccessError exception.

Because the Open Class Library default style does not require you to define resources,
the default that Open Class Library provides does not set these styles. You must
explicitly add these styles when you construct the frame or use
IFramewindow: : setDefaultstyle to set them for all subsequently constructed frame
windows.

You can use function calls as an alternative to these styles. Use the
IFramewindow: :setlcon function to set the icon, and use the IMenuBar and
IAccelerator classes to set the menu and accelerators. You might need to use this
approach when you construct the frame window from a dialog template because the
constructors for dialog template frame windows do not accept the style argument.

Specify the titleBar style if you want any of the standard frame components that appear
on the title bar. This includes the system menu and minimize/maximize buttons. If you
use these styles without specifying a title bar, Open Class Library implicitly turns on the
titleBar style.

With Open Class Library's IFramewindow objects, you can create windows in the
minimized or maximized state. If you specify either of the minimized or maximized
styles on the IFramewindow constructor, the window is automatically minimized or
maximized. If you specify both of these styles, the window is created in the minimized
state.

The defercreation flag is not really a style; it is a setting. This setting instructs
IFramewindow to defer the creation of the underlying presentation system frame window.
As a result, any other styles specified with clef ercreation on the constructor invocation
are ignored. Typically, you use this setting when you need to create the presentation
system frame window yourself. When you finally link the IFramewindow object with an
underlying presentation system window, specify all your IFramewindow style flags at
that point. Do that by calling the create or initialize member functions.

Class IFramewindow discards the shellposition style if you construct your frame
window with an explicit initial size and position rectangle because the default style
includes shellposition. If the style took precedence, you would have to override the
default style whenever you wanted a specific initial size and position. By providing an
explicit size and position, you indicate that you do not want shellposition.

The style argument is optional. If you do not specify a style, IFramewindow uses a default
style. If the frame is constructed from a dialog template, it uses the styles and control flags
specified in the dialog template. Otherwise, it uses the current default IFramewindow style
returned by the static member function IFramewindow: : defaultstyle. Unless you change it,
the current default style is the same style as defined by IFramewindow: : classDefaultstyle.
This default style includes each of the following style settings:

titleBar minimi zeButton windowLis t
sys temMenu maximi z eButton appDBCss tatus
sizingBorder

Cfeapfer J9 Advanced Framewindow Topics 431

You can modify the default style in your application by calling
IFramewindow: : setDefaultstyle. When you do this, you turn certain styles on or off. Here is
an example of code that changes the default frame style to include the menuBar setting:

void main ()
(
// All my fra]mes will load menus from resource libraries.
IFramewindow: : setDefaultstyle (IFramewindow: : classDefaultstyle

I IFramewindow: :menuBar) ;
// ...
}

The advframe\fstyle program on the examples disk is another, more elaborate example that
accepts specification of the frame styles as command line arguments and creates a frame
window with the specified style. Use this program to test combinations of frame styles and to
show you how to manipulate style objects. You can use the program by entering a command
similar to this:

start f style default ~title
This command causes the program to create a frame with the default style but without a title
bar.

Specifying an Initial Size and Position
You can specify the frame window's initial size and position when you construct an
IFranewindow.

If you construct the frame from a dialog template, the template specifies the frame's initial
size and position. For example, use the following template to construct an IFramewindow.

DLGTEMPLATE IC_DEFAULT_FRAME_I D
BEGIN

DIALOG "Title", 1, 10, 10, 100, 40
BEGIN
/* Controls omitted for clarity ... */
END

END

The result is a frame window positioned at IPoint(10,10) with Isize(100,40). When
constructing an IFramewindow from a dialog template, you cannot specify an explicit initial
size and position for the frame window. It uses the initial size and position specified in the
dialog template resource.

If you are not constructing the frame window from a dialog template, use the
IFramewindow: : shellposition style to give the frame a default initial size and position, the
sfeeJJ post.f{.o7®. This style results in a window sized and positioned by Open Class Library. You
get a large window in a different position from other recently created frame windows.\

The shell position is better than hardcoding a position of the frame because variables such as
screen size are accounted for. However, following a user's lead is best. The ideal strategy is to
identify where each user last positioned tbe windows and to reopen them in the same size and
position.

However, the IFramewindow constructor, which lets you specify an explicit initial size and
position, also requires parent and owner window arguments that you might not want to bother
with. You can establish the initial size and position of your frame windows as follows:

432 Power GUI programming with visualAge for c++

Save the size and position of all of your application's windows. When a user reopens a
view, position and size the frame window to the saved values. The easiest way to do this
is to create the frame window with the shell position style, but hide it using
~Iwindow: :visible. Then, position the frame to the stored values. Finally, show the
frame.

• Use the shellposition the firsttime you open a view.

• If you must force a view to a given size, for example, if your frame window's contents do
not fill up the shell-positioned frame, preserve the default position.

Setting a Window Title
The frame window's title is much like the initial size and position attribute. Most of the time,
Open Class Library obtains the title text for you. If IFramewindow loads a dialog template, the
dialog provides the title. Otherwise, the IFramewindow constructor tries to load the title from a
string resource with the same identifier as the frame window identifier. If the frame is a
secondary window and there is no matching string resource, the frame title is the same as the
owner window. If no other title is located, the IFramewindow constructor sets the title to the
name of the program executable file.

Only two constructors permit specifying an explicit title. You pass the title to these
IFramewindow constructors as a const char * pointer.

You can change the frame's title after construction by using an ITitle object. You might find
this means of specifying an explicit title preferable to using the more awkward IFramewindow
constructors, which accept a title argument.

Frame Window Constructors
In the preceding section, we described the various IFramewindow constructor arguments. In
this section, we discuss all eight variations of IFramewindow constructors.

Constructing from Existing Frame Windows
IFramewindow(const IwindowHandle &hwnd) ;

Use this constructor to attach an IFramewindow object to an existing presentation system frame
window. The only argument is the window's window handle. Because the window already
exists, all of the six frame constructor arguments discussed in the previous section are irrel-
evant when using this constructor.

With this constructor, you can continue to use existing code written without Open Class
Library. For example, you might use this constructor to use the enhanced IFramewindow
capabilities to add frame extensions, such as an.information area, to your existing application.

Cfea!pfer J9 Advanced Framewindow Topics 433

This support for other application code also extends to code that you implement using other
.C++ class libraries, including libraries from other C++ and library vendors. If you can obtain
the window handle of the frame window, you can attach an IFramewindow to it using this
constructor.

This constructor warrants the following .caveats.

• Pass the argument as an IwindowHandle, #of an HWND. The system-defined type HWND is
synonymous with unsigned long in the bs/2 operating system. If you use HWND as an
argument in the OS/2 environment, you invoke the constructor that interprets the number
as a resource identifier. If you have an HWND, you need to convert this to an
IwindowHandle explicitly, as follows :

HVue
hwnd = Wincreatewindow(..., WC_FRARE ,...) ;

IFranewindow
frame(IwindowHandle(hwnd)) ;

A better solution is to store the window handle in an IwindowHandle to start with, as
follows:

IwindowHandle
hwnd = Wincreatewindow(..., WC_FRAME ,...) ;

IFranewindow
frame(hwnd) ;

• Make certain that the window handle is not already attached to an IFramewindow or
Iwindow object. If you attempt to attach another C++ window object to the same handle,
the IFramewindow constructor throws. an IInvalidparameter exception. To avoid this
error, test for the existence of an attached Iwindow object by using
Iwindow: : windowwithHandle as follows:

IwindowHandle
hand;

/ / . . :brNn!jl se:i . . .
IFranewindow

*p = (IFramewindow *) (Iwindow: :windowwithHandle(hwnd)) ;
if (!p)

p = new IFramewindow(hwnd) ;

Constructing Primary Frame Windows
IFramewindow (unsigned long id = IC_DEFAULT_FRAME_ID,

Framesource source = tryDialogResource) ;
This is the default constructor for class IFramewindow. Use it to construct primary windows
from either dialog template resources or from standard frame window styles. The frame's
parent is the desktop window, and it has no owner.

As explained in Chapter 5, "Frame Window Basics," you control the behavior of this
constructor with respect to dialog template resources by using a value of the enumerated type
Framesource in the source argument. This constructor gets the rest of the frame window
construction arguments, as follows:

• When you specify the value of source as IFramewindow: :noDialogResource, a standard
frame window is constructed using the default style that is returned by
IFramewindow: :defaultstyle. The constructor uses the id argument to create an
IResourceld object associated with the default user resource library. The other

434 Power GUI programming with visualAge for c++

resources required to construct the frame window, as determined by the default style, are
obtained using this resource identifier. Its initial size and position is the next shell
position-as returned by IFramewindow: :nextshellRect. The frame's title is either set
from a string resource, with the argument resource identifier, or, if the frame cannot find
the string, to the default title.

When you specify IFramewindow: :dialogResource as the value of source, the
constructor uses the id argument to construct an IResourceld object associated with the
default user resource library. In this case, however, the constructor then attempts to
create a frame window from a dialog template resource identified by the IResourceld
object. The frame obtains its style, title, and initial size and position from the dialog
template resource. If the dialog template resource cannot be loaded, the constructor
throws an IAccessError exception.

• If you do not specify a value for source, or if you specify
IFramewindow: : tryDialogResource, the constructor first attempts to construct the
frame using a dialog template resource as if IFramewindow: :dialogResource is speci-
fied. However, if the attempt to load the dialog template resource fails, the constructor
does not throw an exception. Instead, it constructs a standard frame window as
described for IFramewindow: : noDialogResource.

This constructor accepts, as an argument, a plain unsigned long. Because it has a default
argument value, you can use this constructor to construct an IFramewindow with no arguments.
Any required frame resources are obtained using the resource identifier value
IC_DEFAULT_FRAME_ID, which is defined iri the header file ICCONST.H. Include this header in
your resource script (.RC) file to define resources with the IC_DEFAULT_FRAME_ID identifier.
See the beginning of Chapter 5, "Frame Window Basics," for examples of the use of this
constructor.

Constructing Secondary Frarie Windows
IFramewindow (const IResourceld& resld,

Iwindow* owner = 0,
Framesource source = tryDialogResource) ;

Use this constructor to create secondary frame windows. The additional Iwindow* argument
specifies the primary window, which is the owner of the newly constructed frame window.

Because it has a default argument value of 0, the owner argument is optional. When you do not
provide an owner, this constructor builds a primary window just like the constructor we
described in "Constructing Primary Frame Windows." The only difference is that you can use
the resld argument to specify the resource library containing the frame resources.

The resulting frame window's attributes are determined in essentially the same manner as in
the previous constructor. The only differences are that the resources come from the resource
library referenced by the argument IResourceld object and that there may be an owner
window. See examples of the use of this constructor in Chapter 5, "Frame Window Basics."

Cfeapfer J9 Advanced Framewindow Topics 435

Constructing Child Frame Windows
IFramewindow (const IResourceld& resld, .

Iwindow* parent ,
Iwindow* owner ,
Framesource source = tryDialogResource) ;

Use this constructor to create child frame windows, optionally from a dialog template. Except
to create page windows for a notebook, you rarely use child frame windows in applications
that have the look and feel of the Windows 95 or OS/2 desktops. See Chapter 14, "Notebook
Control," for more details on creating page windows for notebooks.

As with the preceding two constructors, this one accepts a resource identifier as its first
argument and a source argument to control the search for dialog template resources. The
frame obtains some construction attributes, such as style, initial size, position, and title, in the
same way that the two preceding constructors do. This constructor permits you to specify a
parent window other than the desktop window.

In most cases, make the same window both the parent and owner. This conforms to MDI
conventions and works well for most applications.

However, if the secondary window is to be displayed in application modal fashion, do 7®of
make it a child frame window. The parent and owner windows of modal dialogs must meet the
restrictions described in the topic "Displaying Application-Modal Frame Windows" in
Chapter 5 .

Here are typical examples of construction of a child frame window:
#define DIALOG_ID 101

IFramewindow*parent;

// Get resources from the default user resource library.
IFranewindow

child(DIALOG_ID, parent, parent) ;

// Get resources from resource.dll.
IFranewindow

child(IResourceld(DIALOG_ID, "resource.dll") ,
parent'
parent) ;

Overloading, Ambiguity, and Default Argument Values
The three constructors that permit construction of frame windows from dialog templates
provide a good example of how to exploit the C++ features of overloading and how to use
default arguments to provide a simple and flexible interface for your objects.

While such a design might look complicated, it makes using the objects much easier. You
can specify a resource identifier value, and the default resource library gets used. You can
add an owner window argument to the code and not even realize that a different constructor
is called. You can specify an explicit resource library without having to specify an owner.

436 Power GUI programming with visualAge for c++

Constructing Frame Windows with Nondefault Style
IFramewindow(const IResourceld &resld,

const Style &style) ;
IFramewindow(const Style &style,

const IResourceld &resld = IC_DEFAULT_FRAME_ID) ;

Use these two constructors to construct standard frame windows with other than the default
style. Neither attempts to load the frame window definition from a dialog template resource.
All frame windows constructed with these constructors are primary windows. The parent is the
desktop window, and the frame has no owner. To construct a secondary or child window with
other than the default style, use the miscellaneous frame window constructor that we describe
in the next section of this chapter.

The two versions of this constructor conveniently permit you to pass the arguments in either
order. `The constructor accepts the style as the first argument and provides the default resource
identifier. This permits you to construct a frame with just a style.

The remaining constructor arguments not explicitly specified, that is, title and initial size and
position, default in the same manner as the previous constructors do.

When you use these constructors, you usually incorporate the default style into the style
argument. If you want a specific style, use IFramewindow' s classDefaultstyle as follows:

// Construct a primary frame window with fixed style.
IFranewindow

myFrame (IFramewindow: : classDefaultstyle
I

IFramewindow: :menuBar) ;
Using classDefaultstyle ensures that your code is not changed if other code modifies the
current frame window default style. If, however, you want your frame to reflect changes in the
default style, use the IFramewindow: : defaultstyle function as follows:

// Construct a primary frame with with a style derived from the
// default.
IFranewindow

myFrame (IFramewindow: : defaultstyle ()
I

IFramewindow: :menuBar) ;

Constructing Miscellaneous Frame Windows
IFramewindow(const IResourceld &resld,

Iwindow *parent,
Iwindow *owner,
const IRectangle &initRect,
const Style &style = defaultstyle() ,
const char *title = 0) ;

Use this constructor to specify all six of the possible IFramewindow constructor arguments.
Use it to construct IFramewindows that do not lend themselves to construction via any of the
simpler constructors. This constructor' s signature is very much like the constructors provided
for all of the window classes derived from IControl.

Because this constructor accepts title, style, and initial size and position arguments, dialog
template resources are not loaded when you use it. If you use this constructor, you must
specify the resource identifier, parent window, owner window, and initial size and position
arguments. The constructor provides the standard defaults for style and title. If you want the

Cfe¢pfer J9 Advanced Framewindow Topics 437

default behavior for any of the first four arguments, specify those defaults as indicated in
Table 19-2.

Why do you use this constructor? One reason is that this is the only constructor you can use to
specify other than the default style for secondary windows. To do this, you use the constructor
in much the same way that you use those described in the previous section. The only
difference is that you specify one or more of the additional constructor arguments for the
parent and owner windows. Here is a typical example, which creates a secondary frame
window with the additional style of minimizedlcon:

IFranewindow*primary;

IFranewindow
secondary (DIALOCLID,

Iwindow : : desktopwindow () ,
0'
IFramewindow: : nextshellRect () ,
IFramewindow: : classDefaultstyle I

IFramewindow: :minimizedlcon) ;
Choose between classDefaultstyle and defaultstyle()as a base for your style argument
value using the same criteria that we described earlier for the simpler constructors.

This is the only constructor that accepts an explicit initial size and position. Use it when you
want to specify a size and position that is different from the default to the constructor.
However, as you saw in tbe "Initial Size and Position" section, there are other means of
accomplishing the same end. Here is an example of how to construct a frame window with a
fixed initial size and position:

IFramewindow
frame (IC_DEFAULT_FRAME_ID ,

Iwindow : : desktopwindow () ,
0'
IRectangle(IPoint(100,100),

Isize(200,loo)));

Table 19-2. Frame Window Constructor Arguments

Argument What to use t® Obtain DefaultAttribute f^ ¥ iC!

resource IC DEFAULT FRAME ID
identifier If you specify just a numeric value, tbe frame window loads the resources from the

default user resource library.

Parent Iwindow::desktopwindow()

Most frame windows are not child frames, so make the desktop window the parent.

Owner 0

If you are constructing a primary frame, specify 0 to indicate that your frame does not
have an owner. Note that if you do not specify an owner, you might be able to use a
simpler constructor instead.

initial size and IFramewindow::nextshellRect()
position This static function of IFramewindow obtains a shell position.

438 Power GUI programming with visualAge for c++

Constructing Frame Windows with Explicit Title
IFramewindow(const char *title,

const IResourceld &resld = IC_DEFAULT_FRAME_ID,
const Style &style = defaultstyle()) ;

This IFramewindow constructor provides a convenient way to construct a frame window with a
title specified as a constructor argument. With this capability, you can write the simplest
program, as follows:

#include <iframe.hpp>
void main() { IFramewindow(''Hello, World!") .showModally() ; }

Use this constructor for quick test applications, where the benefits of separating the title text
from your code do not warrant the effort required to place the title in an .RC file and compile
and bind the resource file to your application.

Windows created using this constructor are always primary windows. The parent window is
the desktop window and there is no owner window. The frame calculates its initial size and
position using IFramewindow: : nextshellRect. This constructor uses the conventional default
values for the style and resource identifier arguments.

The frame style test application described earlier is a good example of the use of this
constructor. That example shows that this constructor is also useful in cases where the title
contents are dynamic.

Frame Hxtensions
You read about the basic concept of frame extensions in Chapter 5, "Frame Window Basics."
Usually, you do not need to be concerned about how the frame window manages frame exten-
sions. However, you can derive from the class IFrameExtension in order to customize frame
extensions. You might want to do this to create extensions that draw fancier separators, or that
dynamically change themselves in response to user interaction with the frame window. This
section describes how to use a specialized frame extension class.

The public versions of addExtension use a private function to construct an IFrameExtension
and add it to the collection of extensions managed by the frame window. If you derive a new
class from IFramewindow, you might have to add objects of that class to the collection. This is
demonstrated in the function MyFrame : : addMyExtension in the following example.

The example shows how you might design a frame-extension derived class that draws
separator lines of user-selected width and color.

Cfeapfer J9 Advanced Frame window Topics 439

Derived IFrameExtension Interface - advframe\drawextn\myextns.hpp
#include <iframext. hpp>
#include <icolor.hpp>
class MyExtension : public IFrameExtension {
public :

MyExtension (Iwindow *control,
IFralnewindow: :Location loc) ;

MyExtension (Iwindow *control,
IFramewindow: :Location loc,
double size); '

MyExtension(Iwindow *control,
IFramewindow: :Location loc,
int size) ;

vir.tual unsigned long
separatorwidth () const;

virtual void
drawseparator (const IpresspaceHandle &hps) ;

virtual MyExtension
&setseparatorwidth (unsigned long width) ,
&setseparatorcolor (const IColor& newcolor) ;

private :unsigned long
width;

IColor
color;

MyExtension (const MyExtension&) ;
MyExtension

&operator= (const MyExtension&) ;
);

Derived IFrameExtension Implementation - advframe\drawextn\myextns.cpp
#include <icoordsy.hpp>
#include <igrafctx.hpp>
#include <igrect.hpp>
#include <irect.hpp>
#include "myextns.hpp"
MyExtension: :MyExtension (Iwindow *control ,

IFramewindow: :Location loc)
: IFrameExtension(control,1oc, IFramewindow: :none) ,

width(5),
color(IColor: :white)

(
)

MyExtension: :MyExtension (Iwindow *control,
IFralnewindow: : Location loc ,
double size)

: IFrameExtension(control,1oc, size, IFramewindow: :none) ,
width(5),
color(IColor: :white)

(
)

MyExtension: :MyExtension (Iwindow *control ,
IFramewindow: : Location loc,
int size)

: IFrameExtension(control,1oc, (unsigned long)size,
IFralnewindow: :none) ,

width(5),
color(IColor: :white)

(
)

440 Power GUI programming with visualAge for c++

unsigned long MyExtension: : separatorwidth () const
(return width;
)

void MyExtension: :drawseparator (const IpresspaceHandle &hps)
(
IRectangle

separator;
Boolean isupperLef t =

(ICoordinatesystem: :nativeorientation () ==
ICoordinatesystem: : originupperLeft) ;

if (location() == IFramewindow: :aboveclient)
// Put separator beneath control.
separator = control () ->nativeRect()

.moveBy(Ipair(0, isupperLeft ?
control()->size().height() : -width));

else
// Put separator above control.
separator = control () ->nativeRect ()

.moveBy(Ipair(0, isupperLeft ?
-width : control()->size().height()));

separator.sizeTo(separator.size() .setHeight(width-1)) ;

// Draw the separator. Don't draw it if width is 0.
if (width != 0)

(
IGraphiccontext gc (hps) ;
gc . setFillcolor (color) ;
gc . setpencolor (color) ;
gc.draw(IGRectangle(separator)) ;
)

)

MyExtension& MyExtension: :setseparatorwidth (unsigned long width)
(
this->width = width;
return *this;
)

MyExtension& MyExtension: : setseparatorcolor (
const IColor& newcolor)

(
this->color = newcolor;
return *this;

)

Class MyExtension overrides the inherited virtual functions separatorwidth and
drawseparator. Other derived extension classes may override them to embellish the drawing
of frame extensions.

You create a derived IFramewindow class, which uses such an extension, using code like the
advframe\drawextn program on the examples disk. This program lets a user select a color
and a separator width, and then it updates the frame using those values. The frame extensions
are objects of class MyExtension.

Cfeapfe7. J9 Advanced Frame window Topics 441

Implementation Details of IFramewindow
We cover three aspects of the implementation:

• the IFrameHandler class, which handles frame window events,
• the process open class Library uses to construct frame windows,
• and details of the presentation system window used for frame window objects.

These aspects help you extend the features of IFramewindow. In this section, you see how
frame handlers work, learn why modifying a frame handler is difficult, and discover a
simplified strategy for dealing with this problem.

Working with a Frame Handler
The IFrameHandler class provides for the handling of events that affect frame windows or that
Open Class Library handles to implement the special features of IFramewindow objects.
IFramewindow attaches one of these handlers to almost all frame windows when you call an
IFramewindow constructor. You can tailor your frame windows by deriving from this handler
class and reimplementing the virtual functions that process particular frame events. Deriving
from IFralneHandler and adding your own frame handlers to a frame window is much more
complicated than it first appears.

Like most handlers, IFrameHandler objects convert the generic IEvents arriving at the
dispatchHandlerEvent function to more specific IFrameEvents and pass those to a variety of
virtual functions. You can override any of these functions to change the behavior of your
frame window. However, we do not recommend overriding some of the virtual functions in
IFrameHandler. The implementations of some of the functions in the base IFrameHandler
class are dependent on one another for handling some complex tasks, such as the layout of the
frame window's extensions. Fortunately, you generally do not need to override most of these
functions. For example, there is little reason for you to add functionality to the format
function.

The only functions you might want to override are closed and saved. However, you can better
handle the former using a standalone ICommandHandler-derived class. See Chapter 5, "Frame
Window Basics." Thej same approach works best for saved, too. The advframe\framesav
program on the examples disk shows a SaveHandler class that provides an easier means for
handling application save requests in the OS/2 operating system. In the Windows operating
system, there is no separate event that the system sends to indicate that the application should
save state data. (The IFralneHandler: : saved function is not called in the Windows environ-
ment.) To get functionality similar to the following example, integrate its
SaveHandler : : saved function into your ICormandHandler-derived class for closed, and call it
in response to the close event.

The default saved implementation saves the frame's window position using the OS/2 system
function Winstorewindowpos. When attached to a frame window, the handler restores the
frame' s position using its counterpart function, WinRestorewindowpos.

442 Power GUI programming with visualAge for c++

Special Features of IFrameHandler
IFrameHandler is unlike most Open Class Library handler classes in two ways. The first way
is that IFrameHandler provides certain concrete behaviors, such as frame-extension layout and
special handling for events such as window activate and window close. Most Open Class
Library handlers only provide behaviors when you derive from them. The second way is that
Open Class Library attaches an IFrameHandler object to your frame window automatically
when you construct an IFramewindow object.

Consider what happens when you derive from IFrameHandler and attach your handler to a
frame window. In your derived class, you override one or more of the virtual functions. Your
handler, however, inherits the IFrameHandler implementation for the virtual functions that
you do not override. When you add your handler to an IFramewindow, you provide behaviors in
your overridden functions and the IFrameHandler behaviors for the functions you do not
override. Because there is already a default IFrameHandler object attached to the frame
window, both your handler and the default IFrameHandler are processing events and applying
behaviors to the frame window. Unless you carefully design your handler, some behaviors are
applied twice, typically with undesirable results.

Customizing IFrameHandler B ehavior
In certain circumstances, you might have to code classes that derive from IFralneHandler. You
do this if you want your frame window to inherit some particular feature of frame windows,
such as the ability to have extensions, but want to tailor the implementation of that feature, for
example, to change the drawing of the frame extensions. How do you overcome the obstacles
to doing this? The solution is to permit only one frame handler to be attached to your frame
window.

The default frame handler gets attached to a frame window in the default implementation of
the IFramewindow: :addDefaultHandler. This virtual function gets called from
IFramewindow: : start, whicb in turn gets called from IFramewindow: : initialize. So why
not override addDefaultHandler so that it adds a handler of a different type or disable the
adding of a handler altogether?

You can do that, but it is difficult. This function gets called during the construction of the
IFramewindow. During construction, the object is still just an IFramewindow, and your
overridden virtual function is not in effect yet. The only way to make this work is to use the
clef ercreation style when you construct the IFramewindow. When you use this style, create
the presentation system frame window and connect it to the C++ frame window object. You
can do both by calling IFramewindow: : initialize. Alternatively, you can create the presen-
tation system window yourself and then call IFramewindow: : start to connect it to the C++
Object.

It is easier to construct the base IFramewindow in the normal fashion and then remove the
default frame handler by calling IFramewindow: :removeDefaultHandler. You must then
attach another frame handler. The following sample code lays out the basic structure for doing
this:

Cfeapfe]. J9 Advanced Frame windowTopics 443

class MyFralneHandler : public IFrameHandler {
// Override virtual functions here. Make sure you properly
// call the inherited IFrameHandler function to ensure that
// you take necessary actions for key events.
);

class MyFrame : public IFramewindow {
publ i c :
// Provide your constructors here. Note how you use the
// base class constructors in the normal fashion.

MyFralne (const IResourceld &resld)
: IFramewindow(resld)
(
// Remove default frame handler:
removeDefaultHandler () ;
// Add replacement frame handler:
handler.handleEventsFor(this) ;
)

private :
// Put the replacement handler here for convenience.
// You can place this object in a static member to
// share it among all MyFrame objects.
MyFraneHandler

handler;
);

Managing Frame Window Construction
Another detail of frame windows is the order of the events that occur when you construct
various ones. (You have already seen some of these events.) At the beginning of this chapter,
you read about the constructor arguments and the various frame constructors. In the previous
topic, you saw how Open Class Library attaches a default frame handler during construction.
Now we look closer at the frame window construction process. Figure 19-1 shows the frame
constructor logic.

When you use dialog templates, there are three concerns because of the way that frame
window construction works. First, if you try to load a dialog from a template resource and the
IFramewindow cannot find the resource, it creates a standard frame window by default. If you
consider this an error and the next two concerns do not bother you, use the
IFramewindow: :dialogTemplate value for the source argument on the constructor. This
causes an exception to be thrown in this case. Second, you cannot load a dialog and use a
previously written dialog procedure. When IFramewindow loads the dialog template, it always
specifies a default dialog procedure. Third, you cannot process the dialog initialization event,
which is WM_INITDIALOG in the Windows operating system and WM_INITDLG in the OS/2
operating system.

The example code at the end of this topic handles each of these concerns. The example
implements these classes:

Dialogwindow

This class derives from IFramewindow. It differs from IFramewindow in the following
respects:

444 Power GUI programming with visualAge for c++

It always loads the frame from a dialog template resource. If the resource library
does not contain the resource, the dialog window object throws an IAccessError
exception.

-It permits the use of your own dialog procedure. If you construct a Dialogwindow
and provide a dialog procedure, your procedure is used instead of the default
dialog procedure.

Figure 19-1. IFramewindow Coustmction Process.

Cfe¢pfer J9 A.dvanced Framewindow Topics 445

It permits a specialized handler to be used to handle dialog initialization. You
cannot handle the dialog initialization message using an IHandler object. This is
because the dialog is loaded and the dialog initialization message is sent during
IFramewindow construction and because you cannot register your handlers until
after construction is completed.

The class Dialogwindow avoids the unwanted IFramewindow dialog-loading behavior by
constructing its IFramewindow base class using the defercreation style. This style
effectively disables IFramewindow' s attempt to create a presentation system window.

The actual dialog window construction occurs in the member function loadDialog. This
function loads the dialog template from the resource library. If it cannot find the
resource, IResourceLibrary: : 1oadDialog throws an IAccessError exception. Because
the function does not catch this exception, control is transferred back to your code at the
point you attempted to construct the dialog window.

Notice that the Dialogwindow member function loadDialog calls
ICurrentThread: : initializeGUI before trying to load the dialog template. Open Class
Library does this within the IFramewindow constructors, but only if it creates a presen-
tation system window. Because the following code creates the window, it must initialize
the windowing environment. See Chapter 20, "Applications and Threads" for more
information on this topic.

If the dialog template loads successfully, the code passes the handle for the dialog
window to the IFramewindow: :start function. This connects the C++ object to the
presentation system window and attaches the defa:ult frame handler.

To enable your dialog handler to handle the dialog initialization message, the
constructor that accepts a handler has to use a special dialog procedure when it loads the
dialog template. This dialog procedure looks for the dialog initialization event and
dispatches it to the dialog handler. To provide access to this handler, the constructor
creates a modified creation parameter structure that holds a reference to the handler and
the actual creation parameters passed to the constructor. The dialog procedure unwraps
these creation parameters before calling the handler' s initialize function.

The Dialogwindow constructor accepts a dialog handler and attaches it to the dialog after
constructing it. This means you can override dispatchHandlerEvent and handle other
events in your handler.

DialogHandler

This class defines a specialized handler that has a virtual function initialize, which
you can override to handle dialog initialization. Typically, you initialize your dialog's• controls and set the focus to the appropriate control on your dialog by calling

Iwindow: : setFocus.

446 Power GUI programming with visualAge for c++

DialoglnitEvent

This class defines the dialog-initialization event. It provides the function
createparameters that you can call to query the dialog creation parameters. It also
provides the member function setFocuschanged. Call this function if you set focus on
one of your dialog controls. The setFocuschanged function puts the proper notification
in the event result field so that the system default dialog procedure handles your focus
selection. If you do not set the focus, the system's default dialog procedure sets the
focus to a default control. You can query the default control that gets the focus by
calling the DialoglnitEvent : : defaultFocuswindow function.

Dialogwindow Interface - advframe\tstdlg\dialog.hpp
#include <iframe.hpp>
#include <ireslib.hpp>
class DialogHandler;
class Dialogwindow : public IFramewindow {
publ ic :
// Use this to construct a dialog using
// your own dialogr procedure.

Dialogwindow(const IResourceld& resla,
Iwindow* owner ,
Iwinproc* dlgproc = 0,
void* pcreateparms = 0) ;

// Use this to construct a dialog using
// your own dialog handler.

Dialogwindow(const IResourceld& resld,
Iwindow* owner ,
DialogHandler& dlgHandl er ,
void* pcreateparms = 0) ;

protected:void
loadDialog (const IResourceld& resld,

Iwindow* owner ,
Iwinproc* dlgproc ,
void* pcreateparms) ;

private :
Dialogwindow (const Dialogwindow&) ;
Dialogwindow& operator= (const Dialogwindow&) ;
}; // class Dialogwindow
Dialogwindow Implementation - advframe\tstdlg\dialog.cpp
#include <ibase.hpp>
#ifdef IC_PM '

#def ine INCL_WIN
#include <os2.h>

#else
#include <windows.h>

#endif
#include `'dialog.hpp"
#include `'dlghndlr.hpp"
#include <ithread.hpp>

CfeapferJ9 Advanced Frame window Topics 447

Dialogwindow: :Dialogwindow(const IResourceld& resld,
Iwindow*
Iwinproc*
void*

Ouner,
dl9Proc,
pcreateparms)

: IFramewindow(defercreation)
(
this->1oadDialog(resld, owner, dlgproc, pcreateparms) ;
)

struct Dialogparms {
DialogHandler

&dlgHandler;
void*pcreateparms ;

);

#ifdef IC_PM

static void * _System dialogproc(unsigned long hwnd,
unsigned long eventld,
void *parml ,
void *parm2)

(
if (eventld == WM_INITDLG)

(
Dialogparms

p = (Dialogparms)parm2;
DialoglnitEvent

initEvent (IEvent (hwnd,
eventld'
parml ,
p->pcreateparms)) ;

// Dispatch handler and check result.
if (p->dlgHandler.initialize(initEvent))

// Do not pass the event on; the result is in the event.
return initEvent . result () ;

else
// Pass the event to the default dialog. procedure.
return WinDefDlgproc (hwnd,

eventld,
parml ,
p->pcreateparms) ;

)else
return WinDefDlgproc(hwnd, eventld, parml, parm2) ;

)

#else
static void* CALLBACK dialogproc (void* hwnd,

unsigned long eventld,
void* parml ,
void* parm2)

(
if (eventld == WM_INITDIALOG)

(
Dialogparms

p = (Dialogparms)parm2;
DialoglnitEvent

initEvent (IEvent(hwnd,
eventld,
parml ,
p->pcreateparms)) ;

448 Power GUI programming with visualAge for c++

// Dispatch handler and check result.
if (p->dlgHandler.initialize(initEvent))

// Do not pass event on; the result is in the event.
return initEvent . result () ;

)
// Return 0 because the message is not processed.
return 0;
)

#endif

Dialogwindow: :Dialogwindow(const IResourceld& resld,
Iwindow* owner ,
DialogHandler& dlgHandler ,
void* pcreateparms)

: IFramewindow(defercreation)
(
Dialogparms

parms = { dlgHandler, pcreateparms };
this->1oadDialog(resld, owner, dialogproc, &parms) ;
this->addHandler (&dlgHandler) ;
)

void Dialogwindow: :1oadDialog(const IResourceld& resld,
Iwindow* owner ,
Iwinproc* dlgproc ,
void* pcreateparms)

(
IThread: : current () . initializeGUI () ;
const IResourceLibrary
&resLib = resld.resourceLibrary() ;

IwindowHandle
dig = resLib.1oadDialog(resld.id() ,

0'
Ouner,
dl9Proc ,
pcreateparms) ;start(dig) ;

)

DialogHandler/DialoglnitEvent Interface - advframe\tstdlg\dlghndlr.hpp
#include <ievent.hpp>
#include <ihandler.hpp>
class DialoglnitEvent : public IEvent {
public i

DialoglnitEvent (const IEvent& event) ;
IwindowHandle

defaultFocuswindow () const;
void*createparameters () const;
DialoglnitEvent

&setFocuschanged () ;
);

class DialogHandler : public IHandler {
public :
virtual Boolean

initialize (DialoglnitEvent& initEvent) ;
protected:virtual Boolean

dispatchHandlerEvent (IEvent& event) ;
);

Cfea!pfer J9 Advanced Frame window Topics 449

DialogHandler/DialoglnitEvent Implementation - advframe\tstdlg\dlghndlr.cpp
#include "dlghndlr.hpp"
DialoglnitEvent: :DialoglnitEvent (const IEvent& event)

IEvent(event)

IwindowHandle DialoglnitEvent: :defaultFocuswindow () const
(
return IwindowHandle (paralneterl ()) ;
)

void *DialoglnitEvent: :createparameters () const
(
return parameter2 () ;
)

DialoglnitEvent& DialoglnitEvent : : setFocuschanged()
(
setResult(true);
return *this;
)

Boolean DialogHandler: : initialize (DialoglnitEvent& initEvent)
(return false;
)

Boolean DialogHandler: : dispatchHandlerEvent (IEvent& event)
(return false;
)

Dialogwindow Test Program - advframe\tstdlg\tstdlg.cpp
#include <ibase.hpp>
#ifdef IC_PM

#def ine INCL_WIN
#include <os2.h>

#else
#include <windows.h>

#endif
#include <istattxt.hpp>
#include <ithread.hpp>
#include "dialog.hpp"
#include "dlghndlr.hpp"
class MyDialogHandler : public DialogHandler {
public :virtual Boolean

initialize (DialoglnitEvent& initEvent)
(IstaticText

text(Iwindow: :handlewithparent(1, initEvent.handle())) ;
text.setText((char*) (initEvent.createparalneters())) ;
return false;
)

);

450 Power GUI programming with visualAge for c++

#ifdef IC_PM
static void * _System myDlgproc(unsigned long hwnd,

unsigned long eventld,
void* parml ,
void* parm2)

(
if (eventld == WM_INITDLG)

(
IstaticText

text(Iwindow: :handlewithparent(1, hwnd)) ;
text.setText((char*)parm2) ;
)

return WinDefDlgproc(hwnd, eventld, parml, parm2) ;
)

#else
static void* CALLBACK myDlgproc (void* hwnd,

unsigned long eventld,
void* parml ,
void* parm2)

(
if (eventld == WM_INITDIALOG)

(IstaticText
text(Iwindow: :handlewithparent(1, hwnd)) ;

text.setText((char*)parm2) ;
)

return Oj
)

#endif
void main ()

(
MyDialogHandler

myHandler;
Dialogwindow

dlgl (Ic_DEFAULT_FRAnm_ID,
Iwindow: : desktopwindow () ,
myHandler,"myHandler") ;

Dialogwindow
dlg2 (IC_DEFAULT_FRAlffl_ID ,

Iwindow: : desktopwindow () ,
myD19Proc ,"myDlgproc") ;

dlgl . show () ;
dlg2 . show () . setFocus () ;
IApplication : : current () . run () ;
)

Using the Presentation System Window
The Windows and OS/2 operating systems use different implementations for the underlying
window objects that you use for frame and dialog windows. Most of the time, Open Class
Library handles these differences so that you do not have to. However, sometimes you might
need to deal with the differences in your application. In this topic, we discuss cases where
these differences could affect how you write your application.

Cfaapfe7. J9 Advanced Framewindow Topics 451

Working with Frame Components
Components include ite.ms such as the system menu, title bar, maximize, minimize and close
buttons, and the border around the frame window. As you saw earlier in this chapter, many of
these components are optional. Usually, you use the IFramewindow style flags to control the
appearance of the components and do not worry about them any more.

In some cases, it is useful to interact more directly `with the frame components. For example,
you use the ITitle class to manipulate the title bar decoration and the IsystemMenu class to
control the appearance of the system menu. The interfaces for these classes look the same in
the Windows and OS/2 versions of Open Class Library, but there are significant differences in
the imp'1ementation. In the OS/2 operating system, tbe title bar, system menu, menu bar, and
title bar buttons are all separate presentation system windows that are child windows of the
frame window. They eacb have a full set of window attributes like window handle and window
identifier. Likewise, scroll bars created with the IFramewindow: :horizontalscroll or
IFramewindow: :verticalscroll styles are separate windows. In the Windows operating
system, these components are actually part of the frame window itself. The system draws the
components based on style settings of the frame window.

You need to be aware of this difference when you manipulate the components directly using
system functions. For example, the handle function returns the same value for an ITitle
object and its owner frame window in the Windows operating system. In the OS/2 system, the
two objects have distinct values for handle. With the OS/2 version of VisualAge for C++, you

+

can use the constructor:
IScrollBar (unsigned long id,

Iwindow* parent) ;
to create a wrapper object for a frame window vertical scroll bar by using FID_VERTSCROLL for
the id argument and the frame window for the parent argument. This will not work for the
Windows version, because the scroll bar is actually part of the frame window.

Working with a Frame Window Control
The underlying presentation system control used for a standard frame window is also different
between the operating systems. The Windows operating system does not define a standard
frame window control. Typically, each application registers its own window class and
provides the window procedure for it. Style flags control the appearance of components.
Dialog templates use the pre-defined window class WC_DIALOG. The OS/2 system provides a
pre-defined window class WC_FRAME for frame windows, including dialog templates. OS/2
applications typically use this window class for frame windows, and also control appearance
with style flags.

The IFramewindow constructors that create a presentation system window take care of the
processing needed to create a frame window. However, you need to understand how Open
Class Library does this if you use the constructor for existing frame windows:

IFramewindow (const IwindowHandle& hwnd) ;
because some features of IFralnewindow rely upon the underlying window class for processing.
In addition, these differences make some techniques for manipulating frame window objects
nonportable.

452 Power GUI programming with visualAge for c++

The Windows Open Class Library implementation uses the function
IFramewindow: :registerFrameclass to create a presentation system window class for a
standard frame window object. Because the window class of a window governs attributes that
vary between frame window objects, such as the frame window's icon and background color,
Open Class Library registers a new window class for each IFramewindow object. The names of
these classes begin with the string "ICL Frame". The ICL Frame window class also has an
extra 32-bit window word. Open Class Library uses this word to store the window identifier of
a top-level window. Use the Iwindow: : id function to access this identifier.

All of this means that the following restrictions apply to your Windows applications:

• Do not use Iwindow: :windowwithparent with the desktop window as parent to locate
frame windows by identifier. The operating system does not store window identifiers for
top-level windows. Instead, store a pointer to or the handle of the frame window that
you need to find, and use it instead of the window' s identifier.

Unless the window class of the presentation system window is WC_DIALOG or begins with
the string "ICL Frame", Iwindow: : isFramewindow returns false and Iwindow: : id returns
0. For an illustration of how to create your own frame-window presentation system
window class without this restriction, see the Multiple Document Interface Application
example at the end of this chapter .

The OS/2 Open Class Library uses the WC_FRAME system-defined window class to create the
presentation system window for standard frame windows. If you use a custom frame window
control, follow these requirements for your OS/2 applications:

• Because the frame-extension layout support relies upon messages sent by the standard
control, you must create custom controls that provide these messages. If you rise the
constructor for an existing frame window with your custom frame window control,
create your custom control by subclassing WC_FRAME to preserve frame extension
functionality.

• Because Open Class Library uses the standard window identifiers for the frame
decoration controls, you must use them. These frame control identifiers are the FID_*
values defined in the OS/2 developer's toolkit. Create your decoration controls using
the standard identifiers in order to manipulate these objects with Open Class Library.

Because the Iwindow: : isFramewindow function returns false unless the window class of
the control is WC_FRAME, subclass WC_FRAME when you create your custom control.

Frame Windows in Your Application
Up until now you have learned the various aspects of frame windows in isolation. You now see
an extended example of how to use IFramewindow objects in a realistic application. We then
examine how to extend the IFramewindow class to take advantage of operating system features
that it does not support directly.

CfeapferJ9 Advanced Frame window Topics 453

Using the Window Viewer Application
In this example, we design a graphical, .object-oriented user interface for an application that
provides a view of all the presentation system windows in your system. You see a potential use
for such a utility for debugging in Chapter 28, "Problem Determination." Figure 19-2 shows
the frame windows that comprise this sample application. It has three separate types of object
views.

E3& £alected E€fiest`
E) . 00000080 „„

000001 D8 ''''

000000881''1

000001 EC „'
000001 E8 „'
00000084 '1''

00000590 'Winview -Tree View"
00000IAC '1''

00000378 „„

00000388 "H.Jaak PFlo"
00000260 „'
00000254 "Huaak Graphies Suit"
00000380 '„'
000002D01'11

000002C4 "IBM VisuaIAge for I+"
00000248 ''''
0000023[''§hortcuts"
00000320 „'
00000324 „„
000002CO ''''

000002BC "
0000029C "Bemind Watch"
00000278 „'
0000026C „§ta,top"
00000284 „'
00000288 „'
000002A81'''

Ot]0002AC „„

E=EH
00000370 "' 00000374 "'

Hantlle : 00000374
Id: 1 0xol
Stgle : 54000101
Rectangle:{0,0,0,28} Ox28
Class : Toolbaruindou

Figure 19-2. Window Viewer Application.

Winview I Tree View

This view shows the hierarchical arrangement of the windows active on your system. It
uses a container-control tree icon view. Read about the details of using the container
control in Chapter 13, "Container Control."

This frame window views the entire system and is, therefore, the primary window of this
application. You can open secondary windows to display the child windows of a window
or details about a window from this view.

454 Power GUI programming with visualAge for c++

Winview - Child View

This view shows the immediate child windows of a specific window. It uses a
container-control icon view as its client window. This view is a secondary window; it is
closed whenever the primary view closes. The application behaves this way because
child windows are secondary components of their parent window; they cannot exist on
their own apart from the window that contains them.

Winview - Information View

This view shows the details of a window, including its class, style, and location. It
displays the details in a simple multiline edit control. For details about use of this
control, see Chapter 9, "Edit Controls."

You can open the information view from either the tree view or the child view. Only one
active information view for a window exists; if you open the view again, the application
transfers focus to the existing information view.

Creating the Window Viewer Application
The logic of this application's main function creates and opens a Treeview of all of the
windows in the system that are descendants of the desktop window. The code to do this is
simple, requiring only three steps:

1. Construct a Treeviewobject.

2. Openit.

3. Call IApplication: :current().run() to process window events. This function
receives and processes window events until the primary view closes.

Window Viewer Usage - advframe\winview\winview.cpp
#include <iwindow. hpp>

#include `'treeview.hpp"
#include "hwindow.hpp"
int main ()
(

Hwindow hwindow (Iwindow: :desktopwindow() ->handle()) ;
Treeview

view(hwindow) ;
view. open () ;
IApplication : : current () . run () ;
return 0;

)

Defining the Primary View
The Treeview class provides a simple public interface: a constructor, member functions to
open and close the view, and accessor functions for use by the handlers. Notice that the view
class does not derive from IFramewindow. Instead, the design uses composition and makes the
frame a data member instead of a base class. Use this design approach whenever possible.

Cfe¢pfer J9 Advanced Frame window Topics 455

Because the trivial Treeview interface suffices, do not give it all of IFramewindow's function-
ality.

Treeview also has data members for the other components of the view: a reference to the
window handle to display, a title, a container control to be used as the client window, and a
container handler which is required to make the client window work properly. A menu and
handlers process menu selections. In more complex views, you will likely find other compo-
nents such as an information area object and additional handlers. All these are data members.

Use composition for all of the data members for these reasons:

• These components do not have to be derived from. You do not need to override any
virtual functions that require derivation.

• It is easy to modify the view later. You can replace the client control with a different
type, add or remove controls such as frame extensions, and add or replace handlers. All
these actions are more difficult if the components are base classes.

The implementation of this view class is straightforward. It constructs the frame window as a
primary window. Because the chosen view lays out the data across the screen vertically
instead of horizontally, you have to adjust the frame's initial size and position by scaling the
rectangle by half in the horizontal direction. The constructor uses the styles
IFramewindow: :menuBar .and IFramewindow: :minimizedlcon to load the menu and frame
window icon automatically from the resource library. The frame has the default attributes
destroyonclose (true) and autoDeleteobj ect (false) , which is typical for primary windows.
There is usually a single object of this type in automatic storage inside main, and it is
destroyed when it goes out of scope. The frame must be destroyed when a user closes it. When
the frame is closed, Open Class Library posts a WM_QUIT message that causes a return from the
call to IApplication : : current () : : run().

The following example illustrates these points:

Tree View Interface - advframe\winview\treeview.hpp
#include <iframe.hpp>
#include <ititle.hpp>
#include <icmdhdr. hpp>
#include <icnrctl.hpp>
#include <icnrhdr.hpp> '
#include <imenubar. hpp>
#include "hwinobj .hpp"
class Hwindow;

. class Treeview;
class Commandilandler : public ICommandHandler {
public i

Commandllandler (Treeview& view) ;
virtual Boolean

command(ICommandEvent& event) ;
private :

Treeview& fview;
CommandHandler (const Commandllandler&) ;
CommandHandler& operator= (const Commandllandler&) ;
);

456 Power GUI programming with visualAge for c++

class Treeview : public IVBase {
public :

Treeview (Hwindow &hwindow) ;
virtual Treeview

&Open ();
virtual Treeview

&close ();
virtual Treeview

&refreshview () ;
const IContainercontrol
&container() const;

protected:virtual Treeview
&pOpulate ()j

virtual Treeview
&populatechildren (Hwindowobject* root) ;

private :
Hwindow

&hwindow;
IFranewindow

f rame ;
ITitletitlej
IContainercontrol

client;
IcnrHandler

handler;
IMenuBar

fmenu;
CommandHandler

fcommandHandler;
MenuHandler

fmenuHandler;
Treeview (const Treeview&) ;
Treeview& operator= (const Treeview&) ;
);

Thee View Implementation - advframe\winview\treeview.cpp
#include "treeview.hpp"
#include `'hwindow. hpp"
#include "hwinobj .hpp"
#include "winview.h"

Treeview: :Treeview (Hwindow& hwindow)
: hwindow(hwindow) ,

frame(WND_MAIN, 0, 0,
IFramewindow: :nextshellRect() .scaleBy(0.5, 1.0) ,
IFramewindow: :defaultstyle () I
IFramewindow: :menuBar I IFramewindow: :minimizedlcon) ,

title(&frame),
client (IC_FRAME_CLIENT_ID, &frame, &frame, IRectangle () ,

IContainercontrol : :defaultstyle () I
IContainercontrol : :nosharedobjects) ,

fmenu(&frame, IMenuBar: :wrapper) ,
fcommandHandler(*this) ,
fmenuHandler ()

(
title.setobjectText("Winview") ;
title.setviewText("Tree View") ;
client.setDeleteobjectsonclose(true) ;
client . showTreeTextview () ;

Cfeapfer z9 Advanced Frame window Topics 457

frame.setclient(&client) ;
handler.handleEventsFor (&client) ;
fcommandHandler.handleEventsFor (&frame) ;
fmenuHandler.handleEventsFor (&client) ;

)

Treeview &Treeview: :open ()
(

fralne . setFocus () ;
f rame . show () ;
populate () jreturn *this;

)

Treeview& Treeview: :close ()
(

frame . close () ;
return *this;

)

const IContainercontrol& Treeview: :container() const
(return client;
)

Treeview& Treeview: :refreshview ()
(

client . setRefreshof f () ;
client . deleteA110bj ects () ;
populate () ;client . setRefreshon () ;
client . refresh () ;
return *this;

)

Treeview& Treeview: :populate ()
(

Hwindowob].ect* root =
new Hwindowobject(hwindow, APP_ICON_ID, &client) ;

client.addobject(root) ;
populatechildren(rc)ot) ;
client.expand(root) ;
return *this;

)

Treeview& Treeview: :populatechildren (Hwindowobject* root)
(

Hwindow: :Childcursor cursor(root->hwindow()) ;
for (cursor.setTOFirst() ;

cursor . isvalid () ;
cursor.setTONext())

(
Hwindowob].ect* child =

new Hwindowobject (cursor.hwindow() , APP_ICON_ID, &client) ;
client.addobject(child, root) ;
populatechildren(child) ;
)return *this;

)

CommandHandler: :CommandHandler (Treeview& view) :
fview(view)

()

458 Power GUI programming with visualAge for c++

IBase: :Boolean CommandHandler: :command(ICommandEvent& event)
(

Boolean handled = true;
switch (event.commandld())

(
case MI_EXIT :

fview. close () ;
break;

case MI_OPENICON :
(
Hwindowobject* ob].eat = (Hwindowobject*)• fview.container().cursoredob].ect() ;
if (object)

object->openlconview() ;
)
break;

case MI_OPENINFO :
(
Hwindowobject* object = (Hwindowobject*)

fview . container () . cursoredobj ect () ;
if (Object)

object->openlnfoview() ;
)
break;

case MI_REFRESH .
fview.refreshview() ;
break;

default:
handled = false;

)
return handled;

)

Defining Secondary Views
The class Hwindowobjectview defines the common behavior of secondary views. The
Hwindowobjectview class is similar to the primary view class, Treeview. Its public interface
has a destructor, a member function named open that opens the view, and an
invalidateobject function that marks the object being viewed as invalid. The main
difference is that Hwindowobjectview derives from IFramewindow to take advantage of the
autoDeleteobject capability of IFramewindow and to cause some cleanup to occur when a
secondary view closes. To do that, put that code in the destructor of Hwindowobjectview. If
this class did not inherit from IFramewindow, you would have to add a handler to look for the
view closing and do the cleanup there. For the sake of simplicity, this sample uses derivation
instead of another handler. It uses protected derivation to limit the chance that client code
might exploit the fact that IFramewindow is a base class.

Hwindowobj ectview constructs its IFramewindow base object with the primary view as owner.
It adjusts the size of the frame window like Treeview does. The constructor call specifies a
nondefault frame style so that, in the OS/2 version, these secondary views do not move when
the primary view moves.

The program creates these secondary views dynamically. As a user opens objects displayed in
the primary view, the program creates these views using operator new. The
Hwindowobj ectview constructor calls setAutoDeleteobj ect (true) to cause the deletion of the
view when it closes. Because Hwindowobjectview defines a protocol for showing an
Hwindowobject rather than an actual view, its co'nstructor is protected. This forces a derived
class to be created to define the actual view. Derived classes must pass their own client

Cfeapfer J9 Advanced Frame window Topics 459

window pointer to the Hwindowobjectview constructor because the client windows differ
according to the actual type of view.

When a user double-clicks on a window object, the object's view opens (see
Hwindowobject: :handleopen in the example). Hwindowobjectview: :open first checks
whether the view is minimized. If it is, then the view is restored. Thus, if a user opens a
window and minimizes that view, the view is restored if the user opens the same object again.
This is typical frame window management for your views.

Defining Window Viewer Obj ects
The class Hwindowobject defines the common behavior of window viewer objects.
Hwindowobj ect derives from IContainerobj ect and defines how these objects work within the
context of the application's container-control client windows. See Chapter 13, "Container
Control" for a discussion of containers.

The responsibility for opening secondary views of an IIwindowobject object lies within the
object itself. This is because the object has the information about itself to identify which
views are valid and which views, if any, are already open. The function islconviewAvailable
provides validity testing for a view. In this case, opening a child view of a window with no
children results in an empty view. To avoid this behavior, the example program uses
islconviewAvailable to open an information view rather than a child view when a user
double-clicks on an Hwindowobj ect with no children.

The protected virtual functions newlconview and newlnfoview create the view objects. If you
want to change one of the views to show some additional information, for example, derive a
new view class from Iconview or Infoview to implement the new view. Also, create a derived
class from Hwindowobject to hold the additional information and override newlconview or
newlnfoview to create the new view object.

The window object also keeps track of which of its views are open. With this tracking, the
window object can activate an existing view object using Hwindowobj ect : : open, and the view
object can manage restoring itself as previously described. The window object also provides a
means to notify a view when the data in it becomes invalid. In this example, view data can
become invalid when a user selects the Refresh menu item, which uses a "brute force"
technique to update the tree view. The Hwindowobject destructor notifies any open views of
the object by calling each view' s invalidateobj ect member function.

The class MenuHandler derives from IcnrMenuHandler to handle pop-up menu requests on an
Hwindowobject. In the example, this handler is attached to the container in the tree view
because only this view supports menu selections. However, you could also attach it to any
other container control that contains an Hwindowobj ect, such as the Iconview client window.

460 Power GUI programming with visualAge for c++

Window Object/View Interface -advframe\winview\hwinobj.hpp
#include <iframe.hpp>
#include <icnrctl.hpp>
#include <icnrmhdr. hpp>
#include <ititle.hpp>
#include ''hwindow.hpp"

class Istring;
class IIwindowobj ectview;
class Hwindowobject : public IContainerobject {
public:

Hwindowobject (const Hwindow& hwindow,
unsigned long iconld,
IContainercontrol* cnr) ;virtual

~Hwindowobj ect () ;

virtual void
handleopen(IContainercontrol* cnr) ;

virtual Hwindowob]. ect
&openlconview() ;

virtual Boolean
islconviewAvailable() const;

virtual Hwindowobj ect
&openlnfoview() ;

virtual Hwindowobj ectview
&infoview ();

virtual Hwindowobj ectview
&iconview ();

virtual Hwindowobj ect
&viewclosed (Hwindowobjectview* view) ;

virtual IContainercontrol*container () const;
const Hwindow

&hwindow() const;

protected:
virtual Hwindowobj ectview*newlconview () ;
virtual Hwindowob]. ectview

*newlnfoview () ;

private :IContainercontrol*objcnr;
Hwindowobj ec tvi ew*ficonview;
Hwindowobjectview*finfoview;
Hwindow

fhwindow;
);

class Hwindowobjectview : protected IFramewindow {
public :~Hwindowobjectview () ;
virtual Hwindowobj ectview

&Open ();
virtual Hwindowobj ectview

&invalidateobject () ;
protected:

Hwindowobj ectview (Iwindow* client,
Hwindowobj ect& obj ect,
const Istring& viewName) ;

Hwindowobj ec t*object () const;

Cfeapfer J9 Advanced Framewindow Topics 461

private :ITitle
viewTitle;

ENindowobj ec t*viewobj ;
Hwindowobjectview
Hwindowobjectview&
);

class MenuHandler

(const Hwindowobjectview&) ;
operator= (const Hwindowobjectview&)

: public IcnrMenuHandler {
public :

MenuHandler () ;
protected:virtual Boolean

makepopupMenu (IMenuEvent& event) ;
EI

Window Object/View Implementation -advframe\winview\hwinobj.cpp
#include <ipopmenu. hpp>
#include "hwinobj .hpp"
#include ''iconview.hpp"
#include "infoview.hpp"
#include `'winview. h"
IIwindowobj ect : : Hwindowobj ect (const IIwindow& hwindow,

unsigned long iconld,
IContainercontrol* cnr)

: IContainerobject(Istring() , iconld) ,
ob].Cnr(cnr) ,
ficonview(0),
finfoview(0),
fhwindow(hwindow)

(
Istring wintext = hwindow.text() ;
if (wintext.length() > 20)

wintext . remove (21) ;
wintext = hwindow.asHexstring() + Istring(" \"') + wintext +

Istring (" \ " ") ;
this->setlconText (wintext) ;

)

Hwindowob]. ect : : ~Hwindowobj ect ()
(

if (ficonview)
ficonview->invalidateobj ect () ;

if (finfoview)
finfoview->invalidateobj ect () ;

)

Hwindowobject& Hwindowobject : : openlconview()
(

this->iconview () . open () ;
return *this;

)

Hwindowob]. ect& Hwindowob]. ect : : openlnfoview ()
(

this->infoview () . open () ;
return *this;

)

462 Power GUI programming with visualAge for c++

// This function is called by the container handler
// when the object is double-clicked. Open the icon
// view if it is available; otherwise, open the
// information view.
void Hwindowobject: :handleopen (IContainercontrol*)
(

if (this->islconviewAvailable())
this->iconview () . open () ;

else
this->infoview () . open () ;

)

IIwindowobjectview& Hwindowobject: : iconview ()
(

if (!ficonview)
(
ficonview = this -> newlconview() ;
)

return *ficonview;
)

Hwindowobjectview& Hwindowobject: : infoview ()
(

if (!finfoview)
(
finfoview = this -> newlnfoview() ;
)

return *finfoview;
)

// Icon view is available as long as the object has children.
Boolean Hwindowobject: :islconviewAvailable () const
(

IContainercontrol: :Objectcursor cursor(* (this->container()) ,
this) ;

return cursor.setTOFirst() ;
)

// This function allocates a new icon view.
Hwindowob].ectview* Hwindowobject : :newlconview ()
(

Hwindowobjectview* view = new Iconview(*this) ;
return view;

)

// This function allocates a new information view.
Hwindowob].ectview* Hwindowobject : :newlnfoview ()
(

Hwindowobjectview* view = new Infoview(*this) ;
return view;

)

Hwindowobject& Hwindowobject: :viewclosed (Hwindowobj ectview* view)
(

if (view == this->finfoview)
this->finfoview = 0;

if (view == this->ficonview)
this->ficonview = 0;

return *this;
)

IContainercontrol* Hwindowobject: :container () const
(return objcnr;
)

Cfe¢pfer z9 Advanced Frame window Topics 463

const I.Iwindow& Hwindowob].ect: :hwindow() const
(

return fhwindow;
)

Hwindowobjectview& Hwindowobjectview: : open ()
(

if (isMinimized())
restore () ;

setFocus () ;
show () ;
return *this;

)

Hwindowobj ectview: : Hwindowobj ectview (Iwindow* client,
Hwindowob]. ect& obj ect,
const Istring& viewName)

: IFramewindow(0, 0, object.container()->parent() ,
nextshellRect().scaleBy(0.5, 0.5),
classDefaultstyle I noMovewithowner) ,

viewTitle(this),
viewobj (&object)

(
viewTitle.setobjectText(object.iconText()) ;
viewTitle. setviewText (viewName) ;
setlcon(object.icon());
setclient(client);
client->setowner(this) ;
setAutoDeleteobject(true) ;

)

IIwindowobjectview: : ~Hwindowobjectview ()
(

if (viewobj)
viewobj -> viewclosed(this) ;

)

Hwindowob].ect* Hwindowobjectview: :object () const
(

return viewobj ;
)

Hwindowobjectview& Hwindowobjectview: :invalidateobject ()
(

viewTi.tie . setobj ectText ("<invalid>") ;
viewobj = 0;
return *this;

)

MenuHandler: :MenuHandler() :
IcnrMenuHandler ()

i)

IBase : :Boolean MenuHandler: :makepopupMenu (IMenuEvent& event)
(

Boolean result = false;
IContainercontrol* pcnr =

(IContainercontrol*) (event . dispatchingwindow ()) ;
IContainerobject* pobj = popupMenuobject () ;
if (pcnr && pobj)

(
pcnr->setcursor(pobj) ;
IPopUpMenu* popup = new IPopUpMenu (POPUP_MENI, pcnr) ;
popup->setAutoDeleteobj eat () ;
popup->show (event .mouseposition ()) ;result = true;
)return result;

)

464 Power GUI programming with VlsualAge for c++

The classes Iconview and Infoview provide concrete implementations of secondary views for
Hwindowobj ects. The icon view has a data member related to its client window-a handler for
the container control client. The information view has a multiline edit control client and no
data members. Each class also provides a populate member function, which initializes the
contents of the client window. The code for these classes is in the advframe\winview
directory on the examples disk.

Defining the Rest of Window Viewer
The remaining pieces of the window viewer application are the class Hwindow and the applica-
tion's resources. The class Hwindow is derived from IwindowHandle, with some added member
functions to return information about the system window in the format needed for the applica-
tion. Look at the added member functions and notice that Iwindow provides members to get
most of the needed information. Using Iwindow saves writing the system-dependent imple-
mentation code to get this information, so why not derive from Iwindow instead of
IwindowHandle? There are several reasons; all are rooted in the fact that this utility creates an
Hwindow object for every window in the system that is a direct or indirect descendant of the
desktop window. These include Window Viewer's own windows, those created by the
operating system itself, and those created by other unrelated applications.

First, using Iwindow runs afoul of the Open Class Library restriction that there can only be one
Iwindow object for each system window. This applies to the Window Viewer application's
windows because they are already Iwindow objects. Open Class Library throws an exception
when the application tries to create the second Iwindow object to build the list of windows.
This restriction is not that serious, because you could test for this situation by using
Iwindow: :windowwithHandle and use the returned Iwindow pointer if it is not 0.

Second, if you use Iwindow, you can only create an Iwindow object for an operating system
window that the current process has created. If you used Iwindow objects for gathering the
window information, Window Viewer would only be able to show information on its own
windows. The reasons for limiting Iwindow objects to windows created by the current process
are different, depending on the target operating system. In the OS/2 operating system, you
cannot use the Winsubclasswindow function for a window handle created by another process.
Because Open Class Library uses this function when it constructs an Iwindow object, the
constructor fails if you use it for an operating system window that was created in another
process. In the Windows operating system, the reason for the restriction is that the Iwindow
implementation creates an IThread object for each thread that owns an Iwindow. In order to
create an IThread object, you must have access to the thread handle that the system assigns.
Open Class Library has this handle for the threads in the current process but not for threads
that the operating system or other applications own. For windows created outside of the
current process, Open Class Library is unable to create the IThread object it needs; as a result
you cannot use Iwindow as a wrapper for such windows.

Because the Hwindow class only needs simple information about windows, you can most easily
implement it by using the presentation system Apls to get the information needed. The
interface for Hwindow is shown in the following example.

Cfea[pfe7. J9 Advanced Frame window Topics 465

The application resources for the window viewer define the icons for both the application and
the container objects, the application's main menu, and the pop-up menu that appears in the
tree view.

The advframe\winview directory on the examples disk contains the complete window viewer
Program.

Hwindow Interface - advframe\winview\hwindow.hpp
#include <istring.hpp>
#include <ihandle. hpp>
class Hwindow : public IwindowHandle {
public :

Hwindow (IHandle: :Value handle=0) ;

Istring
asHexstring () const;Istring
id

IstringtextIstring
rectangle

Istring
windowclass

Istring
style

Boolean
isvalid

() const;

() const;

() const;

() const;

() const;

() const;

class Childcursor : public IVBase {
public:

Childcursor (const Hwindow& parent) ;virtual
~Childcursor ();

virtual Boolean
setTOFirst
setTONext
isvalid const;

virtual void
invalidate ();

virtual Hwindow
hwindow () const;

private :Childcursor (const Childcursor& cursor) ;
Childcursor
&operator = (const Childcursor& cursor);

IwindowHandle
hrmd,
hundparent ;

}; // Hwindow: :Childcursor

);

466 Power GUI programming with visualAge for c++

The Multiple Document Interface Application
You have seen various ways to tailor the features of IFramewindow to suit your requirements.
For most applications, using one or more of the techniques described previously achieves the
results you need. There are situations, however, where you need to do more to get the behavior
you want. This section shows an example of tailoring IFramewindow to take advantage of the
Windows support for MDI applications.

The Windows operating system provides extensive support for MDI applications. This support
includes automatically managing the appearance of the MDI windows and the menu items for
navigating across the MDI application. To take advantage of these features, an application
must adhere to a set of conventions described in the Windows SDK documentation. The
MDIwindow class adapts IFramewindow to these conventions. A simple application illustrates
the results. Because the OS/2 operating system does not provide the added MDI support used
by this example, it does not apply. With the OS/2 system, however, you can get basic MDI
behavior by using IFramewindow directly to create the MDI windows.

Defining the MDIwindow Class
The Windows operating system's conventions for MDI applications primarily affect how the
windows in the application are created and how those windows process events sent to them.
The main window of an MDI application, the 44DJ/7.cz77®c, is similar to a typical main window,
except that it uses the special default window procedure DefFraneproc instead of the usual
Defwindowproc. Each of the document windows contained within the MDI frame is an MDJ
cfez.Jd. These windows are also similar to typical IFramewindows, except that they are created
in a special way and use the window procedure Defrmlchildproc instead of Defwindowproc.
The MDI frame window has a special child window, the MDJ cJz.e7®f, which manages the MDI
child windows. When you create the MDI client, you can provide it with a reference to a menu
item which a user can use to select the active window. Because the MDI client manages the
MDI child windows, you typically perform an action such as minimize, restore, or close on an
MDI child by sending a message to the MDI client window.

The MDIwindow class provides two constructors: one for creating MDI frame windows and one
for creating MDI child windows. The MDI frame constructor is as follows:

MDIwindow(const IResourceld&
Iwindow*
Iwindow*
unsigned long
unsigned long
const IRectangle&
const IFramewindow: : Style&
const char*

The MDI child constructor is as follows:
lDIwindow (const IResourceld&

MDIwindow*
const IRectangle&

resld'
parent,
Ouner ,
windowMenuld,
childMenuld,
initRect'
style = defaultstyle()
title = 0);

resld'
parent'initRect

const IFramewindow: :Style& style = defaultstyle() ,
const char* title = 0);

The details of these constructors as they relate to the components of an MDI application
follow: `

Cfoapfer J9 Advanced Frame window Topics 467

MDI Frame

To create an MDI frame window, you need the special default window procedure called
for unprocessed events. You could do this in Open Class Library by writing a handler to
call the procedure after all other handlers. However, this could result in a case where
DefFrameproc is not called. If a handler calls IHandler : : defaultprocedure, the default
procedure for the window class is called, not DefFrameproc.

A more robust solution is to have DefFrameproc be the default procedure for the window
class, thus ensuring it gets called for all unprocessed events. The example does not do it
exactly like that, however, because the DefFrameproc needs an argument (the handle of
the MDI client) that Defwindowproc does not need. The function
MDIwindow: :registerFrameclass sets up the MDI frame window class by registering
the function MDIwindowproc as the windo`w procedure. MDIwindowproc obtains the MDI
client handle and passes all messages to DefFrameproc.

MDI Child

Creating an MDI child window is similar to creating the frame; a special window
procedure has to be called for unprocessed messages. In this case, the signature of
Defrmlchildproc is the same as Defwindowproc, so the example uses it as the window
procedure for the window class. You do, however, have to create MDI child windows
using the system function CreateMDIwindow instead of CreatewindowEx, which
IFramewindow: :create uses. The function MDIwindow: : initialize handles this case,
and sets up some of the MDIwindow window styles and resources. Because
IFralnewindow: : create handles some details of menu and resource loading needed for
an MDI frame, initialize calls it for MDI frame windows.

MDI Client

The main special feature of the MDI client window is that you create it using the
system-provided window class MDICLIENT. Because this window is a necessary
component of an MDI frame window, the constructor for MDI frames creates this
window after creating the frame itself. Its window identifier is IC_FRAME_CLIENT_ID so
that the IFramewindow functions dealing with the client correctly identify it. Because
the client window does not change for an MDI frame, the example overrides
IFramewindow: : setclient to ensure that the MDI client window remains the client.

The MDI client needs to be able to access the menu bar to update it when MDI child
windows are created and destroyed. The constructor for MDI frames accepts two
arguments, which it uses to give the MDI client access to the correct menu items. The
windowMenuld argument is the identifier of the menu item on the menu bar, which is to
contain the menu items for activating MDI children. Typically, applications use the
Windows menu item for this purpose. The childMenuld argument is the menu item
identifier within the windowMenuld submenu, which contains the menu item for the first
MDI child window. If there is more than one MDI child, the system numbers them
sequentially starting with windowMenuld. Note that a side effect of this is that the
IFramewindow: :menuBar style is required for an MDI frame window because the
constructor needs to access the menu b.ar.

468 Power GUI programming with visualAge for c++

Both of the MDIwindow constructors accept the same resid, initRect, style, and title
arguments that the IFramewindow constructors do. The parent and owner arguments for the
MDI frame constructor are also used like IFramewindow uses them. The MDI child constructor
accepts only an MDIwindow object as a parent because this is required for proper operation of
the child. The implementations of both constructors use the IFramewindow: : defercreation
setting to construct the base IFramewindow object because rmlwindow: : initialize creates the
window.

Because the Windows MDI support requires that special messages be sent to the MDI client to
close, maximize, or restore an MDI child, MDIwindow overrides the IFramewindow virtual
functions close, maximize, and restore. The MDIwindow implementation of each of these
functions checks whether the current object is an MDI child window and, if so, sends the
appropriate messages to the MDI client. If the object is not an MDI child, the IFramewindow
implementation of the function is called.

rmlwindow also provides functions for managing the MDI arrangement. The class implements
functions to determine the active MDI child window and to arrange the MDI child windows
and minimized icons. The function activatechild is used when a user selects one of the menu
items corresponding to an MDI child. Because the system assigns the identifier of the child
windows as they are created, the example provides this function to encapsulate locating the
MDI child that matches the menu item and activating it.

MDI Window Interface - advframe\mdi\mdiwin.hpp
#include <iframe.hpp>
class roIwindow : public IFramewindow {
public :
MDIwindow(const IResourceld& resld,

Iwindow* parent ,
Iwindow* owner ,
unsigned long windowMenuld,
unsigned long childMenuld,
const IRectangle& initRect,
const IFramewindow: :Style& style = defaultstyle() ,
const char* title = 0);

MDIwindow(const IResourceld& resld,
MDIwindow* parent ,
const IRectangle& initRect,
const IFramewindow: :Style& style = defaultstyle() ,
const char* title = 0);

virtual MDIwindow
&setclient (Iwindow* newclient) ;

virtual MDIwindow
&close
&maximize
&restore

virtual uelwindow*activechild() const;

virtual MDIwindow
&activatechild(unsigned long childld) ,
&arrange () ,
&cascade () ,
&tile (Boolean horizontal=true) ;

Cfea!pferJ9 Advanced Framewindow Topics 469

protected:
MDIwindow
&initialize (const IResourceld& resld,

const Style& style,
Iwindow* parent = 0 ,
Iwindow* owner = 0 ,
const IRectangle& initRect = IRectangle() ,
const char* title = 0);

unsigned long
registerFrameclass (const Style& style,

const IResourceld& resld ,
Boolean ischild) ;

private :
Iwindow*fclient;
unsigned long

fchildld;
MDIwindow(const rmlwindow&) ;
MDIwindow& operator= (const rmlwindow&) ;

)j

In the implementation for rmlFrame, notice that we define a class CmdHandler derived from
ICommandHandler. The purpose of this handler is to intercept WM_SYSCOMMAND/SC_CLOSE
messages originating from an MDI child window. The handler handles these messages by
calling the close function for the MDI child and then returns true. We need to do this because
the processing of SC_CLOSE in the default IFrameHandler results in processing appropriate for
standard frame windows but not for MDI child windows.

MDI Window Implementation - advframe\mdi\mdiwin.cpp
#include
#include
#include
#include
#include
#include
#include
#include

<windows . h>
<icmdthdr.hpp>
< icoordsy . hpp>
=iexcept.hpp>
< imenubar . hpp>
< i sysmenu . hpp>
<ithread.hpp>`,mdiwin . hpp "

class CmdHandler : public ICommandHandler {
public :

CmdHandler () ;
virtual Boolean

systemcommand (ICommandEvent& event) ;
static CmdHandler*defaultHandler () ;
private i

static CmdHandler*defaultHdr;
);

CmdHandler* Cmdllandler: :defaultHdr = 0;

Cmdllandler : : CmdHandler ()
: ICommandHandler ()

()

470 Power GUI programming with visualAge for c++

IBase: :Boolean CmdHandler: : systemcommand(ICommandEvent& event)
(

Boolean handled = false;
if ((event.commandld() & OxFFFO) == SC_CLOSE)

(
MDIwindow* mdichild = (rmlwindow*) event.window() ;
if (mdichild)

(
mdichild->close () ;
handled = true;
)

)return handled;
)

Cmdl.Iandler* CmdHandler: : defaultHandler ()
(

if (!CmdHandler: :defaultHdr)
CmdHandler: :defaultHdr = new CmdHandler;

return CmdHandler : : defaultHdr;
)

MDIwindow: :MDIwindow (const IResourceld&
Iwindow*
Iwindow*
unsigned long
unsigned long
const IRectangle&

resld'
parent ,
Ouner ,
:i::3#:::::?'.
initRect,

const IFramewindow: :Style& style,
const char* title) :

IFramewindow (IFramewindow: :defercreation) ,
fclient (0)'
fchildld (childMenuld)
// Use MDIwindow: :initialize instead of the one in IFramewindow.this->initialize(resld, style, parent,

owner, initRect, title) ;
// Create the MDI client window.
IMenuBar menu(this, IMenuBar: :wrapper) ;
CLIENTCREATESTRUCT ccs ;
ccs.hwindowMenu = menu.menultem(windowMenuld) . submenuHandle () ;
ccs.idFirstchild = (unsigned int) fchildld;
IwindowHandle hwnd =

Iwindow: : create (IC_FRAME_CLIENT_ID,
0,
WS_CHILD I WS_CLIPCHILDREN I WS_VSCROLL I
WS_HSCROLlj I WS_VISIBLE ,"MDICLIENT" ,
this->handle () ,
this->handle () ,
IRectangle (0 , 0 , 0 , 0) ,
&ccs ,
0'
defaultordering () ,
0);

fclient = new Iwindow(hwnd) ;
fclient->setAutoDeleteob].eat (true) ;

Cfo¢pfe7. J9 Advanced Frame window Topics 471

MDIwindow: :roIwindow (const IResourceld& resld,

IFranewindow
fclient (0
fchildld (0

rmlwindow* parent ,
const IRectangle& initRect,
const IFramewindow: : Style& style,
const char* title) :

IFramewindow: : defercreation) ,

IASSERTPARM((parent != 0) && (parent->client() != 0));
// Use roIwindow: :initialize instead of the one in IFramewindow.
this->initialize(resld, style, parent->client() ,

parent->client() , initRect, title) ;
Cmdllandler: :defaultHandler () ->handleEventsFor (this) ;

)

MDIwindow& MDIwindow: : setclient (Iwindow* newclient)
(

if (fclient == 0)
IFramewindow: :setclient(newclient) ;

return *this;
)

MDIwindow &MDIwindow: :close ()
(
Iwindow* mdiclient = fclient ? 0 : this->parent();
if (mdiclient)

mdiclient->sendEvent (WM_MDIDESTROY,
IEventparameterl (this->handle())) ;

else
IFramewindow: : close () ;

return *this;
)

roIwindow &MDIwindow: :maximize ()

Iwindow* mdiclient = fclient ? 0 : this->parent();
// Ignore the request if there is no maximize button.
if ((this->style() & WS_MAXIMIZEBOX) && (mdiclient))

mdiclient->sendEvent (WM_DDIMAXIMIZE ,
IEventparameterl (this->handle())) ;

else
IFramewindow: :maximize () ;

return *this;
)

rmlwindow &MDIwindow: :restore ()
(

Iwindow* mdiclient = fclient ? 0 : this->parent() ;
if (mdiclient)

mdiclient->sendEvent (WM_MDIRESTORE ,
IEventparameterl (this->handle ())) ;

else
IFralnewindow: : restore () ;

return *this;
)

// This function returns the active rml child or 0 if there
/ / ±s TJ,one.
MDIwindow* rmlwindow: :activechild() const
(

MDIwindow* child = 0;
if (fclient)

child = (MDIwindow*) Iwindow: :windowwithHandle (
(HANDLE) fclient->sendEvent (WM_rmlGETACTIVE)) ;

return child;
)

472 Power GUI programming with visualAge for c++

MDIwindow& rmlwindow: :activatechild(unsigned long childld)
(

if ((childld >= fchildld) && (fclient))
(
Iwindow* child =

Iwindow: :windowwithparent (childld, fclient) ;
if (child)

fclient->sendEvent (WM_MDIACTIVATE ,
IEventparameterl (child->handle ())) ;

)return *this;
)

MDIwindow& MDIwindow: : arrange
(

()

Iwindow* mdiclient = fclient ? fclient : this->parent() ;
if (mdiclient)

mdiclient->sendEvent (WM_roIICONARRANGE) ;
return *this;

)

MDIwindow& roIwindow: : cascade
(

()

Iwindow* mdiclient = fclient ? fclient : this->parent() ;
if (mdiclient)

mdiclient->sendEvent (WM_MDICASCADE) ;
return *this;

)

rmlwindow& MDIwindow: : tile
(

(Boolean horizontal)
Iwindow* mdiclient = fclient ? fclient : this->parent() ;
if (mdiclient)

mdiclient->sendEvent (WM_MDITILE,
horizontal ? MDITILE_HORIZONTAL :

MDITILE_VERTICAL) ;return *this;
)

MDIwindow& MDIwindow: :initialize (const IResourceld &resld,
const Style &style,
Iwindow *parent ,
Iwindow * owner ,
const IRectangle &initRect,
const char *title)

(
// Save the extended style.
setExtendedstyle (

extendedstyle() I style.asExtendedunsignedLong()) ;

// Get styles and set up values for parent and owner windows.
unsigned long

framestyle = convertTOGUIstyle (style) ,
exFramestyle = convertTOGUIstyle(style, true) ;

IwindowHandle
hparent = (parent) ? parent->handle() :

Iwindow : : desktopwindow () ->handle () ,
howner = (owner) ? owner->handle() : IwindowHandle(0);

Boolean
ischild = (hparent != Iwindow: :desktopwindow()->handle()) ;

if (ischild)
framestyle I = WS_CHILD;

else
framestyle &= ~ (unsigned long)WS_CHILD;

Cfe¢pfe7. J9 Advanced Frame window Topics 473

// Try to get the title from the resource library. If it
// is not available, use whatever was provided.
HANDLE fcdata = resld.resourceLibrary().handle () ;
if (style & IFramewindow::titleBar && !title)

(Istring titlestring =
resld.resourceLibrary() .tryTOLoadstring(resld.id()) ;

if (titlestring.length())
title = titlestring;

)
else if (! (style & IFramewindow::titleBar))

;/ The WS_OVERLAPPED style implies title bar. Make it a
// pop-up window if the title bar area is not needed for
// buttons or the system menu.
if (! (framestyle &

(WS_CHILD I WS_MINIMIZEBOX I WS_MAXIMIZEBOX I WS_SYSMENI)))
framestyle I = WS_POPUP;

)

IRectangle rect = (style & IFralnewindow: :shellposition) ?
IFramewindow: :nextshellRect () : initRect;

// Create our window class for the frame if necessary.
char* fralneclass = (char*)

registerFrameclass(style, resld, ischild) ;
Create the window. For Windows 95 and Windows NT 4.0
the WS_EX_rmlcHILD extended style can be used with
IFramewindow: :create to create an MDI child window.
This style is not supported in Windows NT 3.51, so
we have to use a more complex approach to support
all operating systems.
ischild)
/ Use Createrolwindow to create the rol child.

RECT parentRect;
GetclientRect (hparent, &parentRect) ;
Isize parentsize = Isize(parentRect.right -parentRect.left,

parentRect.bottom -parentRect. top)
rect = ICoordinatesystem: :convertTONative (rect, parentsize)
IwindowHandle hwnd = Creatermlwindow (

frameclas s ,
(LPSTR) title,franestyle,
(int) rect . minx ()
(int) rect . minY ()
(int) rect . width (
(int) rect . heighthparent,
GetModuleHandle (0) ,
0)j

// Complete the functions IFramewindow: :create
// would have completed.
this->start(hwnd) ;
this->setowner(owner) ;
// CreateMDIwindow forces WS_VISIBLE to on. Undo this for now.
this->hide () ;
)

474 Power GUI programming with visualAge for c++

else
/ Use IFramewindow: :create so we get the resource and
/ menu handling functions it provides.

this -> create(resld.id(),title,
framestyle & (unsigned long) ~WS_VISIBLE,
franeclas s ,
hparent'
houner,
rect'
fcdata,
0,
defaultordering () ,
exFramestyle) ;

)

// If one or both of the minimize/maximize buttons is missing
// and there is still a system menu, disable the corresponding
// item in the system menu. Disabling rather than removing is
// the action recommended in the SDK.
if (framestyle & WS_SYSMENI)

(
if ((framestyle & (WS_MINIMIZEBOX I WS_MAXIMIZEBOX)) !=

(WS_MINIMIZEBOX I WS_MAXIMIZEBOX))
(
IsystemMenu sysMenu(this) ;
if (! (framestyle & WS_MINIMIZEBOX))

sysMenu.disableltem(IsystemMenu: : idMinimize) ;
if (! (framestyle & WS_MAXIMIZEBOX))

sysMenu.disableltem(IsystemMenu: : idMaximize) ;
// Restore is left enabled when the
// WS_EX_DLGMODALFRAME style is used
if ((exFramestyle & WS_EX_DLGMODALFRAME) &&

((framestyle & (WS_MINIMIZEBOX I WS_MAXIMIZEBOX)) ==0))
sysMenu.disableltem(IsystemMenu: : idRestore) ;

)
)

// Handle requests to minimize or maximize the window.
if (style & IFramewindow: :minimized)

this -> minimize() ;
else if (style & IFramewindow: :maximized)

this -> maximize() ;

// Handle request to show the window.
if (style & Iwindow::visible)

this -> show() ;

return *this;
)

static LRESULT CALLBACK MDIwindowproc (void* hwnd,
unsigned int eventld,
WPARAM parml ,
LPARAM parm2)

(
MDIwindow* frame = (rmlwindow*) Iwindow: :windowwithHandle (hwnd) ;
if (frame)

i
return DefFrameproc (hwnd,

frame->clientHandle () ,
eventld'
parml ,
parm2) ;

)

Cfeapfer J9 Advanced Frame window Topics 475

else
(
return Callwindowproc ((FARPROC) Defwindowproc ,

hund'
eventld,
parml ,
parm2) ;

)
)

unsigned long MDIwindow: : registerFrameclass (
const Style& style,
const IResourceld& resld,
Boolean ischild)

// Create a WNDCLASS structure for registering the new class.
// We base this class on the WC_DIALOG class, but set up the
// background brush, class style, and icon to match those
// specified for the rmlwindow. IFramewindow uses the extra
/ 1 wit.fJ!f5N worrd. `
vuncLAss

undclass;
if (!Getclasslnfo(0, WC_DIALOG, &wndclass))

ITHROWGUIERROR("Getclasslnfo") ;
if (style a IFramewindow: :dialogBackground)

wndclass.hbrBackground = (HBRUSH) (COLOR_3DFACE + 1) ;
else

wndclass.hbrBackground = (HBRUSH) (COLOR_APPWORKSPACE + 1) ;
wndclass.cbwndExtra = DLGWINDOWEXTRA + 4;
wndclass.style =

CS_DBLCLKS I CS_OWNDC I CS_VREDRAW I CS_HREDRAW ;
if (! (style & IFramewindow::alignNOAdjust))

wndclass. style I = CS_BYTEALIGNWINDOW;

// If the minimizedlcon style is set, load the icon resource
// and place it into the class structure. Otherwise, use the
// default icon for dialogs.
if (style & IFramewindow: :minimizedlcon)

(
HINSTENCE

hlnstance = resld.resourceLibrary() .handle () ;
HICON

hlcon;
if (! (hlcon = Loadlcon(

hlnstance, MAKEINTRESOURCE(resld.id()))))
ITHROWGUIERROR("Loadlcon") ;

else
wndclass.hlcon = hlcon;

)
wndclass.1pszMenuName = 0;
wndclass.hlnstance = GetModuleHandle (0) ;

// Here is the key difference between the MDIwindow window class
// and the ones created by IFramewindow. We arrange for the
// special rol window procedures to be called.
if (ischild)

wndclass.1pfnwndproc = DefMDIchildproc;
else

wndclass. Ipfnwndproc = (WNDPROC) MDIwindowproc;

476 Power GUI programming with visualAge for c++

// Register a class whose name is ICL Frame_MDI + rmnn,
// where nnnn is the ASCII string for the value of classlD.
// This results in each frame window having a unique class name
// similar to ICL Frame_roI1.
ATOM

frameclass = 0;
static unsigned long

classlD = 0;
do

(
Istring newFralneclass = Istring(`'ICL Frame_roI'') +

Istring (classlD) ;
classlD++;
wndclass. IpszclassName = newFrameclass;
frameclass = Registerclass(&wndclass) ;if ! franeclas s)

/ If the class exists, try again with the next ID value.
// Otherwise, throw an exception.
if (GetLastError () ! = ERROR_CLASS_ALREADY_EXISTS)

ITHROWGUIERROR("Regristerclass") ;
} // if not registered

)
while (!frameclass) ;

return MAKELONG(frameclass, 0) ;
)

Creating the MDIwindow Application
The structure of an application using MDIFrane is similar to an application using
IFramewindow. In the advframe\mdi program on the examples disk, the class Mainwindow
contains an rmlwindow object for the MDI frame window, a menu bar, and a command handler.
Because the MDI frame object is a private member, the class defines public functions for use
by the command handler to access the MDI frame window. In the example, these functions are
mostly trivial passthroughs to the MDIwindow object, but in a real application you might need
them to allow Mainwindow to keep track of the state of the MDI view. This can be important in
an MDI application because you need to change the menu .if an MDI child window containing a
different type of data is created or activated.

The command handler ColrmandHandler is also typical, except for a few of the cases in the
command function's switch statement. The IC_ID_CLOSE, IC_ID_MINIMIZE, and
IC_ID_RESTORE command identifiers occur when a maximized MDI child is closed, minimized,
or restored, respectively. It might seem odd that these events are sent as commands in this
case, not system commands. However, remember that the buttons causing the events are
located on the MDI frame window' s menu bar rather than on the child window's title bar when
the child is maximized. Thus, these events are like any other events originating from menu bar
selections.

Instances of the Editwindow are MDI child windows. As in the Window Viewer example
earlier in this chapter, the inheritance from MDIwindow is protected to control access to the
object but still allow use of Iwindow: : setAutoDeleteobj ect.

Chapter 20

Applications and Threads

Describes the application and thread classes in Open Class Library that you can use to
add multiple thread support to your applications
Describes the IApplication, ICurrentApplication, IThread, ICurrentThread,
IstartedThread, IThreadFn, IThreadMemberFn<>, IResource, IsharedResource,
IprivateResource, IResourceLock, |Crits ec, ITimer, ITimerFn, ITimerMemberFn,
and ITimerMemberFno classes

• Chapters 24, 26, and 28 coverrelated material

This chapter describes the IThread class and related classes. These classes make it easy for
you to exploit the power of multitasking in your applications.

We discuss threads: what they are, how they work, and what you use them for. Then we cover
the support Open Class Library provides for this operating system feature, specifically the
IThread class and the other classes you use in multithreaded applications.

Processes and Threads
The OS/2, Windows 95, and Windows NT operating systems are p7ie-empfz.1;e mz€Jfz.£¢Skz.7®g
systems. This means that they can run multiple programs concurrently, and each of those
programs has a chance to execute regardless of whether the other programs yield control. The
tasking model of these systems has two layers:

• ProcessLevel

Processes are the heart of the systems' process model. A process corresponds to an
executing application. Most operating system resources, such as memory and file
handles, are owned at the process level. Open Class Library encapsulates process
objects-to some extent-by the class IApplication. See the topic "Applications" later
in this chapter for more on this subject.

• Threadlevel

Threads are the smallest unit of execution. Conceptually, each operating system
maintains the processor state-the current register values, flags, and instruction pointer
-on a per-thread basis. A process can have multiple threads. Each thread has access to
all of the operating system resources owned by its process.

477

478 Power GUI programming with visualAge for c++

These operating systems are multitasking in that they activate another thread and let it execute
when either the current thread has used up its share of time (its fz.me SJz.ce) or becomes
suspended. They suspend a thread when the application code running on the thread requests
some resource and that resource is not currently available. For example, a thread can request
to read a file and the system suspends it until the file I/0 is completed.

Most thread blocking occurs while threads wait until input and output are completed. If one
process has requested to read a file, then the system suspends any other threads that require
reading or writing to the same disk partition until the first disk operation has completed.
Threads also must wait for input from a user. This is the most common reason threads of
graphical user-interface applications are blocked; they are waiting for a user to move the
mouse or press a key. This is one reason multiprocessing is so important. It lets the computer
do work during the relatively long periods of time that the user spends entering information.

A more important reason to use multithreading, particularly for Presentation Manager appli-
cations, is that using multiple threads permits a user to do other work during the relatively long
periods of time that your application is processing a user-input action. The following simple
program illustrates this:

Multithreaded Demo program -thread\simple\simple.cpp `
#include
#include
#include
#include
#include
#include

< i f rare . hpp>
=istattxt.hpp=
<ipushbut . hpp>
<icmdhdr.hpp>
<ithread.hpp>
=istring.hpp=

enum { cmdThreaded, cmdNotThreaded, cmdDone } ;

static const char*prompt = "Press a button to perform action";

/*--------------------------Action----------------------
I This simple class provides a single member function that
I sleeps for 15 one-second intervals, updating a static
I text window at each iteration. At the end, a command
I event is posted to a frame window.
class Action {
public:

Action (IFralnewindow &frame,
IstaticText &status)

: frame(fralne),
status(status)

(
)virtual void

perforrrAction ()
(
// Sleep for 15 seconds.
for (int i = 15; i; i--)

(
status.setText(Istring(i));
IThread: :current() .sleep(1000) ;
)status
.setText('''')
. refresh () ;

// Tell frame the action is "done. "
frame.postEvent (Iwindow: :command, cmdDone) ;
)

I

I

I

I

/

Cfe¢pfe7.20 Applications and Threads 479

private i
IFramewindow
&frane;

IstaticText
&statusj

Action (const Action &) ;
operator = (const Action &) ;
);

/*------------------------CmdHandler-------------------
I This class is a simple command handler that processes
I 3 separate commands:
I cmdNotThreaded -Invokes Action: :performAction on the
I current thread of execution
I cmdThreaded -Runs Action: :performAction on a
I separate thread
I cmdDone - Handles completion of an action by
I refreshing the frame window
class CmdHandler : public ICommandHandler {
public:

// Handler attaches to frame + text.
Cmdllandler (IFramewindow &frame,

IstaticText &text,
IstaticText &status)

: action(frame, status),
frame(frame) ,
text(text)

(
handleEventsFor(&frame) ;
)

protected:virtual Boolean
command (ICommandEvent &event)

(
switch (event.commandld())

(
case cmdThreaded:

(
frame . disable () ;
text.setText("Performing action on separate thread") ;
IThread

thread;
thread. start (new IThreadMemberFn<Action>

(action, Action::performAction)) ;
break;
)

case cmdNotThreaded :
frame . disable () ;
text.setText("Performing action on current thread") ;
action . performAction () ;
breakj

case cmdDone:
frame . enable () ;
text.setText(prompt) ;
break;

)return true;
)

private :
Action

action;
IFranewindow
&franej

IstaticText
&text;

CmdHandler(const CmdHandler &) ;
operator = (const Cmdllandler &) ;
);

I

I

I

I

I

I

I

I

/

480 Power GUI programming with visualAge for c++

void main ()
(
// Create the main window.
IFranewindow

frame("Multithreading Demo") ;
// Use static text for client area and status window.IstaticText

client(IC_FRAME_CLIENT_ID, &frame, &frame) ,
status(0, &frame, &frame);

// Create command handler to process button clicks.
CmdHandler

handler(frame, status, client);
client. setAlignment (IstaticText: :centercenter) ;
status.setText(prompt) ;
// Create buttons to trigger actions.
IPushButton

buttonl(cmdThreaded, &frame, &frame) ,
button2 (cmdNotThreaded, &frame, &frame) ;

buttonl.setText("On another thread") ;
button2.setText("On current thread") ;
// Put status window above client; buttons below.
frame. addExtension(&status, IFramewindow: :aboveclient)
frame. addExtension (&buttonl , IFramewindow: :belowclient
frame. addExtension (&button2 , IFramewindow: :belowclient
frame.setclient(&client) ;
// Make frame window a more reasonable size.
frame.movesizeTo(frame.rect().scaleBy(.5)) ;
// Show the main window.
frame . setFocus () ;
f rare . show () ;
// Process window events till user closes the main window.
IThread: : current () .processMsgs () ;
)

This simple program illustrates the value of using multiple threads. If you`press the button
labeled On current thread while running this program under the OS/2 operating system, you
lock out the user from the entire OS/2 system for fifteen seconds. If you press the button
labeled On another thread, you can activate another application and work with it during those
fifteen seconds. In the Windows operating systems, you can transfer control to another appli-
cation, but this example program is disabled entirely during the fifteen seconds while the
single thread is busy. .

This example also illustrates how easy it is to use the Open Class Library thread support
classes to make your applications multithreaded. You have to write only one line of code
differently to do it right.

Applications
Open Class Library provides a minimal set of classes and functions to encapsulate operating
system processes. Each application the user runs executes as a separate process.

IApplication Class
The IApplication class provides the general attributes and behavior of Open Class Library
application objects. You might expect IApplication to provide functions for starting and
manipulating secondary processes, much as IThread does for threads. However, because Open

Cfeapfer20 Applications and Threads 481

Class Library has not yet implemented that level of function, this class provides only the
support that its derivative ICurrentApplication class requires.

You can create objects of IApplication to represent applications that you start via some other
means. To do that, provide the process identifier on the constructor of the IApplication
object. You also use IApplication to set the priority of the threads in those applications. We
discuss this capability later on in the topic, "Thread Priority."

ICurrentApplication Class
The class ICurrentApplication is a specialization of IApplication. Each application that
you implement using Open Class Library includes a single object of this type to represent that
application. You access the object that represents the currently executing process by calling
the IApplication static member function current. This class adds function to make the
current application object more useful than a generic IApplication object.

ProgramArguments
One feature of the ICurrentApplication object is that it can hold the arguments to your
program. Because the current application object is obtainable via a static member function,
you can access these arguments anywhere in your application. Thus, you do not need to place
the argc and argv arguments to main in static storage or to pass those values to the objects that
require access to them. The functions that provide access to the program arguments are found
in Table 20-1.

Typically, you call ICurrentApplication: : setArgs from within main. However, you can call
setArgs at any time. With this capability you can use the application arguments as general-
purpose, process-scoped Istring variables.

The User's Resource Library
Resoz47ices are application-specific entities that define various elements of your application,
such as text strings, dialog templates, and icons. We describe resources at length in
Chapter 24, "Using Resources."

You identify these resources via objects of class IResourceld. The identifiers consist of two
elements: a reference to a specific resource library and a numeric "key" that uniquely
identifies the resource within that library.

To simplify how you use these resource identifiers and replace resources, the resource library
component of the resource identifier object defaults to the application's default ztSer'F
reSoz47ice Jz.brclry. The current application object maintains the identity of this object, which
has type IResourceLibrary. With this feature you can use a generic IResourceld (constructed
without an explicit IResourceLibrary) and switch to a different resource library. Then, you
do not have to change all of the instances of those IResourcelds to refer to the new resource
library.

482 Power GUI programming with visualAge for c++

Table 20-1. `ICurrentApplication Program Argument Functions

Function
-

Description 4 j'

setArgs Stores the arguments in the current application object. You pass the same ¢rgc (number of
arguments) and ¢rgv (array of char* argument pointers) that your main function receives.

ar8C Returns the number of arguments.

ar8V Returns a given command-line argument as an Istring object. It accepts as argument the
index of the requested argument. The argument indexes are always in the range 0 to argo-1.

ICurrentApplication provides two functions for maintaining the default user resource
library. Call ICurrentApplication : :userResourceLibrary to query the current default user
resource library and ICurrentApplication : : setuserResourceLibrary to assign a new default
user resource library. By default, the former function returns a default IResourceLibrary
object, which results in Open Class Library loading the resources from the program (. EXE) file
rather than from a dynamic link library.

This design facilitates dynamic binding of your applications resources. For example, if you
offer a menu choice for users to select their preferred language at run time, you could
implement that using this code:

void setLanguage (char code) {

)Istring
libName = "MY'_APP_" + code;

IApplication: :current () . setuserResourceLibrary(1ibName) ;

Coupling this code with consistently using IResourcelds that use the default library results in
the use of resources appropriate to the selected language.

Open class Library's Resource Library
Open Class Library loads some resources for its own use. Examples of such resources are tool-
bar button bitmaps,t document framework dialogs, and multimedia control bitmaps. To enable
the same degree of dynamic binding to such resources, ICurrentApplication maintains a
se;pa;Iate library resource library .

Maintain this library bty using the resourceLibrary and setResourceLibrary functions of
ICurrentApplication. These functions work just as the ones do that maintain the user
resource library.

If you are shipping the Open Class Library resource DLL with your application, add a call to
ICurrentApplication: : setResourceLibrary to your application's start-up code before any
Open Class Library resources are loaded. You do this because you must rename that library to
comply with the VisualAge for C++ license agreement. Call this function passing the new
name of this library.

Cfea!pfer20 Applications and Threads 483

Controlling Program Execution
ICurrentApplication provides two functions that support a simple model for single threaded
applications.

• ICurrentApplication: :run, which is an alias for ICurrentThread: :processMsgs. We
discuss this function in detail in the topic "The Message Processing Loop" later in this
chapter.

ICurrentApplication : : exit, which terminates the current application. It is equivalent
to exiting the main thread of your application. In most cases, permit normal cleanup to
occur by returning from main a§ usual. By calling the exit function, you bypass the
destruction of active temporary a.nd automatic objects.

I

IThread class `
Objects of class IThread provide C++ objects that correspond to threads of execution.
However, the C++ objects are not the operating system threads. The two objects have the same
relationship as do the windowing system's windows and the corresponding C++ Iwindow
objects. The diagram in Figure 20-1 shows the relationships among the various C++ objects
and operating system threads, as follows:

• The IThread objects are pointers to objects of type IstartedThread. The latter class
provides all of the implementation details of Open Class Library' s thread support.

Figure 2011. Operating System Threads and IThread Objects.

484 Power GUI programming with visualAge for c++

The IstartedThread objects maintain a logical pointer to the associated operating
system thread.

Multiple IThread objects can refer to the same IstartedThread object and, in turn, to
the same system thread. The IThread objects are effectively references to the associated
IstartedThread object, which is, in turn, reference-counted. The IstartedThread
objects disappear when all references are destroyed. The IThread object itself is effec-
tively a reference to the IstartedThread. The IstartedThread object does not get
destroyed until the thread of execution ends.

• Each Open Class Library application has a single object of type ICurrentThread. This
derived IThread object maintains a reference to the IstartedThread object corre-
sponding to the process' main thread. We discuss this current thread in greater detail in
the next section.

• The process can have threads that do not correspond to IThread objects. Thread 2 is
such a thread in the process depicted in Figure 20-1. The topic "Using IThread with
Already Started Threads of Execution" covers this in detail.

Thread Termination versus IThread Object Destruction
Threads of execution never end when IThread objects are destructed! Because the IThre:d
objects are not the threads themselves, and forcing the lifetimes of the separate entities to
coincide is not possible, no attempt is made to try to turn the IThread destructor into a
thread terminator.

The Current Thread of Execution
Open Class Library also provides the specialized thread class ICurrentThread. Open Class
Library ensures that there is always one, and only one, object of class ICurrentThread by
making the constructor for that class private. You access the single object by using the
function IThread: :current, as demonstrated in the following examples. This is a static
member function of IThread. It creates the ICurrentThread object the first time you call it.

ICurrentThread is designed so its object adapts to the current thread. When code executing on
threadl uses it, it acts like thread 1. When code executing on thread 3 uses it, it acts like
thread 3. You need this behavior when you require attributes of the current thread inside
functions that can execute on any thread. For example, if you need to call an OS/2 API which
requires the anchor block handle, you need to pass the anchor block handle for the current
thread of execution. If the function is called on thread 1, you should pass thread 1's anchor
block handle; if called on thread 3, you should pass thread 3' s anchor block handle.

So, to implement a function that calls WinGetcurrentTime, you would simply code it as
follows:

void millisecondssincesystemstartup() {
return WinGetcurrentTime (IThread: :current() .anchorBlock()) ;

)

Cfe¢pfer20 Applications and Threads 485

ICurrentThread provides additional member functions for operations that you can apply only
to the current thread of execution. For example, you cannot cause any thread but the current
thread of execution to "sleep." Thus, sleep is a member function of class ICurrentThread
instead of a member of its base class IThread.

Starting Threads
In this topic you learn how to use IThread to launch additional threads of execution.

You start additional threads via the start member function of IThread. You can also call this
function indirectly by using certain IThread constructors; in effect, those constructors are
simply a combined (plain) construct.or and a call to IThread: : start.

The most important argument that you need to provide when starting additional threads is the
identity of the code you want to execute on that thread. With three overloaded versions of
IThread: : start and three corresponding constructors available, you can use any one of the
three to specify a different flavor of code that you want executed. These versions are as
follows:

• Functions compatible with the os/2 operating system function DoscreateThread. For
details on executing such functions on a separate thread, see "System-Compatible
Thread Functions" later in this chapter. In that topic we also show you how to use
IThread to replace your calls to the CreateThread API in the Windows operating system.

• Functions compatible with the VisualAge for C++ extended library function
_beginthread. For details on starting threads to execute functions of this type, see "C
Library Compatible Thread Functions."

• Any other code implemented by overriding a virtual function of class IThreadFn. You
identify such code by passing a reference to an IThreadFn object which then executes
that function. For details on using this technique to start new threads, see "IThreadFn
Objects." Open Class Library also provides a template class derived from IThreadFn,
which you can easily use to dispatch arbitrary member functions on a separate thread.
For details on using this template class, IThreadMemberFn, see "Running C++ Member
Functions on a Thread."

IThread Always Uses _beginthread
One reason C compilers provide some sort of "_beginthread" library function is because
their run-time libraries require initialization on a per-thread basis. For this reason, it isn't
always safe to use DoscreateThread or CreateThread, as any calls to the compiler's
run-time library on that thread may fail.

However, IThread doesn't ever use plain DoscreateThread or CreateThread to start
threads, even when starting threads to run functions compatible with DoscreateThread.
IThread always starts threads using the C run time's _beginthread function. So, it is always
safe to make calls to the compiler's run-time library on threads started using an IThread
Object.

486 Power GUI programming with visualAge for c++

System-Compatible Thread Functions
The OS/2 operating system starts all secondary threads using the DoscreateThread function.
The first overloaded version of IThread: : start is designed for compatibility with this system
function.

void IThread: :start (SystemFnptr pfn,
unsigned long arg,
Boolean autolnitpM) ;

This function starts a new thread and then calls a user-provided function on that new thread of
execution. Make your function of type IThread: : SystemFnptr, which, in turn, is an alias for
type:

void (_System *) (unsigned long)
This defines a pointer to a function with the following attributes:

• Itmusthave_System linkage.
• It must accept a single argument of type unsigned long.
• Itmustreturnvoid.

This is the same type of function that you can use with the OS/2 operating system's
DoscreateThread function. IThread supports functions of this type explicitly; so, you can
replace using DoscreateThread with using IThread objects.

Open Class Library does not directly support starting functions compatible with the Windows
operating system's CreateThread function because CreateThread executes a function with
type:

unsigned long (_stdcall *) (void *)
IThread does not directly support starting these functions. So, if you have existing code that
you run on a separate thread using CreateThread, you cannot switch to using IThread objects
unless you complete the following steps:

1. Write a wrapper function that has an IThread-compatible signature

2. Have that wrapper function call the createThread-compatible function.

In fact, this C++ template class "automatically" writes such wrapper functions for you as
follows:

Cfea!pfer20 Applications and Threads 487

CreateThread-to-IThread Wrapper Functions - thread\starting\wrapper.hpp
/*--
I The template argument is the function you want to provide a I
I wrapper for.-------------------------------.-.--------------------------- _ _ _
template < unsigned long (_stdcall *WinFunction) (void *) >
struct WrapperFor {
// This static member funtion is the actual wrapper. It calls
// your function.static void

wrapper(void *p) {
WinFunction(p) ;

)
// This operator permits objects of this template class to be
// converted to a function pointer that IThread accepts.

operator IThread: :OptlinkFnptr () const {
return (IThread: : OptlinkFnptr)wrapper;

}
i ., / / V(rElp:pc±rJ!or<>

Create a wrapper function using an expression such as WrapperFor<myFunction> () , which
creates a template class object. When you pass this object to IThread, it converts it to a
function pointer using its operator IThread: : OptlinkFnptr. This operator returns a pointer to
the static member function of the template class. Thus, when the thread starts, IThread calls
that static member function. It, in turn, calls your function. You can see an example of how to
use this class template in the example program thread/starting/starting.cpp.

C Library-Compatible Thread Functions
For the same reasons that Open Class Library provides a simplified means of starting threads,
the VisualAge for C++ compiler provides an extended library function, _beginthread, which
you can use instead of DoscreateThread or CreateThread. The second overloaded version of
IThread: : start is compatible with that compiler library function as follows:

void IThread: :start(OptlinkFnptr pfn,
void *arg,
Boolean autolnitpM) ;

This function starts the thread and calls a user-provided function. The function you provide
must be of type IThread: : OptlinkFnptr, which, in turn, is an alias for the following type:

void (_Optlink *) (void *)
This defines a pointer to a function with the following attributes:

• Itmusthave_Optlinklinkage.
• Itmust accept a single argument of type void*.
• It must return void.

This is the same type of function that you can start on another thread using the compiler's
_beginthread function. IThread supports functions of this type; so, you can replace using
_beginthread with using IThread.

The following code comes from the example program that demonstrates how you can use
IThread to replace your current use of the operating system's thread-creating functions or the
compiler's _beginthread function. It includes each thread-creating scenario and demon-
strates how to achieve the same result using an IThread object.

488 Power GUI programming with visualAge for c++

Starting Functions on a Thread - thread\starting\starting.cpp
/ * ---------------------- Threads tarter -------------------------
I This class is a command handler that handles the starting of I
I threads using any of the six different methods.-- * /
class Threadstarter : public ICommandHandler {
public :virtual Boolean

command (IColnmandEvent &event) {
switch (event.commandld()) {

case createThread:
#ifdef IC_PM

TID
tid;

DoscreateThread (&tid,
compatiblewithos,
(unsigned long) "Started via DoscreateThread" ,
0,
Ox4000);

#else
CreateThread(0,

Ox4000'
compatiblewithos,
(void *) "Started via CreateThread" ,
0);

#endif
break;

case beginthread:
_beginthread (compatiblewithcLibrary,

0'
Ox4000,
(void *) "Started via _beginthread") ;

break;
case createThreadusinglThreadstart :

(
IThread

newThread;
#ifdef IC_PM

newThread. start (compatiblewithos ,
(unsigned long) "Started via IThread: :start") ;

#else
newThread. start.(WrapperFor< compatiblewithos > () ,

(void *) "Started via IThread: :start") ;
#endif
)
break;

case createThreadusinglThreadctor :
(
#ifdef IC_PM

IThread
newThread (compatiblewithos ,

(unsigned long) "Started via IThread ctor") ;
#else

IThread
newThread(WrapperFor< compatiblewithos > () ,

(void *) "Started via IThread ctor") ;
#endif
)
break;

case beginThreadusinglThreadstart :
(
IThread

newThread;
newThread. start (compatiblewithcLibrary,

(void*) "Started via IThread: :start") ;
)
breakj

Cfeapfer20 Applications and Threads 489

case beginThreadusinglThreadctor :
(
IThread

newThread (compatiblewithcLibrary,
(void*) "Started via IThread ctor") ;

)
break;

)
return false;

)
}; // Threadstarter

IThreadFn Obj ects
Sometimes you want to dispatch another kind of function on a separate thread. To support that,
the IThread class provides another overloaded version of IThread : : start as follows:

void IThread: :start (const IReference<IThreadFn> &fnobj ,
Boolean autolnitpM) ;

The first argument is not a plain function pointer in this case; it is a smart pointer to a ffere¢d
f#J3cfz.oJ® oky.ecf, an object of a class derived from IihreadFn. This class serves only to provide
the following pure virtual function:

virtual void IThreadFn::run () = 0;
When you start a thread using an IThreadFn function object, the IThread object eventually
calls the function object's implementation of this run member function. You can implement
this function any way you want to in the classes you derive from IThreadFn. The code that you
put into your implementation gets executed on that thread.
This is how you execute, on a separate thread, code that does not fit into the
DoscreateThread-compatible or _beginthread-compatible categories. Just package that code
into a run function or write a run function that calls the code you want to execute on the new
thread.

An Example of Executing a Function On a Separate Thread
You have a function that calculates pz. to arbitrary precision and returns the result as an
Istring containing the ASCII representation of the value of pz. as follows:

Istring pi(unsigned digits) ;
Because this function might take a long time to run you want to run it in a separate thread and
notify the user when the answer is ready.

This function is not compatible with DoscreateThread, CreateThread, or _beginthread. To
start it on a separate thread, write a simple IThreadFn-derived class and implement the run
function so that it calls pi. You also have that class take on the following additional responsi-
bilities:

• To pass the number of digits that you specify on the constructor to the pi function when
the thread starts.

• To update a window with the results when the calculation completes. You specify an
IwindowHandle as a constructor argument to identify the window to be notified.

The following code illustrates how you write the code for this class:

490 Power GUI programming with visualAge for c++

Calculating Pi on Another Thread - thread\pithread\pithread.cpp
class PionAThread : public IThreadFn {
public :

PionAThread (unsigned digits,
const IwindowHandle &window)

: are(digits),
win(window)

(
)virtual void

run ()
(Istring

result = pi(arg) ;
UserEvent(0, (char*)result).sendTo(win);
)

private :
unsigned

argj
IwindowHandle

winj
);

This class is simple. You turn the pi function argument into a data member of the class and put
a corresponding argument on the constructor for the class. You also include an argument that
permits specifying which window is to be notified of the result. The class implements the run
function by calling the desired function using the argument stored in the function object and
then by sending the result to the window provided on the constructor.

You can then use this PionAThread class in another snippet from the same example program.
The following code shows the implementation of a derived IColrmandHandler class' command
function that launches a thread to calculate pz. when a user presses a push button:

virtual Boolean
command (ICommandEvent &event) {

Boolean
result = false;

if (event.commandld() == button.id()) {
unsigned

numDigits(input.text().asunsigned()) ;
Output

.addLineASLast("Calculating pi to "
+
Istring(numDigits)
+„ digits...");

IThread
calculatepi (new PionAThread(input.text() .aslnt() ,

output.handle()));result = true;
)return result;

)

Running C++ Member Functions on a Thread
So far, we have only discussed starting threads to execute simple nonmember functions.
However, because you properly use C++, you likely want to execute member functions of your
classes on separate threads.

Cfea!pfer20 Applications and Threads 491

Doing this is harder than you might think because C++ member functions cannot be called
directly. You must apply them using an object or a pointer to an object. The this pointer is
passed "under the covers" and tbe operating system's thread creation functions just cannot do
that. Instead, you have to construct a nonmember function that can be started on a secondary
thread. That function takes the object and the member function pointer you want applied and
applies the function to the object.

Open Class Library provides a means that greatly simplifies doing all of that. You can use the
IThreadMelhoerFn class template to generate IThreadFn objects which execute member
functions of arbitrary classes on separate threads. The only restriction is that
IThreadMemberFn limits support for member functions to those that accept no arguments and
that return void.

An Example of Executing a C++ Member Function on a Separate Thread
Let us make a minor change to the last example. Instead of a simple nonmember pi function,
we now have a pi member function of some class. This class also holds the desired number of
digits and the handle for the window in which the results are to be displayed. We also have
that class provide another member function called update. It calculates pi to some precision
and updates the window with the result.

Running a C++ Member Function on a Thread - thread\picalc\picalc.cpp
class Picalculator {
public :
// Construct the calculator with an ELE to be updated with the
// results.

Picalculator(IMultiLineEdit &mle)
: digits(0), results(mle) {
)

// This function calculates pi and updates the result window.
void

calculate ()
(Istring result = pi(digits);
UserEvent(0, (char*)result).sendTo(results.handle()) ;
)

// Use this function to set the number of digits to calculate.
void

setDigits (unsigned int numDigits) {
digits = numDigits;

)
private :unsigned digits;
IMultiLineEdit &results;
);

The calculate member function matches the criteria we established. Executing
Picalculator: : calculate on a separate thread is simple when we use the IThreadMemberFn
class template. The portion of that example program that-starts the secondary thread follows:

492 Power GUI programming with visualAge for c++

Running a C++ Member Function on a Thread - thread\picalc\picalc.cpp
virtual Boolean

command (ICommandEvent &event) {
Boolean .

result = false;
if (event.commandld() == button.id()) {

unsigned
numDigits(input.text().asunsigned()) ;

Output
.addLineASLast("Calculating pi to "

+
Istring (numDigits)
+

digits. . .") ;
calculator.setDigits (numDigits) ;
IThread

calculatepi (
new IThreadMemberFn<Picalculator> (calculator,

result = true;
)return result;

Picalculator: :calculate)) ;

)

The IThread constructor argument is an object of the type generated by the class template.
That template class' constructor requires two arguments. The first is the object to which the
member functions is applied. The second argument is the address of a member function of the
class of that object.

Using the IThreadMemberFn class template requires you to spell out your class name twice. A
function template that provides a simpler means of generating IThreadMemberFn objects
follows:

IThreadMemberFn Generator Function - thread\improved\improved.hpp
template < class T >
IThreadMemberFn<T> *memberFn(T &ob]., void (T: :*mem) (void)) {

return new IThreadMemberFn<T>(obj , mem) ;
)

Using this template function simplifies the specification of what member function you want to
apply to what object. For example, the IThread construction in the example above is accom-
plished as follows:

IThread
calculatepi (memberFn(calculator, Picalculator: :calculate)) ;

Setting the Attributes of New Threads
Three attributes of threads are pertinent at thread creation time. Each of these apply only if
you are writing code to run on the OS/2 operating system. Open Class Library provides a set
functions to manipulate these attributes; it also provides these functions on the Windows
operating system for portability, but they don't do anything on that platform.

Cfe¢pfer20 Applications and Threads 493

Automatic Presentation Manager Initialization
As we mentioned earlier, each means of starting additional threads-the three overloaded
versions of IThread: : start and the three corresponding constructors-accept an additional
autolnitGUI argument. This argument specifies whether Open Class Library automatically
initializes the windowing system (that is, Presentation Manager) as tbe thread starts. If the
value of this attribute is true, then Open Class Library calls ICurrentThread: : initializeGUI
automatically when starting the new thread. We describe the effects of that function in detail
in the topic, "Controlling Window Event Processing," later in this chapter.

This attribute applies only to threads on the OS/2 operating system. In the Windows operating
system, there is no counterpart for the Winlnitialize/WincreateMsgQueue functions. All
threads in Windows applications can create and manipulate windows.

Message Queue Size

Message queue size, too, is an OS/2 operating system-specific attribute. Open Class Library
uses a default queue size of 30 messages, which is sufficient for most applications. In some
cases you might need to set this to.a larger value. For example, if you are posting events from
one thread to a window on another thread, and that thread isn't processing those events as fast
as you're generating them, you can fill up the queue.

You can specify the queue size when you call ICurrentThread: : initializeGUI or when you
set the default queue size via the static member function IThread: : setDefaultQueuesize.

Stack Size
You can set the stack size specifically before starting the thread by using the default IThread
constructor, setting the stack size via the setstacksize member function, and then starting the
thread as the following example shows:

IThread
thread;

thread.setstacksize(65534) ;
thread.start(someFunction, someArg) ;

In the OS/2 operating system, Open Class Library always starts threads without precommitting
the stack pages. Because of this, you can specify a large stack size and not waste stack space if
it isn't needed. In the cases where you need the extra stack space, then the OS/2 operating
system commits the extra pages as the amount of data on ithe stack grows.

Although the Windows operating system supports specifying a stack size when you start a
thread, it automatically extends the stack if the thread needs more stack space. It precommits
the stack size that you specify at thread creation time. As a result, try to specify a smaller
stack size and let the operating system allocate more stack space as needed.

The differences between the OS/2 and Windows operating systems in this respect make it
difficult to come up with a portable stack-size strategy. Table 20-2 describes the stack size
characteristics on the two systems. As you can see, the stack size that you specify at thread
creation is used for fundamentally different purposes. Because of this, we recommend that

494 Power GUI programming with visualAge for c++

Table 20-2. Stack AIIocation on Windows and OS/2 Operating Systems

windows i OS/2

Initial Stackz Size The number of bytes specified at One 4096-byte page plus a guard
thread creation via setstacksize. Page.

For thread 1, the entire stack is
committed.

Maximum Stack Size? The application stack size specified The number of bytes specified at
at link time. The sum of the stack thread creation.
sizes of all the threads is subject to For thread 1, the stack size is limitedthis limit. by the value specified at program link

time.

your strategy is to specify stack sizes as accurately as possible and to use operating system-
specific code to tailor your stack sizes as necessary.

Using IThread with Already Started Threads of Execution
There may be cases where you have additional threads of execution that you do not start by
using Open Class Library's IThread class. The first, or primary, thread of your application is a
good example. The operating system starts this thread automatically when your program is
launched. Therefore, IThread cannot start it. .You can have existing code that starts threads
using DoscreateThread (on the OS/2 operating system), CreateThread (on the Windows
operating system), or _beginthread and want to continue using that code without rewriting it
to use IThread.

Fortunately, with Open Class Library, you can use the IThread member functions to
manipulate these threads even though IThread does not start them. You do this by using the
IThread constructor that accepts one argument which is an object of type IThreadld. You pass
the thread identifier for the already started OS/2 or Windows thread. The IThread objects
created in this fashion provide the full range of IThread function.

Controlling Thread Execution
In this topic, we cover the set of functions that provides various means of controlling the
execution of threads.

Normal Termination
Figure 20-2 shows the call stack on entry to the Picalculator: : calculate member function
from a previous example. There are three functions already in the call stack on entry to that
function:

Cfoapfe7.20 Applications and Threads 495

Figure 20-2. Chain of Command on Secondary Threads.

• DOSCALL1:4 (on the OS/2 operating system; this would be a corresponding Windows
function on the Windows operating system)

This is the operating system function that first gains control when it starts a new thread.

• CPPOOU3 : 1

This is the internal IThread function that is passed to _beginthread. It calls the run
member function against the IThreadFn passed to it as an argument.

• IThreadMemberFn<Picalculator> : : run

This is the overridden implementation of run from the template class object that we
passed to the IThread constructor.

Your thread terminates when control returns back through this call stack and the operating
system function at the top of the stack returns. Your code initiates the process by returning
from the user-supplied function that you dispatched on the thread. In our example, this
happens when Picalculator : : calculate returns.

As control returns back through this call stack, C++ objects on the stack are destructed, Open
Class Library records the thread termination, and so on. All of the code that helped start your
thread does what it needs to do to handle that thread's termination. This is the conventional
means of thread termination: it simply returns from the code that you are running on the
thread.

Abnormal Termination of Threads
There are other means of terminating a thread of execution. Both the OS/2 and Windows
operating systems provide thread termination functions that you can call at any time to
terminate a thread. The compiler's run-time library provides a function that does the same

496 Power GUI programming with visualAge for c++

thing: _endthread. Open Class Library also provides a function for terminating a thread:
ICurrentThread: : exit.

Open Class Library also provides the function IThread: : stop, which you can use to terminate
another thread. This is the only means of thread termination that can terminate execution of
one thread by executing code on another thread. While this might seem useful in some situa-
tions, try to avoid using this thread member function because this form of thread termination is
tricky. The operating system puts the terminated thread into a suspended status where it stays
until the system can terminate the thread properly. It is far more reliable to signal your
secondary thread and have it terminate itself using a normal return.

Each of these techniques causes the flow of control in your thread to jump to the top of the call
stack, bypassing any code that would normally get executed as control flowed back through
the functions on the stack. As a result, destructors do not get called for any C++ objects on the
stack, and cleanup code waiting to run will not be executed. In almost all cases, bypassing this
code is a bad idea. For this reason, we call this czb#orrmczJ thread termination. Thus, we
recommend that you avoid terminating threads using these techniques.

Exiting the Thread's Message Processing Loop
Thread termination may seem more confusing when your thread is in the midst of processing
its window message queue. For example, if your thread creates and displays windows, it likely
has the following structure:

void _Optlink myThreadFunction(void *) {
// Create some windows.
IFranewindow

frame (`'Main Window") ;
// Show the fralne.
f rare . show () ;
// Process window events.
IThread: : current () .processMsgs () ;
// Terminate the thread.return;

)

A thread created to execute this function is not terminated until after it executes the return
statement. But it can't do that until the call to ICurrentThread: :processMsgs returns.

So, termination of some threads means termination of the message processing loop on that
thread. You can find more information about exiting this loop in the topic "The Message
Processing Loop" later in this chapter.

Suspend and Resume
You can suspend the execution of a given thread and resume it at any time using the functions
IThread: :suspend and IThread: :resume. Be careful using IThread: :suspend because it
blocks thread execution unconditionally and you have to ensure that the thread is resumed at
some point. Usually, it is better to use one of the more advanced thread synchronization
techniques, such as semaphores, which we describe later in this chapter.

Cfoapfer20 Applications and Threads 497

Sleeping
You can suspend the current thread for an arbitrary period of time by using the function
ICurrentThread: : sleep. The argument to this function specifies the number of milliseconds
for which the thread will sleep.

This function is not designed to provide a means for threads to do poJJz.72g, that is, spinning in a
tight loop waiting for some event to occur. It is typically more efficient to let the system block
your thread and wake it up when it is time to run than to do this on your own.

One application of ICurrentApplication: : sleep is to force the current thread to give up the
remainder of its time slice and yield control to other threads at the same or higher priority.
Calling that function with an argument of 0 is expressly designed to accomplish that task.

Thread Priority
Both the Windows and OS/2 operating systems prioritize threads of execution. Each system
has four categories of thread priority called pr!.orI.ty cJczSseS. The OS/2 operating system
prioritizes threads using a two-level scheme, also giving each thread a particular pr!.orz.ty Jei;eJ
within its priority class. The IApplication and IThread classes of Open Class Library provide
a full set of functions to query and adjust the priority class and, on the OS/2 operating system,
the priority level of each thread of execution.

The IApplication member functions change the priority of all of the application's threads. In
addition, you can also use those functions to change the priority of child processes that you
may have started using an operating system API call.

Priority Class
There are four priority classes. IApplication: :Priorityclass is an enumeration that
provides unique values for these four classes. The enumeration values are found in Table 20-3.

You can query a thread's priority class, via the function IThread: :priorityclass. The
IApplication class provides the setpriority function that you can use to change the priority
of all a process's threads. To change the priority class of all the current process' threads to
timecritical, you would code a statement as follows:

IApplication : : current () . setpriority (IApplication : : timecritical) ;
You can set the priority class of a specific thread in the current application using the function
IThread::setpriority. For example, to change the priority of a given thread to
timecritical, write the following statement:

aThread. setpriority(IApplication: : timecritical) ;

Priority Level
The OS/2 operating system supports 32 priority levels within each priority class. The default
level within a class is 0, but you can adjust this level up or down within the range 0 to 31. By
default, a thread's priority level is 0, which is the lowest priority level within the class. You
can query a thread's priority level using the IThread: :priorityLevel function. Note that

498 Power GUI programming with visualAge for c++

Table 20-3. Priority Classes

Priority Class Description
IThread::idleTime This is the lowest priority class. Use it for threads of background

OS/2: tasks that should not impact the execution of user-interface
processes or more important tasks.PRTYC_IDLETIME
Idle-time threads only run when the system has no other work at aWindows:
higher priority to be done.IDLE PRIORITY CLASS

IThread::regular This is the default priority class. Use it for most user-interface

OS/2: applications.

PRTYC REGULAR

Windows:
REGULAR PRIORITY CLASS

IThread::foregroundserver This class is for threads that require being run at a higher priority

OS/2: than typical threads but don't have as stringent real-time require-
ments as "time critical" threads (see below).PRTYC_FOREGROUNDSERVER
You must be careful when using this or the next priority classWindows:
because threads with these priorities may prevent lower-priorityHIGH PRIORITY CLASS
threads from executing. This includes most user-interface threads,
which run at normal priority. By preempting those threads, you
prevent the users from interacting with the system, perhaps
preventing them from taking action to block the foreground server
thread.

IThread::timecritical This is the highest priority class. Use it only for threads that

OS/2: typically service real-time interrupts, such as communication

PRTYC TIMECRITICAL processes.

Windows:
REALTIME PRIORITY CLASS

Open Class Library supports the priority-level member functions even on the Windows
operating system to provide portability for applications that use those capabilities on the OS/2
operating system. Those functions have no effect when called on the Windows operating
System.

Both IApplication and IThread provide two ways to change a thread's priority level.
IApplication: :setpriority, which we introduced in the preceding topic, can accept an
optional priority level argument in the range 0 to 31. Specifying a value sets all of the appli-
cation's threads' priority levels to the argument value. IThread: : setpriority, which we also
introduced previously, also accepts an optional thread priority-level argument which has a
similar effect to the IApplication function, but applies the change to a single thread.

There are also adjustpriority member functions of IApplication and IThread. These
functions do not affect a process' or thread's priority class. They adjust the current priority
level by some value in the range -31 to 31. The fundamental difference between the argument

Cfeapfer20 Applications and Threads 499

to adjustpriority versus the priority level argument to setpriority is that the former is a
delta applied to the current priority level; the latter is an absolute priority level. Some
examples follow:

// Change all threads in current process to highest level
// regular priority.
IApplication: :current() .setpriority(IApplication: :regular, 31) ;
// Change aThread's priority level to the highest (in same
// priority class) .
aThread. setpriority(IApplication: :nochange, 31) ;
// Adjust priority level of all the current process' threads
fApS:TE::fgi??c::lent () .adjustpriority(-15) ;
// Ad].ust current thread's priority level up by 15.
IThread: :current() .adjustpriority(+15) ;

Be careful when manipulating thread priorities, particularly when your program runs on the
OS/2 operating system. You can easily have a thread with increased priority take over the CPU
and impact the responsiveness of your application. You can test the effects of tweaking thread
priorities by running the example program implemented by thread\threads\threads.cpp.

Controlling Window Event Processing
Because the Windows and OS/2 operating systems maintain certain windowing system
attributes on a per-thread basis, IThread objects have windowing system attributes.
ICurrentThread also provides a number of functions that handle the windowing system and
window event processing.

The Presentation System
The term p7iese7®£czfz.o# rySfeJ7e refers to the per-thread attributes and associated windowing
system' s status information.

Presentation System hitialization
On the OS/2 operating system, initialize the presentation system for a thread by calling
ICurrentThread: : initializeGUI. This function is roughly equivalent to calling the Presen-
tation Manager functions Winlnitialize and WincreateMsgQueue. There is one argument to
this function, the size of the message queue. We already discussed the message queue size in
"Setting the Attributes of New Threads."

You rarely need to call this function directly. Open Class Library calls it automatically when
you start a secondary thread or when you create a primary window. You can write your
programs to call this function regardless of which operating system they run on. It has no
effect on the Windows operating system, where all threads in GUI applications automatically
have their presentation system initialized.

500 Power GUI programming with visualAge for c++

Presentation System Termination
You can undo the effects of initializeGUI by calling the ICurrentThread function,
terminateGUI. In the OS/2 operating system, this function invokes the Presentation Manager
Apls WinDestroyMsgQueue and WinTerminate. In the Windows operating system, it has no
effect.

Normally, you need to call this function only on the primary thread of your applications.
Secondary threads, those started via use of IThread, automatically call this function as the
thread terminates. You do not need to call this function because Presentation Manager
automatically detects the thread termination and cleans up resources accordingly.

Anchor Block
To initialize the Presentation Manager environment, call Winlnitialize. This establishes the
¢7®cfeor bJock handle for the current thread. The anchor block handle refers to the operating
system object that Presentation Manager uses to record information about the thread and its
windows. ICurrentThread: : initializeGUI records this handle and stores it as an attribute of
the IThread object. Obtain this handle by calling ICurrentThread: : anchorBlock. You might
need to do this if you want to directly call Presentation Manager Apls that require the IIAB as a
parameter. Because the Windows operating system has no anchor block handle, you do not
need to call it on the Windows operating system; but if you do, the function always returns 1.

Message Queue
Presentation Manager initialization calls WincreateMsgQueue. This API returns the handle of
the Presentation Manager message queue for the thread. Open Class Library stores this handle
as an attribute of the IThread. Obtain it by calling IThread: :messageQueue.

The Windows operating system doesn't have a separate message queue handle. It identifies a
thread's message queue using the thread identifier. So, Open Class Library returns this thread
identifier when you call IThread: :messageQueue. This ensures that your code works properly
when you use functions that take the message queue handle as an argument, such as
IwindowHandle : : postEvent to post an event to a thread' s message queue.

The Message Processing Loop
Both the Windows operating system and the OS/2 Presentation Manager are message-based
windowing systems. They transmit input events from the user and system-generated events to
the code that implements the windows. It places these messages on the thread's message
queue as they occur. The application removes these messages from the queue and dispatches
them to the window' s window procedure.

The code that pulls these messages off of the message queue and dispatches them to the
appropriate window procedure is the mesSczge proceSSz.#g Joop. In a typical Windows appli-
cation implemented in C this loop has the following form:

while (GetMessage(&msg, 0, 0, 0))
DispatchMsg(&msg) ;

Cfoa!pfe7.20 Applications and Threads 501

The Presentation Manager equivalent is almost identical, as follows:
while (WinGetMsg(hab, &qusg, 0, 0, 0))

WinDispatchMsg(hab, &qusg) ;

The equivalent in Open Class Library is the statement:
IThread: : current () .processMsgs () ;

Starting the Message Loop
Calling IThread: : current () .processMsgs () performs the processing of the thread's message
queue. It terminates when Open Class Library or you post a WM_QUIT message to the queue.
You see how this message processing loop terminates in the next topic. An alias for this
function invocation is IApplication : : current () . run () .

The call to processMsgs, or IApplication: : run, is unusual, especially if you are not familiar
with the message-based application model. First, it does not return until an indeterminate
point in the future. This means that you must ensure that other necessary actions occur prior to
invoking this function. Most often the dispatching of the message processing loop occurs
close to the end of your main function or at the end of the function you dispatch on the
secondary thread.

An interesting feature of this function call is that it really doesn't yield control. Your code,
specifically, your window handlers' functions, will execute with high frequency in the inter-
vening period prior to this function call returning. You could interpret this call as a transfer of
control from your main to your handlers.

IFramewindow::showModally
There is yet another way to initiate a message processing loop. The underlying windowing
systems perform that function as part of the processing of dialog windows. Because
IFramewindow: : showModally is .a wrapper for those system functions, you can use this Open
Class Library function instead of the functions ICurrentThread: :processMsgs and
ICurrentApplication : : run.

The advantage of the IFramewindow function is that you most likely are already using
IFramewindow functions and can implement your entire program without including
ITHREAD.HPP, or IAPP.HPP. This technique lets us reduce the smallest "Hello World" Open
Class Library application to just two lines:

#include <iframe.hpp>
void main() { IFramewindow("Hello, World!").showModally(); }

Stopping the Message Loop
Remember that ICurrentThread: :processMsgs does not return until you or Open Class
Library posts a WM_QUIT event to the thread's message queue. The posting of a WM_QUIT event
happens in one of three ways, as follows:

502 Power GUI programming with visualAge for c++

Closing the last primary window on the thread. Open Class Library detects the closing
of prz.77eczry wz.7®dowsi, those with the desktop window as parent and no owner, and posts a
WM_QUIT message when the windowing system destroys the last primary window.

An Iobjectwindow is also considered a primary window. This ensures that secondary
threads that service requests communicated via an object window run properly, too.

A call to IThread: : stopprocessingMsgs. This function provides a portable means of
posting WM_QUIT, thereby forcing a return from processMsgs. You cannot post WM_QUIT
portably because you need to include an operating-system-specific header file to obtain
the value of the WM_QUIT message identifier.

Explicit posting of a WM_QUIT. For example, the following statement causes return from
processMsgs:

awindow.postEvent (WM_QUIT) ;

Although nothing is wrong with using this technique to terminate the message
processing loop, it has at least three disadvantages when compared to other techniques.

It is too procedural; it requires too much information on how things work. The
fact that this causes return from processMsgs certainly isn't obvious.

It also bypasses the users. Usually, the application termination is triggered by
closing the application's windows. When that happens, Open Class Library posts
the WM_QUIT automatically, as we described in the previous bullet.

Finally, posting WM_QUIT is not easily portable. See the discussion of
IThread: : stopprocessingMsgs in the preceding bullet for the portable way to do
it.

The Fourth Source of WM_QUIT
In the OS/2 operating system, WM_QUIT messages are also posted to your thread's message
queue when a user selects Close on the Window List for one of the thread's windows.
However, in this case "quit" really means "close the window." Thus, Open Class Library
recognizes such WM_QUIT messages and treats them differently, as follows:

1. Itposts aclosemessageto thewindowtobe closed.

2. The message processing loop continues.

Synchronizing Multiple Threads
After you add multiple threads to your application, you need to coordinate the sharing of
process resources between those threads. This section describes two techniques that Open
Class Library provides for synchronizing threads: resource locks and critical sections. We
also provide an implementation of another technique that Open Class Library itself doesn't
support: event semaphores.

Cfeapfer20 Applications and Threads 503

Semaphores
The OS/2 and Windows operating systems provide objects called 77®#fzcczJ-e:I;cJz{Sz.o7t semapfeoreS
that enable separate threads and processes to synchronize access to shared resources. These
objects ensure that two processes do not write to the same file at the same time and that two
threads don' t update static data simultaneously.

Open Class Libr.ary provides a set of C++ classes that encapsulates such semaphores and make
it easy to synchronize your threads and processes.

Resources
The class IResource defines the abstract protocol for shared resources. This interface is
simple; its two functions are shown in Table 20-4.

The default time-out argument is -1, which indicates that the thread is blocked indefinitely if
the resource is not available. A time-out value of 0 causes the function to throw an
IResourceExhausted exception immediately if the resource is already locked.

IResource is an abstract base class. You cannot create objects of this class. Use either of the
derived classes IsharedResource or IprivateResource, which we describe in the following
topics.

We also discuss the use of resources in context of the thread\picalc\picalc example program.
Part of that example program includes the following function, which is executed on each
secondary thread:

Table 20-4. IResource Functions

Function
fr

Description i
lock Call this function when a process, or thread, needs to gain exclusive access to the shared

resource. The function returns after obtaining a lock (mutual exclusion semaphore)
associated with the resource object. If a different process or thread has already locked the
resource, the operating system blocks the requesting thread until the process or thread
holding the resource unlocks it.

This function accepts an optional argument that specifies the maximum amount of time it
waits for an already locked resource. If this time-out period, which you specify in milli-
seconds, expires before the thread owning the resource unlocks it, IResource: :lock throws
an IResourceExhausted exception.

unlock Call this function when the thread, whicb has previously locked a resource, is done with
it. Only the thread that has locked the resource can unlock it. If you call this function
from a different thread, an error results and the function throws an exception.

504 Power GUI programming with visualAge for c++

Where Thread Synchronization Is Needed - thread\picalc\picalc.cpp
// This function calculates pi and updates the result window.
void

calculate ()
(Istring result = pi(digits);
UserEvent(0, (char*)result).sendTo(results.handle()) ;
)

This function requires thread synchronization because each secondary thread sends a user-
defined event to the multiline edit control, potentially at the same time. This can cause output
to the window to intermix the results of two or more calculations. That MLE control, within
the context of this function, is a shared resource that you need to protect from being accessed
by two threads at the same time.

To fix this, use IResource in one of the two following ways:

• As a base class for derived classes that represent shared resources. This technique is
appropriate for objects that are always shared between processes or threads. Often, you
derive from both IResource and some other base class that represents the nonshared
nature of the objects. An example of this use of IResource is the following definition of
a shared IMultiLineEdit class:

class SharedELE : public IMultiLineEdit, public IprivateResource {
);

The advantage of this technique is that it simplifies the locking and unlocking of these
kinds of objects. You can lock and unlock the shared resources directly, because they are
IResource objects, too. In our example, we would change the Picalculator class to
hold a SharedELE results object and would rewrite the calculate function as follows:

void
calculate ()

(
Istring result = pi(digits);
results.lock() ; // Stop other threads.
UserEvent(0, (char*)result).sendTo(results.handle()) ;
results.unLock() ; // Now we're done.
)

As a stand-alone object maintained in conjunction with the shared resource. Use this
technique when sharing is an attribute of a single object instead of all objects of the
class. Because we have just one IMultiLineEdit object to be shared in our example we
might associate that object with an accompanying IprivateResource object. Threads
accessing the shared MLE would lock and unlock the corresponding resource, instead of
the MLE itself, as follows:

// This function calculates pi and updates the result window.
void

calculate ()
(
IprivateResource

lock;
Istring result = pi(digits);
lock .lock () ;
UserEvent(0, (char*)result).sendTo(results.handle()) ;
lock . unLock () ;
)

Cfeapfer20 Applications and Threads 505

One risk in this technique is that only this function.uses the locking mechanism.
Because this MLE object is accessed from another location in this example (at the point
where the thread is started), this technique doesn't work as well as the one shown previ-
ously.

Shared Resources
The class IsharedResource represents objects to be shared between processes. These objects
correspond to named semaphores. Provide the name of the shared resource on the constructor
for this class. You can access named shared resources via the resource name. Thus, you can
construct two distinct IsharedResource objects with the same name and use them to protect a
single shared resource. This is essential when sharing resources between processes. Just use
the same resource name in each process.

Private Resources
You frequently represent resources that are shared by multiple threads of a single process as
objects of class IprivateResource. These objects use unnamed, nonshared mutual exclusion
semaphores. You can share these semaphores only between threads within the same process.

One common usage for private resources is to serialize access to static data members of a
class. Here is the code that we could add to another example program to prevent problems if
the function is called on multiple threads simultaneously. The code in bold type shows what
must be added to achieve the correct resource protection:

Protecting Static Data Members - thread\threads\thread.cpp
void Thread : : addcolumnsTo (IContainercontrol &cnr) {

IprivateResource
gtaticGuard;

staticGuard .lock () ;
static Boolean

doneAlready = false;
if (!doneAlready) {

iconcolumn . showseparators
namecolulnn . showseparators

. setHeadingText „Nane„) ;
threadldcolumn . showseparators ()

.setHeadingText("Id") ;
statuscolumn . showseparators ()

.setHeadingText(`'Status") ;
priorityclasscolulnn
priorityLevelcolulnn
doneAlready = true;

)

staticGuard . unLock () ;

showseparators ()
setHeadingText ("Class") ;
showseparators ()
setHeadingText(`'Level") ;

506 Power GUI programming with visualAge for c++

Cnr. addcol-(. addcol-(
. addcolurm (. addcol-(
. addcolurm (. a'ddcol-(

&iconcolurm)
&nanecol-)
&threadldcolumn)
&statuscolumn)
&priorityclasscolumn)
&priorityLevelcolumn) ;

)

Resource Locks
Conventional usage of IResource objects has a familiar form. You can see it in each of the
examples presented so far. For a given resource object, we follow these steps:

1. Callits lockmemberfunction.

2. Usetheresource.

3. Call its unLockmembei function.

Notice how we bracket the access to the resource by the locking and unlocking of the resource.
Experienced C++ programmers might recognize this as an opportunity to exploit C++
constructors and destructors to take care of the locking. A class whose constructor locked the
resource and destructor unlocked it could then be used to manage the locking. You do this by
defining an object of that class in the same scope as the code that operates on the resource.

Open Class Library provides a class that does exactly that, IResourceLock. Construct
IResourceLock objects from a reference to the object you want to lock. The resource lock
constructor locks the resource. The resource lock destructor unlocks the resource. This
reduces the code that uses a SharedMLE object to the following code:

void
calculate ()

(
// Iiock the results object for the duration of this block.
IRegourceLock

lock(results);
Istring result = pi(digits);
UserEvent(0, (char*)result).sendTo(results.handle());
)

The main benefit of using IResourceLock versus locking and unlocking your resources
manually is that doing so ensures you always unlock the resource. This holds true even if a
C++ exception is thrown while you hold the lock. Conversely, do not use IResourceLock when
you need the resource lock to span more than a single {}-delimited block. Instead of dynami-
cally allocating an IResourceLock using new, just call lock and unlock directly on the
IResource object.

Critical Sections
In a limited set of circumstances, you can use a simpler mechanism to limit access to process
resources to a single thread: cr!.fz.c¢Z siec£!.o#S. The behavior of critical sections differs on the
Windows and OS/2 operating systems. In the Windows operating system, entering a critical
section only blocks other threads that attempt to enter critical sections themselves. In the

Cfe¢pfe7.20 Applications and Threads 507

OS/2 operating system, entering a critical section automatically prevents all other threads in
the process from being dispatched.

The main advantage of critical sections is that they can be more efficient than a mutual
exclusion semaphore. However, the strict behavior of critical sections in the OS/2 operating
system makes them less desirable than IprivateResource objects, which use mutual exclusion
semaphores.

Open Class Library provides the class Icritsec to facilitate using critical sections.
Icritsec' s constructor and destructor call the appropriate operating system functions to enter
and exit the critical section . You embed code inside a critical section by preceding it with the
declaration of an Icritsec object.

Warning: OS/2 Critical Section Ahead
Use critical sections with extreme caution. When you enter a critical section or construct an
Icritsec object, the OS/2 operating system suspends all other threads in the application.
They remain suspended until you exit the critical section or destroy the Icritsec object. Tbis
can lead to a deczdJock if the thread within the critical section blocks. For example, consider
the following solution to our shared MLE problem that we discussed previously:

void
calculate ()

(
// I.oak other threads for the duration of this funccion.Icritsec

lockj
Istring result = pi(digits);
UserEvent(0, (char*)result).sendTo(results.handle()) ;
)

Although this code might look okay, it hangs the program when you run it in the OS/2
operating system because the MLE tbat receives the user-defined event is running on another
thread. Sending the event to that window won't be completed till that window's thread
processes the event. But because we've entered a critical section, that window's thread can't
run. The application is deadlocked.

Thus, we recommend that you never enter a critical section in a block of code that might cause
the OS/2 operating system to block the thread. Because you do not know what happens when
you call other people's code, never enter a critical section in a block that executes code you
didn't write yourself (or, at least that you don't know how it was written). This includes code
in the compiler run-time library, including new and delete operators, or code in Open Class
Library.

Event Semaphores
Both the OS/2 and Windows operating systems support another kind of semaphore: eve7®f
Fe77®clpfeores. Event semaphores work like traffic lights. When such a semaphore is set, the
"light" turns "green" and threads waiting for the semaphore proceed. When the semaphore is

reSe£, the "light" turns "red" and threads that are running and that wait for the semaphore are
blocked. Unlike mutual exclusion semaphores, which Open Class Library' s IResource classes

508 Power GUI programming with visualAge for c++

encapsulate, two threads that are waiting for the same event semaphore both start when a third
thread sets the semaphore.

Although Open Class Library doesn't provide a class that encapsulates operating system event
semaphores, you can easily provide your own implementation. You can find an implemen-
tation in the thread example code in the files signal.hpp and signal.cpp. These files
implement a Signal class that provides a portable event semaphore wrapper that works on the
OS/2 and Windows operating systems. The class supports both private and shared (that is,
named) event semaphores. Signal objects provide three member functions as described in
Table 20-5.

You typically use Signal objects to suspend one thread while waiting for another thread to
complete some action. The various service thread techniques described in the following topic
all rely on these objects to synchronize the startup of service threads.

Table 20-5. Signal Member Functions

Function Description
signal Turns the signal "green." Any waiting threads are unblocked and any threads that subse-

quently wait can proceed without stopping.

reset Turns the signal "red." Any threads that subsequently wait for this signal are blocked until
the signal() function is called.

wait Suspends the current thread of execution if the signal is reset. The thread remains blocked
until the object is signalled by calling its signal member function. This function accepts a
time-out value that specifies the maximum number of milliseconds that the thread waits.

Service Threads
In all of the examples presented so far, we have dispatched a separate thread for each long-
running task. Although this works well in many situations, it does incur additional costs that
can be unacceptable in some cases. Specifically, this technique requires that a new thread be
created, started, terminated, and destroyed every time there is some work to do. In our pz.
calculator examples, these thread start-up costs might exceed the time actually spent calcu-
lating the result.

A much better technique is to launch one or more s'ervz.ce ffere¢ds and keep them active,
feeding them requests as such requests arise and suspending the service threads between
requests. In this way, you amortize the thread start-up and shut-down costs over the life of
your application and get faster response when lengthy processing needs to be done.

Designing a Service Thread
In this topic we describe how to design and implement service threads in a portable fashion
using the building blocks of Open Class Library.

Cfeapfer20 Applications and Threads 509

First,look at how we would want to use such service thread objects from a client application's
perspective. Essentially, we want to replace the code that starts secondary threads with code
that makes requests of the service thread. In the pz. calculator example presented earlier, the
threads started from within a command handler when a user pressed the Calculate push button.
The nonservice-thread version of that command handler follows:

struct Controller : public ICommandHandler {
Controller (IFramewindow &frame,

IPushButton &button ,
IEntryField &input ,
IMultiLineEdit &output)

: frame(frame),
button(button) ,
input(input) '
output(output) ,
resultHandler(output) ,
calculator(output) {

this->handleEventsFor (&frame) ;
)~Controller () {

stopHandlingEventsFor (&frame) ;
)

virtual Boolean
command (ICommandEvent &event) {

Boolean
result = false;

if (event.commandld() == button.id()) {
unsigned

numDigits(input.text().asunsigned()) ;
Output

.addLineASLast(`'Calculating pi to "
+
Istring(numDigits)
+„ digits...");

calculator.setDigits (numDigits) ;
IThread

calculatepi ;
calculacepi . Start (

new IThreadMemberFn<Picalculator> (
calculacor,
Picalculator: :calculate)) ;

result = true;
)return result;

)
private :
IFramewindow
&frane;

IPushButton
&buttonj

IEntryField
&input;

IMultiLineEdit
&Output;

ResultHandler
resultHandler;

Picalculator
calculator ;
Controller(const Controller
operator= (const Controller

}; // Controller
The portion of this code that starts secondary threads is highlighted in boldface type. It is this
code that we want to replace.

510 Power GUI programming with visualAge for c++

Rather than starting a new thread for each request, we want to notify some service thread
object to perform another calculation. In addition, we want to send some notification back to
our primary thread when the calculation is completed. These request and reply requirements
are met perfectly by the Picalculator : : calculate function that this code already runs on the
separate thread. So we'111eave the packaging of the request as-is. The only thing we need to
change is the target to which we're sending that request. Instead of sending it to a new thread
each time, we change the code so that it sends the request to a single ServiceThread object.
But what ServiceThread object? We need to create one. The natural way to do it is to make
the service thread object a data member of the Controller. This yields the following client
code that uses our yet-to-be-designed ServiceThread object:

®,®

virtual Boolean
command (ICommandEvent &event) {

Boolean
result = false;

if (event.commandld() == button.id()) {
unsigned

numDigits(input.text() .asunsigned()) ;
Output

.addLineASLast("Calculating pi to "
+
Istring(numDigits)
+„ digits...");

calculator.setDigits (numDigits) ;
gerviceThread . pogcRequegt (

new IThreadMemberFn<Picalculacor> (
calculator,
Picalculator: :calculace)) ;

result = true;
)return result;

)
private :
ServiceThread

serviceThread;

Implementing the Service Thread
Next, we decide how to implement this ServiceThread class. The implementation must meet
the following requirements:

• The service thread must start a secondary thread at some point.

• The service thread object must be able to send requests from the client thread to the
secondary thread.

• The service thread object must be able to queue incoming requests if they arrive faster
than the secondary thread can process them.

• The secondary thread must block when there are no requests to process.

• The secondary thread must wake up as soon as arequest comes along.

• The service thread implementation must be portable. Ideally, we would like to
implement it using existing Open Class Library components.

Cfe¢pfe7.20 Applications and Threads 511

Using an Object Window
Traditionally, multithreaded programs use an object window as the vehicle for communication
with secondary threads. Using an Iobjectwindow created on a secondary thread provides an
almost ideal solution for our service thread implementation, as follows:

• We can postrequests to the secondary thread by posting an event to the object window.

• The windowing system queues requests in the message queue of the secondary thread if
they arrive faster than they can be processed.

A standard message processing loop blocks the secondary thread when there are no
pending requests to the object window.

The secondary thread wakes up as soon as a request is posted to the object window.

Open Class Library provides Iobjectwindow objects and building blocks for
constructing most of what we need.

The ServiceThread class has a simple interface, consisting of a constructor, destructor, and
single member function, as follows:

Service Thread Interface - thread\piserve\service.hpp
class ServiceThread {
publ i c :
/*-----------------Constructors/Destructor----------~---------
I Note that the constructor automatically starts a secondary I
I thread of execution and the destructor terminates that I
I thread. I-- * /

ServiceThread () ;
~ServiceThread () ;

/* --------------------- Request Handling -----------------------
I Use this function to post a request to the thread. I-- * /
virtual void

postRequest (const IReference<IThreadFn> &request) ;
private istatic void

run (void *) ;
ServiceThreadData*data;
}; // ServiceThread

Note that we only support requests packaged as IThreadFn objects. You could overload
postRequest to accept function pointers, as IThread: :start does. You would just have to
provide a wrapper for those functions using an IThreadFn-derived class implemented here, as
follows:

// Wrapper to convert non-member functions to IThreadFn ob].eats.
class ServiceFn : public IThreadFn {
public i

ServiceFn (IThread: :OptlinkFnptr pfn, void *p)
: type(optlink), oFunction(pfn), arg(p) {}

ServiceFn (IThread: :SystemFnptr pfn, unsigned long p)
: type(system), sFunction(pfn), arg(p) {}

512 Power GUI programming with visualAge for c++

void
run () (

// Call the stored function.
switch (type) (

case optlink: oFunction(arg) ; break;
case system: sFunction((unsigned long)arg) ; break;

)
)

private : .
enum { optlink, system }

type ;
union (

IThread : : OptlinkFnptr
oFunction;

IThread : : SystemFnptr
sFunction;

);
void*arg;
);

// Add these declarations/definitions to ServiceThread.virtual void
postRequest(IThread: :OptlinkFnptr pfn, void *arg) {

postRequest(new ServiceFn(pfn, arg));
)virtual void
postRequest(IThread: :SystemFnptr pfn, unsigned long arg) {

postRequest(new ServiceFn(pfn, arg));
)

Next, we look at the implementation of this ServiceThread class, as follows:

Service Thread Implementation- thread\piserve\service.cpp
struct ServiceThreadData {
IThread

thread;
Iobj ec twindow*objwin;
Signal

signal;
} ; // ServiceThreadData
/ * --------------- ServiceThread : : ServiceThread -----------------
I The constructor allocates this object's implementation data. I
I It then starts the secondary thread and waits for that threadl
I to become ready.

ServiceThread : : ServiceThread ()
: data(new ServiceThreadData) {
data->thread

.start((IThread: :OptlinkFnptr)ServiceThread: :run, data) ;
data->signal .wait () ;

)

/ * -------------- ServiceThread : : ~ServiceThread -----------------
I The destructor posts a WM_QUIT to the secondary thread using I
I IThread: :stopprocessingMsgs. It does *not* delete the I
I object's data because the secondary thread is still using I
I it. The service thread deletes this object's data when it I
I terminates.i i -----------_ ------------ _--------- _- _- - -
ServiceThread :: ~ServiceThread () {

data->thread . stopprocessingMsgs () ;
)

CfoapfeJ.20 Applications and Threads 513

/* ---------------- ServiceThread: :postRequest ------------------
I A user-defined event is posted to the object window on the I
I service thread. We pass the address (effectively) of the I
I IThreadFn object.
__*
void

ServiceThread : : postRequest
(const IReference<IThreadFn> &request) {

(*request) . addRef () ;
UserEvent(0, (void*) (IThreadFn*)requ.est)

.postTo(data->objwin->handle()) ;
)

/*----------------------ServiceHandler------------------------
I This class handles user-defined events posted to the service I
I thread's object window.
I

I It invokes the run() function against the IThreadFn
I referenced by mpl.

I

I

I

I

/
struct ServiceHandler : public UserHandler {

ServiceHandler (Iobjectwindow *objwin) {
handleEventsFor(objwin) ;

)

virtual Boolean
handleuserEvent (UserEvent &event) {

IThreadFn*request = (IThreadFn*) (void*) event.parameterl () ;

request->run () ;
request->removeRef () ;
return true;

)
}; // ServiceHandler
/ * -------------------- ServiceThread : : run ----------------------
I This static member function executes on the service thread. I
I It is passed the ServiceThreadData as input. We create an I
I object window, post the signal (to tell the thread that I
I started this service thread that it's now ready) , and I
I process user-defined events that come into that object I
I window. I
I.I

I When the owner cancels this thread (by posting a WM_QUIT, I
I most likely via IThread: :stopprocessingMsgs) , we delete the I
I argument ServiceThreadData.
void ServiceThread :: run (void *arg) {

ServiceThreadData
data = (ServiceThreadData*) arg;

data->ob].Win = new Iobjectwindow;
data->objwin->setAutoDeleEeobject (true) ;
data->signal . signal () ;
ServiceHandler

handler(data->objwin) ;
IThread: : current () .processMsgs () ;

)

514 Power GUI programming with visualAge for c++

Using a Signal
You might notice that we use a Signal object to synchronize the code in the ServiceThread
constructor, which executes on the client thread, and to synchronize the code that creates the
object window, which runs on the secondary thread. Basically, we need to suspend the thread
that creates the service thread until the service thread is ready to process requests. If we
didn't, a call to the service thread's postRequest member function might fail, perhaps
catastrophically, because the object window might not exist yet.

Event semaphores handle this situation. The Signal class meets our needs perfectly.

Using User-Defined Events
In the ServiceThread implementation, the use of the UserEvent and UserHandler classes is
noteworthy. We used these objects in previous examples to handle the passing of results back
to the primary thread. Our ServiceThread objects also need this capability to post requests to
the secondary thread' s object window.

Although Open Class Library provides the Iobj ectwindow class, it does not provide a portable
means of sending such windows user-defined events or of handling such events. The
UserEvent and UserHandler classes solve this problem. These classes eliminate the need to
write nonportable code that obtains the proper system-dependent WM_USER values and also offer
a higher-level interface for handling user-defined events.

User-Defined Event and Handler Classes - thread\userevt\userevt.hpp
class UserEvent : public IEvent {
public :
/ * -------------------- Cons truc tor /Des truc tor ----------------
I Provide these attributes when creating a user event:
I o An ID (which is ultimately added to WM_USER)
I o Event parameter 1
I o Event parameter 2
I

I Within a handler, construct the UserEvent from the
I IEvent received in your dispatchHandlerEvent function.
I Most likely, you let the UserHandler objects take care of
I that for you.

/

UserEvent (unsigned int id = 0,
const IEventparalneterl &mpl = 0,
const IEventparameter2 &mp2 = 0)

UserEvent (const IEvent &genericEvent) ;
~UserEvent ();

------------------------ Attributes -------- ~

I

I

(

I

I

I

I

1

I

/

I This function returns the user-clef ined event ID for this
I event object. Typically, you call this from within your
I UserHandler-derived classes' handleuserEvent override to
I determine the particular event that has occurred.
unsigned int

userEventld () const;

I

I

(

I

/

Cfe¢pfe7.20 Applications and Threads 515

/*---------------------Posting/Sending-----------------
I Use these functions to post or send user-defined events
I to a window.

void
postTo (const IwindowHandle &window) const;

unsigned long
sendTo (const IwindowHandle &window) const;

/*------------------------Utilities----------------
I Use this function to obtain the base user event ID.
I This is required to implement UserHandler objects.
static unsigned long

baseld ();

private :
UserEvent (const UserEvent &) ;
operator= (const UserEvent &) ;

}; // class UserEvent
class UserHandler : public IHandler {
protected:
/ * ------------------ Cons trutors /Des tructor --------------------
I This is an abstract base class for your user-defined event I
I handlers. Your derived class must provide the base class I
I with the user-defined event identifier (or range of I
I identifiers) that your handler is interested in. I

UserHandler (unsigned int id = 0) ;
UserHandler (unsigned int low, unsigned int high) ;
~UserHandler () ;

/* ---------------------- Event Handling ------------------------
I Override this to handle user-defined events of interest. I-- * /
virtual Boolean

handleuserEvent(UserEvent &event) = 0;
virtual Boolean

dispatchHandlerEvent (IEvent &event) ;

private iunsigned int
low,
high;

}; // class UserHandler

Timers
The main idea of this chapter thus far has been to tell you how to use additional threads of
execution to enable your applications to get work done while still providing timely response to
user input events. In most of the example programs, the primary thread has called
ICurrentThread: :processMsgs and is consequently processing window events, that is, user
input. Secondary threads are used to process something, such as to calculate pz. to a specific
number of digits, while the primary thread continues to handle user input.

The primary thread in such scenarios spends most of its time doing nothing except wait for the
next user input. In some cases, you might want to take advantage of this otherwise wasted time
and put the primary thread to use while waiting for a user to provide some input. You can use

516 Power GUI programming with visualAge for c++

the same technique to do work that has to be done on the primary thread or can more conve-
niently be done on the primary thread, while still retaining timely response to input from a
user.

To do this, use the support that the Windows and OS/2 operating systems provide for
automatically generating periodic events. These events are posted and handled just like
normal window events generated by user input. This topic is related to threads because you
can use these fz.7#er eve7®ff to enable your program's threads to do work while they would
otherwise be idle waiting for user input.

Open Class Library encapsulates these timer events and the handling of them with the class
ITimer. You work with ITimer objects in much the same way you work with IThread objects.
You specify on the timer what code you want executed when the timer event occurs. You do
this by using an ITimerFn object, which is similar to the IThreadFn objects that IThread uses.
Instead of overriding the run member function, override the timerExpired member function of
class ITimerFn.

You also have ITimerMemberFn and ITimerMemberFno class templates to assist in running C++
member functions when timer events occur. The former runs member functions that take one
argument: the identifier of the timer that has gone off. The latter runs member functions that
take no arguments.

The example program thread\threads\thread.cpp uses an ITimer object to increment the
counter for that program' s primary thread, as follows:

Example of use of ITimer - thread\threads\thread.cpp
/ * ---------------------- Thread : : Thread -------------------
I The constructor requires the container control that the
I thread is to be added to and a f lag used to designate the
I primary thread.
Thread : : Thread (IContainercontrol &cnr, Boolean primary)

: IContainerobject (ThreadData: :name()
primary ? THREAD1

// Create hidden data members.
THREADS) {

data = new ThreadData(cnr) ;
// Start thread of execution (if necessary) .
if (primary) (

data->flags I = isprimary;
data->thread = new IThread(IThread: :current()) ;
ITimer

timer (new ITimerMemberFno<Thread> (*thig ,
Thread: :timerTick)) ;

) else (
data->thread = new IThread((IThread: :OptlinkFnptr)run,

this) ;
// Secondary threads run at idle time (by default) .
data->thread->setpriority(IApplication: :idleTime,15) ;

)
// Refresh container column data.
this->threadld = data->thread->id() .asstring() ;
this->refreshlnfo () ;
// Add container object to container and refresh it.
cnr.addobject(this) .refresh() ;

I

I

I

/

Cfoa!pfe7.20 Applications and Threads 517

/* -------------------- Thread: : timerTick -----------------------
I This gets called on the primary thread. Call performAction. I-- * /
void Thread :: timerTick () {

performAction () ;
)

Conclusion
In this chapter, we have described the basics of the Windows and OS/2 processes and threads,
and have explained why your applications need to exploit them. To use threads effectively,
you need to follow these steps:

1. Identify the portions of your application that can and should be executed on separate
threads. These functions usually fall into one of the following two categories:

Functions that perform input and output. Moving this code to another thread
enables your application to perform other tasks while waiting for that input or
output to be completed.

Actions that would delay servicing of your application's message queue. Run this
code on another thread so that your main thread can continue to service the
message queue. This is essential in the OS/2 operating system so that the users can
transfer control to another OS/2 application while your application is performing
lengthy tasks.

2. Structure your application so that you can start the threadable portions identified in the
previous step on a separate thread using IThread: : start.

3. Use Open Class LibraryJs thread synchronization support to maintain the integrity of
your application' s data in a multithreaded environment.

Chapter 21

Direct Manipulation

Describes Open Class Library classes that you can use to add direct-manipulation
support to your applications
Describes the IDMHandler, IDMS ourceHandler, IDMTargetHandler, IDMltem,
IDMcnrltem, IDMMLEltem, IDMEFltem, IDMToolB arltem, IDMTB arButtonltem,
IDMlmage, IDMTargetEvent, IDMTargetDropEvent, IDMS ourceDiscardEvent,
IDMS ourceEndEvent, IDM0peration, IDMS ourceoperation, IDMTargetoperation,
IDMltemprovider, IDMltemproviderFor<>, IDMRenderer, IDMS ourceRenderer,
and IDMTargetRenderer classes
Read Chapter 4 before reading this chapter.
Chapters 9 and 13 cover related material.

This chapter describes how you can use the direct-manipulation support classes of Open Class
Library to provide your users with the ability to directly manipulate the objects they work with
in your applications. Another commonly used term that describes direct manipulation is drag
and drop. Both terms are used interchangeably throughout this chapter.

Do It Directly
Distinguishing features of the OS/2 operating system and Windows desktops are their
respective object-oriented user interfaces. We described the benefits of the user-interface
styles in Chapter 2, "Object-Oriented User Interface Fundamentals."

An important element of both desktops' interface is support for dz.recf mcI7®z.pz4Jczfz.o7®, which
permits users to operate directly on the objects whose icons appear on the desktop.

Users will likely judge OS/2 and Windows applications based on the degree to which the
interfaces support direct manipulation. If you want your application to stand out, your users to
feel comfortable when using your application (along with the other OS/2 or Windows applica-
tions they will use), you need to provide direct manipulation in your applications.

Because Open Class Library provides C++ classes, you can easily add direct-manipulation
support to your applications.

519

520 Power GUI programming with visualAge for c++

Drag and Drop in a Nutshell
The design of Open Class Library's direct-manipulation support provides as much default
behavior as it can. As a result, it is extremely easy to include drag-and-drop support in your
application without having to understand any of the underlying theory of the design.

Here' s all you need to provide default drag-and-drop support to your container controls:
#include <idmhndlr. hpp>
IDRElandler : : enableDragDropFor (pcnr) ;

pcnr is a pointer to your IContainercontrol object.
This gives users the ability to move and copy container objects within this control and
between other containers in the same application.

Enabling Drag and Drop
For your application to support drag and drop, you need to attach handlers to your windows to
process direct-manipulation requests. Open Class Library provides two handler classes and a
common base class to accomplish this task.

Unlike most of the other handler classes that Open Class Library provides, the direct-
manipulation handlers are more than just skeletons on which you build your handler logic.
Instead, these handlers implement each of the handler virtual functions to compose a complete
functional framework that you use as-is or extend via other means. In other words, you do not
derive from these handler classes. Instead, you derive from the other classes in the direct-
manipulation framework. This framework makes this task simpler than handling direct
manipulation at the API level, which is what these handlers do.

Because the standard handler classes are sufficient for most applications, the direct-
manipulation framework can create the appropriate handler objects and automatically attach
them to your window when you need them. Thus, you can easily enable your windows for drag
and drop.

Enabling Windows for Drag and Drop
Most of the time, especially in the case of containers, you want your windows that support drag
and drop to be used as both the source and target of direct-manipulation operations. This
requires that you attach a source and target handler to the window. You attach the de/clz4Z£
foz47ice fecIJ®dJer and de/¢z4Jf fczrgef fecz7®dJer to a window by using the enableDragDropFor static
member function of the class IDRElandler. We describe the default handlers later in the topic
"The Default Source and Target Handlers."

For example, the following code enables a user to drag and drop container objects in the
container control pointed to by pcnrctl:

IContainercontrol*pcnrctl ;

IDRElandler: : enableDragDropFor (pcnrctl) ;

Cfoa!pfer2J DirectManipulation 521

There are five overloaded versions of IDMlandler: :enableDragDropFor that accept the
following argument types:

IContainercontrol*

This version of Open Class Library' s direct-manipulation framework can exploit the fact
that the window is a container control. The default handlers relieve you of doing some
of the additional work required to set up your window for drag and drop. The default
behavior causes the container objects to be dragged. These generic container items
provide basic drag-and-drop behavior. If this behavior is enough, you do not need to do
more.

IMultiLineEdit*

This version of enableDragDropFor exploits the fact that the window is a multiline edit
control and automatically takes the necessary steps to permit a user to directly
manipulate the window's contents as text.

IEntryField*

This version sets up the argument entry field so that its contents can be dragged and
dropped.

IToolBarButton*

This version provides the necessary support for the dragging and dropping of tool bar
buttons within a tool bar or between tool bars in the same application.

Iwindow*

This version of the function handles all other types of Iwindows. When you use this
version, take the additional steps required to enable the window for drag and drop.
Specifically, you must attach an item-provider object to your window, as we describe in
the topic "Providing Items to be Dragged and Dropped" later in this chapter.

Why Windows Aren't Handlers
It is worth noting that there is only one source and one target direct-manipulation handler,
and you attach the same handler to all windows enabled for drag and drop.

The significance of this is that it demonstrates the value of separating the desktop event-
handling behavior, from the window's behavior. Rather than deriving from each control to
make a drag-and-drop control, Open Class Library can instead implement the handling of
direct-manipulation events just once and then reuse this code over and over again.

Thus, you can see the value of the encapsulation that C++ libraries provide in general and
the exploitation of those features by Open Class Library.

522 Power GUI programming with visualAge for c++

Enabling Source Windows
Sometimes, you might want to use a window solely as the source for direct-manipulation
operations. In such cases, you need to attach to the default source handler to the window. Do
this by calling one of the overloaded versions of the enableDragFrom static member function
of class IDMHandler. We show an example of this in the following programmable menu
buttons example. Here is the code that enables dragging from the menu bar's submenus. Note
that this example only runs in the OS/2 operating system due to the differences in the menu
support on the two platforms.

Enabling Menu Drag - dm\menudrag\menudrag.cpp
IDRElandler: : enableDragFrom(&menuBar) ;

As with enableDragDropFor, enableDragFrom is also overloaded to distinguish between
containers, multiline entry fields, entry fields, and other windows, such as a custom control.
Note that if you are enabling other windows you also need to attach an item provider.

Enabling Target Windows
At other times you might want to use a window solely as the target for direct-manipulation
operations. In this case, you need to attach only the default target handler to the window. An
example of such usage might be a control that represents a device, such as a printer object.

You enable a window to be a target only by calling one of the overloaded versions of the
enableDropon static member function of class IDMIIandler. We provide an example of this in
the following drag information viewer example as well as in the programmable menu buttons
example. The code that enables dropping on the information viewer follows:

Enabling Drop on Viewer - dm\dragview\dragview.cpp
// Replace default target renderer with the viewer target renderer.
DragviewTargetRender

targetRenderer;
IDMRenderer: : setDefaultTargetRenderer (targetRenderer) ;
// Enable the ELE as a target.
IDMIIandler: :enableDropon(&mle) ;

// Construct and set the item provider for the drag viewer item.
IDMltemproviderFor< Dragviewltem >

i temprovider ;
mle.setltemprovider(&itemprovider) ;

As with the other drag-and-drop enabling functions, enableDropon is overloaded to distinguish
between containers, multiline entry fields, entry fields, tool bars, and other windows. If you
are enabling other windows, as in the example, you also need to attach an item provider.

Cfo¢pfer2J DirectManipulation 523

DirectlManipulation Items
Objects of Open Class Library class IDMltem represent the objects being dragged and dropped
in your applications. IDMltem is the most important component of the direct-manipulation
framework. Almost all of the code you write to support direct manipulation is related to
implementing your application-specific and control-specific classes derived from IDMltem. As
you learn in subsequent topics, there are other objects that participate in direct manipulation:
handlers, events, and a variety of objects used to implement the underlying desktop behavior.
Although these other objects play important roles in getting direct manipulation to work, they
are just infrastructure that permit the important objects to be manipulated. Those objects are
IDMltemobjects.

The derivation of class IDMltem and its derived classes that Open Class Library provides are
shown in Figure 21-1. IDMltem is the base class that defines the general behavior of all direct
manipulation items. Although there are six IDMltem-derived classes, only five are portable.
The sixth, IDMMenultem, is an OS/2 operating system-only implementation. The five derived
classes that are portable provide specializations of the base class, which represent the objects
being dragged and dropped on five specific controls.

We examine some of these derived classes to show you how to develop your own item classes.
In addition, we discuss the item classes used to implement a set of four direct-manipulation
example programs.

Figure 21-1. Direct Manipulation Item Classes.

Item Attributes
In this section, we discuss the behavior of direct-manipulation items and show you how to
create derived item classes for your applications. However, before we do that, you need to
know more about the various attributes whose values characterize these objects. We discuss
those item attributes in this section.

524 Power GUI programming with visualAge for c++

type
Direct-manipulation items require an explicit attribute that identifies the type of the item.
Although your items are objects of C++ classes and those classes designate their type, you
need another mechanism. The reason is that items are passed from window to window and
application to application by generic desktop mechanisms that do not support the C++ type
System.

Thus, direct-manipulation items have a type attribute. The value of this attribute is a sequence
of character strings; each is the name of some type that the item is an element of. An item can
be of many types. Usually, you order the types from most specific to least specific. For
example, an item representing a file might have the types "C Source File," "Plain Text File,"
and "File." The first type in the list is the one that fully describes the nature of the item.

IDMltem provides a complete set of functions that you can use to maintain an item's types.
However, you usually specify the item's type or types when you invoke the base IDMltem
constructor. You also use these functions to query the item type of dragged or dropped items if
your application supports the dropping of different kinds of items on your windows.

Open Class Library defines constants for a fixed set of type values. These have the type
IDM: :Type and are declared in IDMCOMM.HPP. Most of these types are general-purpose types
and are compatible with the system-supported types.

At the desktop level, your item's type is represented by a character string consisting of all your
supported types, separated by commas. Open Class Library masks this implementation detail
to a considerable extent. You can instead treat your item's types as a collection of discrete
type strings. The IDMltem functions handle decomposing and reconstructing the combined
type string, which the desktop requires.

If your direct-manipulation items represent files, the convention is to match the item type to
the file's content. If your items represent C++ objects, make the item's type value the same as
its C++ class name.

Rendering Mechanisms and Formats
The terms re73derz.739 7#ecfecz#z.Sm and re7®derz.#g /ormczf refer to aspects of the protocol your
application uses to transfer direct-manipulation items from the source to the target windows,
and they refer to the operations you apply to the items in the process.

In terms of object attributes, the rendering mechanisms and formats identify the set of
protocols your items and the associated renderer objects support. We discuss the details of
those protocols at the end of this chapter. For the most part, the other direct-manipulation
frameworks classes that Open Class Library provides handle implementing the protocols. All
you need to do is specify whether your objects can be transmitted using them. We discuss the
important rendering mechanisms and formats (RMFs) and show you how to choose the ones
you need for your application.

You rarely work with rendering mechanism names independently of rendering format names
and vice-versa. Most of the IDMltem functions that you use to maintain RMFs accept two
arguments: a mechanism and a format. Most are overloaded so that you can pass a combined

Cfeapfer2J DirectManipulation 525

RMF string. IDMltem also has static member functions that you can use to manipulate the
actual RMF strings that the direct-manipulation support uses.

You do not need to remember the actual character strings that define the system's conventions
for rendering mechanism and format names. Open Class Library provides constants for these
as static members of the class IDM. For example, to add text file support to an item, you would
add this code:

anltem.addRMF(IDM: :]rmFile, IDM: :rfText) ;

We describe RMFs that the default Open Class Library's handlers and renderers support in the
following list. We use the convention <rm,rf> to designate the combined RMF that uses
rendering mechanism "rm" and rendering format "rf."

<rmLibrary, rFTorThisprocess()>

This is an RMF that Open Class Library provides for doing efficient intraprocess
dragging and dropping. The rendering format name includes the process identifier. The
library-provided renderers exploit intraprocess mechanisms if they detect that the
source and target windows are in the same process.

Note that the rendering format is not a constant. Instead, you construct the format string
by calling the static member IDMltem: : rfForThisprocess.

<rmLibrary, rfText>

Open Class Library provides this RMF to enable efficient dragging and dropping
between separate processes in certain circumstances. The protocol used to transmit the
item using this RMF works if the item contents are less than 256 bytes in length and do
not contain embedded nulls. Use IDMltem: : generatesourceName to determine whether
your item can support this RMF. See the dm\Iboxdrag program on the examples disk for
an example.

<rmLibrary, rfsharedMem>

Open Class Library provides this RMF to enable general-purpose rendering of an item
between processes. You need to use this RMF only if your item cannot support
<rmLibrary, rfText>. Use this RMF to transfer arbitrary item contents between any two
processes.

<rmFile, *=

Use the rendering mechanism rmFile if your items represent, or potentially represent,
files. Usually, you need to add support for this RMF to your item to support dragging to
or from the desktop.

Your item has additional responsibilities when it supports the file-rendering mechanism,
such as setting the item's source file name, source container name, and attributes.
Because <rmLibrary, rfText> also uses these attributes, this file-rendering mechanism
is mutually exclusive with that RMF.

526 Power GUI programming with visualAge for c++

<rmDiscard, rfunknown>

This is the RMF your item must support for a user to drag it to the OS/2 desktop's
shredder.

This RMF is supported only in the OS/2 operating system.

<rmprint, *=

This is the RMF your item must support for a user to drag it to an OS/2 desktop printer
object. To print, you need to know how to use the OS/2 Graphics Programing Interface
(GPI) functions. Showing you how to do this is beyond the scope of this book. You can
find out how to print your items using drag and drop by referring to the programming
guides and references in the Developers Toolkit for the OS/2 operating system.

This RMF is nonportable.

You work with your items' RMFs primarily when you construct the item. Usually, you call
IDMltem: : addRMF to add each of your items' supported RMFs. You can see how this is done for
each of the example drag-and-drop programs that we present in this chapter by studying the
item constructors in those programs. We show these constructors in a later topic.

To support a given RMF, you need to do more than call addRMF for it. For the rmLibrary RMFs,
you must set the item's contents. The next section shows you how to do this. To support
rmDiscard, or rmprint, override the IDMltem: : sourceDiscard and IDMltem: : sourceprint
member functions in your derived class. To support rmFile, set your item's source file name,
source container name, and attributes. We expand on this subject in the topic, "File Name and
Path.„

1

Contents
Open Class Library adds a pair of generic attributes to direct-manipulation items that make up
the item's coJ®fe7!£s. One attribute is an Istring that holds some representation of the item.
You get and set this attribute by calling the functions IDMltem::contents and
IDMltem: : setcontents, respectively. The other attribute is a void* value you get and set via
the functions IDMltem : : obj ect and IDMltem: : setob]. ect.

Both attributes are transmitted from the source direct-manipulation item to the target item
when you use any of the three rmLibrary rendering mechanisms and formats. Usually, you use
the object attribute (pointer) when a user drags and drops your items within a single process.
This is because the storage the object pointer points to is addressable only within the same
process. Open Class Library renderer objects transfer the item content string via shared
memory to the other process. Thus, you can use the string contents with the rfText and
rfsharedMem rendering formats, too. Because the Istring contents can hold arbitrary data,
this mechanism provides you with a general-purpose interprocess communication technique to
use for drag and drop.

The sample item constructors that we show in this chapter demonstrate how to set your item
contents and then access the contents when a user drops the item.

Cfeapfer2J Direct Manipulation 527

File Name and Path
If you want to enable the target window to render the file, set the Soz4rce 73¢J»e and soz4rce
co7!£¢z.#er #czrme attributes at the source window. Set these attributes to null strings if you want
to force the target to rely on the source side for rendering. In this case, the target sets the
£¢rge£ 7®¢rme to notify the source where to render the file to.

Set these attributes whenever you add an RMF with the rmFile rendering mechanism. Usually,
you do this in your item' s constructor.

Supported Operations
Users can request any one of three distinct drag-and-drop operations: move, copy, or link.
They indicate which operation they want by using augmentation keys, the Shift and Ctrl keys,
before or during dragging of items. Set the supported operations attribute of your items to
indicate which of these operations are valid for your item. If users request an unsupported
operation or if they drag to a window that does not support the selected operation, the drag
operation fails. The drag indicator then switches to the "not allowed" icon in that case.

Specify the operations that your item supports when you construct it. Open Class Library's
direct-manipulation framework verifies the requested operation. You do not usually need to be
concerned about the operation after you set the attribute at construction time. We discuss
additional details of drag operations later in this chapter in the topic "Move, Copy, and Link."

inage Is Everything
The last item attribute we discuss is the drczg I.7#¢ge. This is the icon that appears when a user
drags your item. You can assign an image to each of your items. The image can be any of the
following ones:

• An icon or pointer that you identify as an icon resource or that you identify by an
IPointerHandle.

A bitmap that you identify as a bitmap resource or that you identify by an
IBitmapHandle.

An array of points that define a polygon that direct manipulation draws to represent the
item as it is dragged. Note that only the OS/2 operating system supports this image
format.

You work with direct-manipulation images using objects of class IDMlmage. Items support the
functions IDMltem: : image, IDMltem: :haslmage, and IDMltem: : setlmage that you can use to
query, and set an item's drag image. By default, items do not have an image associated with
them. Call setlmage to give them one.

The direct-manipulation framework normally does not use images for individual items.
Instead, it draws a generic nySfeJ# z.fflclge. Call the function IDMOperation: : setlmagestyle to
have the item images drawn. Apply the function to the source operation object, which we
discuss in a later topic. This object is readily accessible when you construct your source

528 Power GUI programming with visualAge for c++

direct-manipulation items. Whenever you use IDMltem: : setlmage, use code similar to the
following:

anltem->setlmage(anlmage) ; // Set item image.
srcop->setlmagestyle(IDM: :stack3AndFade) ; // Ensure it's used.

The programs we present in this chapter have examples of this.

Item Behavior
Open Class Library handlers translate the events that transpire during drag and drop into
virtual function calls to your direct-manipulation items. In this topic, we discuss the most
significant of these events and show you how to implement the corresponding functions.

You can readily identify the virtual functions of IDMltem that you need to override in your
derived classes. All of the functions that the handlers and renderers call in response to
significant source events have names that begin with "source": sourceDiscard, sourceEnd,
sourceprepare, sourceprint, and sourceRender. The functions that the framework calls to
signal events at the target end have names that begin with "target": targetDrop and
targetEnd.

We discuss which of these functions you have to override most often in the following topics.

The Drop
Your item's override for the targetDrop function is called when a user drops your item on a
window that can accept it. You almost always override the function because dropping would
have no effect, otherwise. Remember that the object to which Open Class Library framework
applies this function is the target item that resides in the target process. Your target window
generally constructs this item from the source item that a user dragged over it. We discuss this
construction process in detail in a later topic.

The argument to the targetDrop function is the target drop event, which is of type
IDMTargetDropEvent. Normally, your item gets the target window from the event and adds
itself to that window. Because you are using that window to show some object, you might
instead add the item to the underlying object. Depending on the nature of your application,
you might need to do both.

Your.override returns true if you complete the drop processing for this item, or it returns
false if the processing failed. The return value determines which renderer completion code,
IDM: targetsuccessful or IDM: targetFailed, is returned to the source.

Here is the targetDrop implementation for the spin-button example program's
SpinButtonltemclass:

Cfeapfer2J DirectManipulation 529

SpinButtonltem: :targetDrop -dm\spindrag\spinitem.cpp
Boolean SpinButtonltem : :

targetDrop (IDMTargetDropEvent& event)
(
// Add dropped text to the spin button.
ITextspinButton*pspin = (ITextspinButton*) (event.window()->parent()) ;
pspin -> addASLast(this->contents()) ;
pspin -> spinTo(this->contents()) ;return true;
)

Next, we show the implementation of the ListBoxltem's targetDrop function. It is more
complicated because it handles removing the target emphasis that we are drawing in the list
box. We discuss drawing target emphasis later. This example also shows you how you access
the target operation to determine what operation is being performed and to determine if the
source and target windows are the same. If so, we go to the source item, which we can do
because it exists in the same process, and tweak it. Then, when the source version of the item
detects completion of the move, it removes the correct item. You might need to look at the
complete source for the list-box item class to fully understand the implementation of this
function.

ListBoxltem: : targetDrop -dm\lboxdrag\lboxitem.cpp
Boolean ListBoxltem : : targetDrop (IDMTargetDropEvent& event)

(
IMODTRACE_DEVELOP (''ListBoxltem: : targetDrop") ;
IListBox*tgtLB = (IListBox*) (event.window());

// Turn off target emphasis.
Li s tBoxl temprovider*provider = (ListBoxltemprovider*) (tgtLB->itemprovider()) ;
provider -> drawEmphasis (tgtLB, event, TgtLocation(after,nil));

// Calculate where the object is dropped.
TgtLocation

dropLoc = targetLocation(tgtLB, event.dropposition()) ;
// Add or replace the list item, based on drop location.
switch (dropLoc.type)

(
case before:

tgtLB -> add(dropLoc.index, contents()) ;
break;

case on:
tgtLB -> setltemText(dropLoc.index, contents()) ;
break;

case after:
tgtLB -> add(dropLoc.index + 1, contents());
break;

)
// If source and target are the same, and the item is moved
// forward, update source index.
IDMTargetoperation : : Handle

tgtop = IDMTargetoperation: : targetoperation() ;

530 Power GUI programming with visualAge for c++

if (tgtop->sourcewindow() == event.window()
&&
tgtop->operation() == IDMOperation: :move)

(
IDMltem: : Handle

srcltem = IDMltem: :sourceltemFor(tgtop->item(1)) ;
unsigned

srclndex = (unsigned) (srcltem->object()) ;
if (dropLoc.type != on

&&
dropLoc.index < srclndex)

srcltem->setob].eat((void*) (srclndex + 1));
)return true;

)

Shredding
This capability is available in the OS/2 Operating Systeth only. When a user drops your item
on the OS/2 desktop shredder object, Open Class Library's direct-manipulation framework
invokes your source item's sourceDiscard function. This occurs only when your item
supports the rmDiscard rendering mechanism. Override sourceDiscard to remove the item
from the source window and, if necessary, from the underlying object model.

The argument to this function is the IDMSourceDiscardEvent. Use this event in the same way
that you use the events in the other item functions: to access the source window. The following
example shows the implementation of the sourceDiscard function in the sample classes that
support shredding.

ListBoxltem: :sourceDiscard -dm\lboxdrag\lboxitem.cpp
Boolean ListBoxltem : :

sourceDiscard (IDMSourceDiscardEvent& event)
(
IListBox .

srcLB = (IListBox) (event.window());

// Get index of the dragged item.
unsigned

index = (unsigned) (this->object());

// Delete that item.
srcLB->remove(index) ;

// Mark deleted so sourceEnd doesn't delete it again.
setobject((void*)nil);
return true;
)

Wrapping Things Up
When the objects at the source and target ends of the direct manipulation operation have
exchanged all of the window events that they need to, each window receives a final completion
event. These events generate calls to virtual functions of your direct-manipulation items.
Override these functions to take care of any cleanup you need to do when the drag and drop is
completed.

Cfe¢pfer2J DirectManipulation 531

Open Class Library's direct-manipulation framework invokes your source item's sourceEnd
function. This occurs when the target item has completed its handling of the drop in its
targetDrop function. You normally override sourceEnd to complete move operations or,
perhaps, to complete link operations. The standard Open Class Library processing of the
IDMSourceEndEvent event handles freeing most resources, such as the source operation and
source items.

The argument source-end event provides an indicator to determine if the target succeeded in
handling the drop. If not, you usually do not have to do anything. But, if you do, complete the
operation at the source end of the direct-manipulation operation.

Here is the implementation of the sourceEnd function for the list-box example:

ListBoxltem: : sourceEnd -dm\lboxdrag\lboxitem.cpp
Boolean ListBoxltem : : sourceEnd (IDMSourceEndEvent& event)

(
IMODTRACE_DEVLOP ("ListBoxltem: : sourceEnd") ;
// If the move is completed and not sent to the shredder,
// delete the source item.
if (event.wasTargetsuccessful ()

&&
(unsigned long) (object()) != nil

&&
event.dragltem() ->sourceoperation() ->operation() ! =

IDMOperation: : copy)
(
unsigned

index = (unsigned) (this->object());
((IListBox*) (event.window())) -> remove(index);
)return true;

)

Your item's targetEnd function gets called when you use source rendering and the source has
completed its processing in its sourceRender function. You do not use this style of rendering
often, so we do not discuss the implementation of your targetEnd function in any more detail
here.

The Source and Target Operations
Open Class Library maintains two objects to describe the active direct-manipulation
operation. One object exists in the source process, the so#rce aperczfz.oJ®. Another object
exists in the target process, the fczrgef aperczfz.o#. Each of these objects has attributes that
describe the active operation as a whole. Each operation object maintains a collection of
the items that a user is dragging.

Your items need to access the operation objects to find information, such as the source and
target window handles, the selected operation (move, copy, or link), and the mouse position
of the drag or drop.

We cover IDMOperation and its derived classes in detail later in this chapter.

532 Power GUI programming with visualAge for c++

Providing Items to Be Dragged and Dropped
In the preceding section, we described the basic attributes of your direct-manipulation items.
We also discussed how you tailor the behavior of your items to implement direct-manipulation
support in your applications. Now, we begin the task of constructing your items and giving
them the chance to apply that behavior. First, you learn to create direct-manipulation items.

Item Providers
Consider what happens when a user presses the mouse button and begins a drag operation.
This action generates some conventional desktop mouse events that the system-provided
windows translate to drag-and-drop events. The source direct-manipulation handler that Open
Class Library provides and attaches to your window processes those events.

At this point, the direct-manipulation framework must do something specific to the application
and window that a user is dragging from. Because the same source handler is being used for
every window in your application, Open Class Library handlers cannot determine the details of
the objects being shown in your windows: the source handler does not determine what type of
direct-manipulation item to create.

In fact, the source handler goes to the source window to obtain the items. However, it does not
do so directly. Instead, it uses an I.feJ# p7iovz.der object, which is attached to the window. This
object is of a type that you derive from IDMltemprovider. You attach one of these objects to
your window in much the same way that you attach handlers.

Item-Provider Functions
The class IDMltemprovider has functions that you inherit or override to provide all of the
direct-manipulation support that is tailorable on a per-window basis. The more important of
these functions are those that provide the direct-manipulation items at both the source and
target sides of the drag-and-drop operation.

providesourceltems
Open Class Library' s direct-manipulation source handler calls this function when a user
begins a drag-and-drop operation. Implement this function so that you construct the
appropriate direct-manipulation items and add them to the source operation passed as
input to this function. We provide detailed guidelines on how to implement this function
in the topic "Providing Source Items" later in this chapter.

Cfo¢pfer2J Direct Manipulation 533

provideTargetltemFor
Open Class Library's direct-manipulation target handler calls this function when a user
first drags an object or objects over the target window. It is called once for each item
being dragged. Implement this function so that you construct the appropriate direct-
manipulation item and return it. The target handler replaces the generic IDMltem stored
in the target operation with the returned item. We provide detailed guidelines on how to
implement this function in the topic "Providing Target Items" later in this chapter.

The item-provider class also has virtual functions that correspond to other behaviors that you
might want to tailor for each of your windows. These IDMltemprovider functions are
provideEntersupport, provideLeavesupport, and provideHelpFor. We discuss how you
implement the first two of these in the topic, "To Drop or Not to Drop," later in this chapter.

Attaching Item Providers to Your Windows
Attach an I.fen provz.der to windows that are enabled to be the source or target of a direct-
manipulation operation by calling the function Iwindow: : setltemprovider. The argument is
a pointer to an object of some type that you derive from the class IDMltemprovider. The
source and target handlers subsequently access the item provider by using the function
Iwindow: : itemprovider. It returns a pointer to the item provider previously set, or it returns 0
if no item provider is attached to the window.

The main job of the item provider is to furnish objects representing the objects being dragged
or dropped. If you have reasonable defaults for the contents of certain controls, you can attach
default item providers to windows of type IContainercontrol, IMultiLineEdit,
IEntryField, IToolBar, and IToolBarButton. In fact, Open Class Library's direct-
manipulation framework assigns item-provider objects to do that if such windows are enabled
for drag and drop and do not have a user-supplied item provider.

You can use your own item-provider object for windows of these types. Just call
setltemprovider to attach an alternative one. You might do this for an entry field that a user
uses to enter a date. The default for an entry field is to treat its contents as text. In this case,
you might want to have a user drag and drop dates rather than text.
You must use your own item-provider object for windows that are not containers, multiline
edit controls, or entry fields. There is no other way for Open Class Library's direct-
manipulation framework to determine what items to drag and drop.

The IDMltemproviderFor Class Template
Open Class Library provides a class template, IDMltemproviderFor, that you can use to
generate item-provider classes that correspond to your application-specific items. The
template' s argument is the name of your item class.

This class template overrides the key IDMltemprovider virtual functions and routes the
requests to corresponding functions of your item class. IDMltemproviderFor<Item> processes
those functions as follows:

534 Power GUI programming with visualAge for c++

providesourceltems
The class template implements this function by invoking the static member function
generatesourceltems of the template argument class.

provideTargetltemFor
The class template implements this function by constructing a new item object of the
template argument class. The item is constructed from the generic IDMltem created by
the target operation.

The intent of this class template is to automate (to some extent) the repetitive logic of most
item-provider classes. In theory, by routing item-provider requests back to your item class, the
template lets you isolate your code in a single class. In practice, however, you often need to
override other IDMltemproviderFor virtual functions, especially provideEntersupport.

You can still use this class template even if you need to extend the generated template class.
To illustrate this, here is the declaration of the item-provider class that we use in the list-box
direct-manipulation example program. In the case of the simpler programs, which use
SpinButtonltems and Dragviewltems, you can use the standard template classes,
IDMl temproviderFor<SpinBut tonl tem> and IDMl temproviderFor<Dragvi ewl tem>.

ListBoxltemprovider Interface - dm\lboxdrag\Iboxitem.hpp
class ListBoxltemprovider

: public IDMltemproviderFor<ListBoxltem> {
typedef IDMltemproviderFor<ListBoxltem>

Inherited;
public :

ListBoxltemprovider (IListBox* 1istBox = 0) ;

virtual ListBoxltemprovider
&provideltemsFor(IListBox* 1istBox) ;

virtual ListBoxltemprovider
&drawEmphasis (IListBox* 1istBox,

IDMTargetEvent& event ,
const ListBoxltem: :TgtLocation& target) ;

virtual Boolean
provideLeavesupport (IDMTargetLeaveEvent& event) ,
provideEntersupport (IDMTargetEnterEvent& event) ;

private :
// Make operator private to prevent attaching to wrong control.
Li s tBoxl temprovider*operator & ();
);

Providing Source Items
In this topic, you learn how to implement your direct-manipulation-item classes'
generatesourceltem function. The IDMltemproviderFor class template' s implementation of
the function providesourceltems calls that static member function. The instructions we
provide are applicable regardless of which function you choose to implement.

Your implementation of whatever function you choose must complete the following three steps
to enable your items to be dragged from your source window.

Cfeapfer2J DirectManipulation 535

1. Create one or more objects of y,our direct-manipulation-item class.

2. Add the item or items to the source direct-manipulation operation that is passed as input
toprovidesourceltems/generatesourceltems.

3. Return true.

Constructing the Items
Create your direct-manipulation item on the heap by using operator new. This is because the
item objects need to exist long after you return from the function that creates them. IDMlteus
are reference-counted objects. The object that usually maintains a reference to them is the
source operation; it creates the reference to the item when you add it. This mechanism ensures
that the items persist until the operation completes.

Usually, you create the item using a constructor that you provide especially for that purpose.
All of the example programs we present here use this technique.

Adding the Items to the Operation
After you construct your item or items, add them to the source operation by calling
IDMSourceoperation: :addltem. Call this function from the item constructor or from the
providesourceltems or generatesourceltems function that constructs the items.

Setting the Return Code

generatesourceltems and providesourceltems return a Boolean indicator to indicate
whether a direct-manipulation operation can proceed. If you return false, then nothing
happens when a user presses the direct-manipulation mouse button and moves the mouse. The
effect is the same as if you had not enabled the source window for direct manipulation. You
might return false if a user had not selected any objects in the source window or if a user did
not begin the drag operation with the mouse positioned over a draggable object.

Examples of Providing Items
In this first example, we have a spin button as a frame extension on a simple editor application
that uses a multiline edit control as the client window control. We want to drag text from the
multiline edit control to the spin button and scroll through the spin-button elements looking
for text to be dragged back into the editor window. The spin button operates like a multilevel
clipboard; it is accessible using direct manipulation.

Here is how the spin-button component of this simple application provides source direct-
manipulation items :

536 Power GUI programming with visualAge for c++

Providing SpinButtonltems - dm\spindrag\spinitem.cpp
Boolean SpinButtonltem : :

generatesourceltems (IDMSourceoperation* srcop)
(
// Source item is object of this class.
IDMltem: : Handle

item(new SpinButtonltem(srcop));
// Add it to the source operation.
srcop -> addltem(item) ;
// Indicate an item is available to drag.return true;
)

SpinButtonltem : : SpinButtonltem (IDMSourceoperation* srcop)
: IDMltem(srcop, IDM: :text, IDMltem: :copyable I

IDMltem: :moveable)
(
// Support intraprocess drag and drop only.
this -> addRMF(rmfFrom(IDM: :rmLibrary,

rfForThisprocess()));
// Set item contents to selected spin button text.
IEntryField

pEF = (IEntryField) (srcop->sourcewindow()) ;
ITRACE_DEVELOP (PEF->selectedText ()) ;
this->setcontents (PEF->selectedText()) ;
)

In the next example, we provide source items when a user drags an item from a list-box
control. You can see in this case how we return false if no item is dragged (which happens if
the list box is empty or if a user drags from the end of the list). This example also shows how
you can test whether the RMF <rmLibrary,rfText> can be used.

Providing ListBoxltems - dm\lboxdrag\lboxitem.cpp
Boolean ListBoxltem : :

generatesourceltems (IDMSourceoperation* srcop)
(
IMODTRACE_DEVELOP ("ListBoxltem: : generatesourceltems ") ;
Boolean

result = false;
IListBox*srcLB = (IListBox*) (srcop->sourcewindow()) ;
// Get index of dragged item.
unsigned

index = sourcelndex(srcLB, srcop->position()) ;
if (index !'= nil)

(
//User not dragging from white space; add appropriate item.
srcop -> addltem(new ListBoxltem(srcop, srcLB, index));
srcop -> setlmagestyle(IDM: :stack3AndFade) ;
result = true;
)return result;

)

ListBoxltem : : ListBoxltem (IDMSourceoperation* srcop,
IListBox* srcLB,
unsigned index)

: IDMltem(srcop,
IDM: : text'
IDMltem: : moveable I IDMltem: :copyable,
none)

(
IMODTRACE_DEVELOP ("ListBoxltem: : ListBoxltem") ;

Cfea!pfer2J Direct Manipulation 537

// Item contents is the list-box's item text.
this -> setcontents(srcLB->itemText(index)) ;
// Item object is the item index.
ITRACE_DEVELOP(`'Selected text is " + srcLB->itemText(index)) ;

this -> setobject((void*)index) ;
// Try to use rfText.Istring

name = this -> generatesourceName() ,
rfs = rfForThisprocess () ;

if (name.length())
{ // Text fits; use rfText.
this -> setsourceName(name) ;
rfs += Istring(",") + IDM::rfText;
)

else
{ // Text doesn't fit; use rfsharedMem instead.
rfs += Istring('',") + IDM::rfsharedMem;
this -> setRequirespreparation() ;
)

ITRACE_DEVELOP("Rmfs is `' + rfs);

// Set up RIffs; we support dropping on shredder, too.
this -> setRMFs(rmfsFrom(IDM::]mLibrary, rfs));

#ifdef IC_PM
// We support dropping on the shredder in OS/2.
this -> addRMF(IDM: :rmDiscard, IDM: :rfunknown) ;

#endif
// Use text icon when a user drags the item.
IsystempointerHandle

icon(IsystempointerHandle: :text) ;
IDMlma9e

image(icon) ;
this -> setlmage(image) ;
)

Reusing Inherited Itemlproviding Logic
As more and more logic is added to functions that generate source items, you are more likely to
want to reuse this logic. However, the structure of the direct-manipulation item-providing
code makes it awkward to reuse these functions. The result of calling this code is that one or
more direct-manipulation items of a specific class are added to the source operation. The
problem is that the items are not of the right class; they are objects of your base class.
For example, you are using a list box to hold customer names. When a user drags an item from
your list box, you might want to drag Customerltems, not ListBoxlteus. However, if you
implement the Customerltem member function, generatesourceltems, so that it calls
ListBoxltem: : generatesourceltems, you add ListBoxlteus to the source operation. You can
fix that because the source operation object provides a convenient set of functions that you can
use to manipulate its items. You can replace those ListBoxlteus with Customerltems, as
follows:

class Customerltem : public IDMltem {
publ ic :

Customerltem (const IDMltem: :Handle& item)
: ListBoxltem(item)

(
//Extract customer name from contents
//and build the customer item.
)

538 Power GUI programming with visualAge for c++

static Boolean
generatesourceltems (IDMSourceoperation* srcop)

(
Boolean

result
if (result)

for (int i = 1;
i <= srcop->numberofltems () ;
i++)

srcop->replaceltem (i , new Customerltem (srcop->item (i))) ;
)

);

In addition to using replaceltem instead of addltem, Customerltem has a constructor that
accepts an object of the base item class rather than from the source operation.

This example shows how you can reuse an existing implementation of generatesourceltems.
This technique is particularly useful in generating specialized container objects when you add
direct-manipulation support to your detection of the dragging of a selected (versus nonse-
lected) object by calling IDMcnrltem: :generatesourceltems. After that, you iterate the
items, replacing each with items specific to your container.

Providing Target Items
In this topic, you learn how to provide objects of your item class at your target windows.

The situation is much different at the target window than at the source window. First, the
target items are created differently than they are created at the source. The items that a user
drags already exist in the source process. Further, the basic item attributes are accessible at
the target window because they are being passed by the desktop's drag-and-drop protocols.
The data that is passed, however, is not in the form of generic IDMltem objects. Open Class
Library's target handler and target operation solve this because they have the ability to inter-
rogate the data and to construct a target operation and the proper number of generic IDMltem
obj ects, respectively.

The generic IDMltem objects maintain the attributes of the dragged items. As IDMltem objects,
they provide default processing when the target renderer calls virtual functions such as
targetDrop. This is the reason you need to create objects of your item class on the target side.
You use the same logic to provide your target items that you use to apply inherited
generatesourceltems logic. Use the IDMOperation member function, replaceltem, to
exchange objects of your item class for the more generic ones already added to the operation.
Open Class Library automates the replacement of generic IDMltem objects with objects of your
item class as we discuss in the next topic.

The Itemlprovider's Role
The target operation calls the function provideTargetltemFor to get the replacement item for
each of the generic items. It invokes this function on the item provider that you have attached
to the target window. The generic item is provided as an argument to the function call.

ListBoxltem: :generatesourceltems (srcop) ;

Cfea!pfer2J Direct Manipulation 539

Most of the time, you use the impl-ementation of provideTargetltemFor that is generated by
the class template IDMltemproviderFor. The implementation has the following basic struc-
ture:

i;turn((IDMltem: :Handle)new Item(oldltem)) ;
®®®

Item is the name of your item class, the template argument, and oldltem is the function
argument of type IDMltem : : Handle.

We accept this implementation as-is in all of the direct-manipulation example programs.

The Item's Target Constructor
Having accepted the template class' implementation of provideTargetltemFor, we now focus
on the item constructor that function uses. Implement a matching constructor in your item
class.

To do this, we show this constructor's implementation for the example ListBoxltem class as
follows:

ListBoxltem Target Constructor - dm\lboxdrag\lboxitem.cpp
ListBoxltem : : ListBoxltem (const IDMltem: :Handle& dragltem)

: IDMltem(dragltem)
(
IMODTRACE_DEVELOP ("ListBoxltem : : ListBoxltem (Handle) ") ;
// We only support copy and move.
this -> enableLink(false);
)

This constructor is simple to implement. Use the copy constructor of the base IDMltem class to
copy the basic item attributes. The resulting item has the same attributes but with one
important difference: the item is an object of your class so that your targetDrop function is
called when a user drops an item on the target window. The only other steps you must take are
as follows:

1. Limit the item's supported operations to those that your item truly supports. This
prohibits a more functionally rich item from being dropped on your target window using
an operation that the source window supports but the target window does not.

2. Limit the item's supported RMFs to those that your item supports. Again, this prevents
the drop of an item that supports RMFs that you do not support.

You are not required to perform either of these steps. If you rely on other checks to avoid the
problems, you can accept the operations and RMFs of the source items. However, you need to
be aware of the potential problems. .

540 Power GUI programming with visualAge for c++

To Drop or Not to Drop
To permit the direct-manipulation operation to take place requires more work. In this topic,
you learn the process that the target objects use to determine whether a user can drop an item
on the target window. The result of this process determines whether a user gets positive
feedback while dragging the items over the target window, and it also determines what happens
when a user drops the items.

Open Class Library's direct-manipulation framework makes the four checks you need for
deciding whether a user can drop an item on your target window. You learn how the built-in
checking is performed and how you can add your own checking if the default does not meet
your requirements.

My rind of Item
The first check you must make is whether the type of the dragged items is supported by the
objects at the target window. Open Class Library supports all types of objects by default. As a
result, you are responsible for checking the type if you need to do so. Perform that checking in
your item provider' s provideEntersupport function.
Usually, you must check the type whenever you need to make assumptions about the format of
the data that you extract from the source item. When you use Open Class Library's rendering
mechanism, this checking applies when you rely on the item's contents or object values to
contain particular values.

To verify the item's type, apply the hasType function to the target items, passing the required
type. In your item provider's implementation of provideEntersupport, insert code that
resembles the following example:

®®®

IDMltem: : Handle
item = tgtop->item[1] ;

// Check that dragged object is a bitmap or icon.
if (item -> hasType(IDM::bitmap)

in
item -> hasType(IDM: :icon))

(
// . . .code to process valid dragged items. . .
)

®®,

Matching a Rendering Mechanism and Format
The second check is to determine if the source and target can match a rendering mechanism
and format. The Open Class Library target handler iterates its set of renderer objects until it
finds one that can render each of the dragged items. If it cannot find a renderer object for any
of the items, the drop is not allowed.

You do not need to do your own checking for matching rendering mechanism and format. You
can check the items' RMFs within your item-provider' s provideEntersupport function if you
want to, but you do not need to do so. If there is a renderer that supports the item, the only

Cfeapfer2J DirectManipulation 541

reason that would prevent the user from dropping an item on your target is failure to satisfy
one of these other checks.

Should We Operate?
The third check is to determine if the selected operation is acceptable to both the source and
target windows. This means that the operation that a user selects is supported by both the
source and target items. We discuss the details of the move, copy, and link operations in a later
topic. All you need to know about the operation to determine if a drag-and-drop operation is
permitted follows :

• If a user has not requested an explicit operation by pressing the Shift or Ctrl czz4977ce7®-
£czfz.o7t keysi, Open Class Library's framework permits the drop if the source and target
items have some commonly supported operation. The target item's
supportedoperationsFor function determines the operations tbat the target supports.
The argument to the function call is the selected RMF used to render the item.

With this mechanism you can support different operations, depending on the rendering
mechanism and format. For example, when a user is doing an interprocess drag and
drop, you might not permit an object to be moved or linked. The following example
implementation of supportedoperationsFor disables all but copy operations when you
use the <rmLibrary, rfsharedMem> rendering mechanism and format.

unsigned long Someltem : :
supportedoperationsFor (const Istring& rmf) const
(
if (rmf == IDMltem: :rmfFrom(IDM: :]mLibrary,

IDM: :rfsharedMem))
// If you use <rmLibrary,rfsharedMem>, only copy is
// supported.
return IDMltem: : copyable & this->supportedoperations () ;

else
// Use whatever the base class supports.
return Inherited: : supportedoperationsFor(rmf) ;

)

If a user requests a specific operation by pressing augmentation keys, the target and
source must support the requested operation. If either item does not support the opera-
tion, the drop is not allowed. The set of operations supported by the target are those
returned by the target item' s supportedoperationsFor function.

Does It Make Sense?
The final and most important check that you must make before allowing an item to be dropped
on a particular target window is to determine if it makes sense for a user to drop this item here.

This check is difficult because the situation is different in every scenario. Whereas Open
Class Library's direct-manipulation framework can make the other checks with reasonable
accuracy, you can only implement this check yourself, according to the semantics of your
application and its objects.

542 Power GUI programming with visualAge for c++

Here is an example of an item provider's provideEntersupport function, which does
extensive semantic analysis to determine if the drop is permitted. If it determines not to
permit the drop of the item, you must call the argument event's setDroplndicator function,
setting the drop indicator to IDM: : notok (or IDM: : neverok).

ListBoxltemprovider: :provideEntersupport -dm\lboxdrag\lboxitem.cpp
Boolean ListBoxltemprovider : :

provideEntersupport (IDMTargetEnterEvent& event)
(
IMODTRACE_DEVELOP (`'ListBoxltemprovider : : provideEntersupport") ;
// Get default dragover result.
Inherited: :provideEntersupport (event) ;
IDMTargetoperation : : Handle

tgtop = IDMTargetoperation: : targetoperation () ;
IListBox

1b = (IListBox) (event.window());

#ifdef IC_WIN
// Do not allow drops over the scroll bars.
// The scroll bars in Windows are not controls; '
// thus, we calculate the scroll rectangles and
// test for hits over the scroll areas.
// Target position is in desktop coordinates.
// We must map this to listbox window coordinates.
IPoint

lbpt = Iwindow: :mappoint (event.position() ,
Iwindow : : desktopwindow () ->handle () ,
1b->handle()) ;

// fix for mapping problem on windows.
1bpt += IPoint(1,1) ;

unsigned
hscrollHeight = ListBoxltem: :horizontalscrollHeight () ,
vscrollwidth = ListBoxltem: :verticalscrollwidth(1b) ;

IRectangle hscrollRect (1b->rect
lb->rect
lb->rect
lb->rect

vscrollRect (1b->rect
lb->rect
lb->rect
lb->rect

if (hscrollRect.contains(1bpt
vscrollRect. contains (lbpt

1ef t ()
top ()
right
top ()
right

`.bottom. right
. top ()
11

)

hscrollHeight,

-vscrollwidth + 3,

hscrollHeight) ;

(
event.setDroplndicator(IDM: :notok) ;
// Undraw any existing target emphasis.
drawEmphasis (1b,

event,
TgtLocation(ListBoxltem: :after, nil)) ;

return true;
)

#endif //IC_WIN

ListBoxltem: : TgtLocation
tgtLocation

= ListBoxltem: :targetLocation(1b, event.position()) ;

Cfeapfer2J Direct Manipulation 543

if (event.droplndicator() == IDM: :ok
&&
tgtop->sourcewindow() == event.window())

{ //If source equals target, prohibit dropping on salne item.
IDMltem: : Handle

srcltem = IDMltem: :sourceltemFor(tgtop->item(1)) ;
unsigned

srclndex = (unsigned) (srcltem->object()) ;

// Disable conflicting drop on source window.
unsigned long

op = tgtop->operation() ; \
if (op == IDMOperation: :drag)

op = IDMOperation: :move; // Default;
if (op == IDMOperation::copy)

{ // Can't copy to self.
if ((srclndex == tgtLocation.index)

&&
tgtLocation.type == ListBoxltem: :on)

event. setDroplndicator(IDM: :notok) ;
)

else if (op == IDMOperation: :move)
{ // No sense moving to same place.
if ((srclndex == tgtLocation.index)

JI
(tgtLocation.type == ListBoxltem: :before

&&
srclndex == tgtLoca€ion.index -1)

n
(tgtLocation.type == ListBoxltem: :after

&&
srclndex == tgtLocation.index + 1))

(
event. setDroplndicator(IDM: :notok) ;
)

)
)

// Draw target emphasis:
drawEmphasis(1b, event, tgtLocation) ;
return true;
)

Note that setting the drop indicator to IDM: : ok is not sufficient to permit the drop to be made.
Open Class Library's target handler still performs the checks for a matching RMF and a
commonly supported operation.

Move, Copy, Link, or Get Out of The Way!
The desktop supports three distinct direct-manipulation operations, move, copy, and link. In
the Windows operating system, link is commonly referred to as a shortcut. The protocol also
supports adding application-specific drag-and-drop operations. The operation that your
application performs depends on a number of factors. We discuss these factors from both the
source and target windows' perspectives.

544 Power GUI programming with visualAge for c++

The Selected Operation
First, a user can request a specific operation by pressing some combination of augmentation
keys. Usually, the Ctrl key forces a copy; the Shift key forces a move; and Ctrl+Shift forces a
link (although users can define their augmentation keys to be different than these defaults if
they choose). When a user presses these augmentation keys while dragging an item, only the
selected operation can be performed. If the source or target do not support this selected
operation, then a user cannot drop the item or items.

The drag image reflects the user-selected operation. This is a half tone image for a copy and,
for the OS/2 operating system only, an image with a connecting line for a link. For the
Windows operating system, the shortcut (link) is identified by a special symbol in the shape of
a curved right arrow, which the system adds to the drag image.

Target Operation Selection
The more interesting case occurs when a user does not select a specific operation. This occurs
when a user drags an item without pressing any augmentation keys. In this case, the target
window determines which operation is to be performed. The system works this way so that
different drop targets can implement different default operations, depending on the nature of
the target. For example, a printer would default to copy while a shredder would default to
move.

When target operation selection is required, the dragged items indicate whether the selected
operation is IDM: : drag, which is the default. Any target windows that accept such items when
dragged over must specify its default operation. If the source does not support the target's
default operation, a user cannot drop an item on the target.

Another feature of target operation selection is that the system changes the drag image to
reflect the operation in effect at each target. As a result, the drag image becomes half tone, for
example, when a user drags an item over a printer, and it reverts to the true (move) image when
a user drags an item over a shredder.

Drawing Target Emphasis
The last functional aspect of direct manipulation that you learn is the drawing of target
emphasis. Ideally, you display something in your target window to let users know what
happens when they drop items. This is related to the visual cue that a user receives from the
enhanced drawing of the drag image to indicate the operation that is to be performed. This cue
tells users what happens when they drop items. The other cue a user needs is an indication of
where the drop occurs. This kind of indication is called fclrgef empfec!Sz.s.

You need to do some special drawing during drag and drop because the desktop is in a special
state causing regular presentation drawing techniques not to work. Use the IDMTargetEvent
member functions presspace and releasepresspace to obtain a special presentation space on
which to draw. In addition, limit the kind of drawing you do so that you can efficiently update

Cfe¢pfer2J Direct Manipulation 545

the display as a user drags an object across your window. Finally, you monitor the drag-
and-drop operation and choose the correct times to draw and remove the target emphasis.

The lis.t-box sample program that we use as an example in this chapter shows you how to draw
target emphasis. The Windows specific code that we identify with the directive, IC_WIN, is
necessary because the list box's scroll bars are not controls in the Windows operating system.
Therefore, we include the additional logic to prevent the drawing of target emphasis on the
scroll bars.

First, we show you the functions that actually do the drawing as follows:

ListBoxltem Target Emphasis Drawing - dm\lboxdrag\lboxitem.cpp
typedef ListBoxltem: :TgtLocation TgtLocation;
static TgtLocation

lastTarget(ListBoxltem: :after, nil) ;
static void draw (IGraphiccontext& gc,

IListBox* 1b,
const TgtLocation& target)

(
if (target.index != nil)

(
// First, get offset from top of list box:
unsigned

offset = target.index -1b->top() + 1,
height = ListBoxltem: :itemHeight(1b) ;

// Next, adjust it if before this item:
if (target.type == ListBoxltem: :before)

of f set--.
// Calculate that item's rectangle's bottom, taking into
// account the platform's coordinate system:
unsigned

bottom;
if (ICoordinatesystem: :applicationorientation ()

== ICoordinatesystem: :originupperLeft)
(
bottom = height * offset;
)

else
(
bottom = 1b->rect() .height() -height * offset;
// Lower bottom by 2 pels to align the emphasis.
bottom -= 2;
)

// Get the width of the vertical scroll bar.
unsigned

vscrollwidth =
ListBoxltem: :verticalscrollwidth(1b) ;

#ifdef IC_WIN
// Get the height of the horizontal scroll bar.
unsigned

hscrollHeight =
ListBoxltem: :horizontalscrollHeight () ;

#endif

546 Power GUI programming with visualAge for c++

// Draw line or box.
IPoint

origin(0, bottom);
if (target.type == ListBoxltem::on)

(
IPoint

topRight ; .
if (ICoordinatesystem: :applicationorientation ()

== ICoordinatesystem: :originupperLeft)
(
topRight = IPoint(1b->rect() .width() ,

bottom - height + 2) ;
)

else
(
topRight = IPoint(1b->rect() .width() ,

bottom + height) ;
)

// Adjust the origin so the left side of the box is
// visible.
origin += IPoint(1, 0);

// Adjust the end point if the vertical scroll bar is
// visible.
topRight -= IPoint(vscrollwidth, 1)

#ifdef IC_WIN
// Do not draw emphasis over the horizontal scroll bar.
IPoint

bottomLeft(origin.x() ,
1b->rect() .top() -hscrollHeight -1) ;

if (origin.y() >= bottomLeft.y())
(
IGPolyline myLine(IPointArray(4)) ;
myLine.setpoint(0, bottomLeft) ;
myLine.setpoint(1, IPoint(origin.x() ,

topRight.y()));
myLine.setpoint(2, topRight) ;
myLine.setpoint(3, IPoint(topRight.x() ,

bottomLeft.y()));
myLine.drawon(gc) ;
return;
)

#endif //IC_WIN

IRectangle theBox
IGRectangle myBox
myBox.drawon (gc
)

else

origin, topRight) ;
theBox) ;

(
#ifdef IC_WIN

// Do not draw emphasis over the horizontal scroll bar.
if (bottom >= (1b->rect() .top() -hscrollHeight -1))

return;
#endif //IC_WIN

// Adjust the end point if the vertical scroll bar is
// visible.
IPoint

end(1b->rect() .width() -vscrollwidth + 1, bottom) ;
IGPolyline myLine(IPointArray(2)) ;
myLine.setpoint(0, origin) ;
myLine.setpoint(1, end);
myLine.drawon(gc) ;
)

)
)

Cfeapfer2J Direct Manipulation 547

ListBoxltemprovider
&ListBoxltemprovider : : drawEmphasis (IListBox* 1istBox,

IDMTargetEvent& event ,
const TgtLocation& target)

If same target, it's already drawn.
(target == 1astTarget)return *this;

// Get the graphic context and set the drawing attributes.
IGraphiccontext

gc(event.presspace()) ;

gc.setMi"ode (IGraphicBundle: :xor) ;
gc. setDrawoperation (IGraphicBundle: : frame) ;
gc.setpencolor(IColor: :white) ;
gc.setpenwidth(1) ;

// "Undraw" current target emphasis.
draw(gc, listBox,1astTarget) ;

// Set new target and draw it.
1astTarget = target;
draw(gc,1istBox,1astTarget);
event . releasepresspace () ;
return *this;
)

The drawing is done using the mixed mode IGraphicBundle: :xor. You do most target
emphasis drawing this way because it makes removing the emphasis simple; you just redraw it
to undo it.

The only remaining detail is to make sure that you draw target emphasis at the appropriate
times and that you remove target emphasis when a user drags an item from your target window
or drops an item on it. In this example, we make certain that we erase the previously drawn
target emphasis by recording the location where we last drew it (with .a special value to
indicate that there was no target emphasis drawn). Drawing at a new location consists of
drawing at the previous location (thereby erasing it) and recording the new location and
drawing at it.

Normal drawing occurs in the item provider's provideEntersupport function. Clean up on
two other occasions, also:

• A user drags an item from the target window in the item provider's member function,
provideLeavesupport.

• Auser drops an item on the target window in the item's targetDrop function.

We have already shown you all of this code except for the implementation of
ListBoxltemprovider : : provideLeavesupport, which follows:

548 Power GUI programming with visualAge for c++

ListBoxltemprovider: :provideLeavesupport -dm\lboxdrag\lboxitem.cpp
Boolean ListBoxltemprovider : :

provideLeavesupport (IDMTargetLeaveEvent& event)
(
IListBox
1istBox = (IListBox) (event.window());

this -> drawEmphasis (1istBox,
event'
TgtLocation(ListBoxltem: :after, nil)) ;

return false;
)

"Under the Covers"
In the rest of this chapter, we examine the implementation of Open Class Library's direct-
manipulation support. You do not have to understand the implementation beyond the
responsibilities you have as an implementor of direct-manipulation item and item provider
classes. However, if you have previous experience with the direct-manipulation structures and
the API of the OS/2 operating system, or you have experience with OLE objects and API in the
Windows operating system, this additional insight into the implementation might be helpful.

A Peek at Platform Specifics
Given the power of direct manipulation as a user-interface technique, implementing support
for it using a native API can be a fairly daunting task. To help you use the simplified set of
C++ objects in Open Class Library, we describe the nature of the OS/2 and Windows operating
systems objects that they represent.

OS/2 Operating System Objects
There are a large number of structures that OS/2 direct-manipulation support utilizes. The
structures that define the representation of the objects being manipulated are as follows:

DRAGINFO

Represents ongoing direct-manipulation operations.

DRAGITEM

Represents the objects being manipulated by a user.

DRAGIMAGE

Defines the representation of the objects being manipulated.

There are additional structures that contain higher-level objects, such as bit masks and string
handles, and they are manipulated using various Apls. Discussion of these structures is
beyond the scope of this book, so we do not cover them.

Cfea!pfer2J Direct Manipulation 549

Windows Objects
The Windows direct-manipulation support utilizes OLE objects. The OLE objects that define
the representation of the objects being manipulated are as follows:

IDragobject

Manages the transfer of data from the source to the target.

IDropsource

Processes the callback functions that dispatch source-related direct-manipulation
events.

IDropTarget

Processes the callback functions that dispatch target-related direct-manipulation events.

There are additional objects and image-related structures. Discussion of these objects and
structures are beyond the scope of this book, so we do not cover them.

An Overview of the DirectlManipulation Framework classes
This section provides a short explanation of Open Class Library's model for direct manipula-
tion. We introduce the various classes tbat implement direct-manipulation support and
describe briefly the responsibilities of each class. More important, we indicate what interest
you will likely have in those classes.

The object diagram, shown in Figure 21-2, provides an overview of the objects involved in
direct manipulation and the relationships between these objects. The "Drag Information" and
"Drag Item" entries have different meanings for the OS/2 and Windows operating systems. In

the OS/2 operating system, they represent the DRAGINFO and DRAGITEM structures, respectively.
In the Windows operating system, they represent objects of the private classes, IDraglnfo and
IDragltem, respectively. The objects-actually, classes-of interest are as follows:

Handlers and Events

Windows that permit the user to directly manipulate their contents must have direct-
manipulation handlers attached to them. As with other Open Class Library handlers, the
direct-manipulation handlers operate on a set of event objects, in this case, those that
encapsulate the desktop' s drag-and-drop messages.

Your interest in these handlers is to attach them to your windows. Even that task is
greatly simplified. For details, see "Enabling Drag and Drop" at the beginning of this
chapter.

550 Power GUI programming with visualAge for c++

Operations

These objects-different kinds on the source and target sides of the operation-
represent the pending direct-manipulation operation. The direct-manipulation handlers
take care of the creation and deletion of these objects. You access these objects to get
and set various attributes of the ongoing drag-and-drop operations. For more details, see
"Direct Manipulation Operations," later in this chapter.

Figure 21-2. Direct-Manipulation Framework Obj ects.

Cfeapfer2J DirectManipulation 551

Items

These objects represent the application objects being manipulated. Most of your efforts
to support direct manipulation in your application involve deriving classes from the
Open Class Library base item class. Much of the tailoring involves setting the attributes
of these item objects. For details on how to define your direct-manipulation item
classes, see "Direct-Manipulation Items,." at the beginning of this chapter.

Itemproviders

These objects are extensions to the standard windows of your application. They make it
possible for your windows to provide the direct-manipulation objects specific to your
application.

Open Class Library supplies specialized provider classes for containers, entry fields,
multiline edit controls, tool bars, and tool bar buttons. It also provides a class template
that you can use to generate a provider class specific to your items. See "Providing
Items to Be Dragged and Dropped," earlier in this chapter for details.

Renderers

These objects handle the transfer of items from the source to the target window. The
base renderers that Open Class Library provides handle this transfer for the standard
rendering techniques. These meet your needs in most cases.

For more details on how these objects work see "Rendering" at the end of this chapter.

Handlers and Events
Direct manipulation is accomplished by users pressing a mouse button and moving the mouse
while they press the button. In the OS/2 operating system the, desktop handles the lower-level
button-down and mouse-move events and translates them to direct-manipulation messages. In
the Windows operating system, the message translation is achieved jointly via Open Class
Library's direct-manipulation support and the desktop. These are the messages your window
must handle to support direct manipulation.

In the context of Open Class Library design, these responsibilities are handled by objects of
some IHandler-derived class. With a class that handles the direct-manipulation messages,
attaching such handlers to your windows enables direct manipulation of the window's
contents.

Open Class Library provides a set of classes, as pictured in Figure 21-3, to handle the direct-
manipulation events.

IDMHandler

This is an abstract base class. It provides common implementation for each of the
derived direct-manipulation handler classes. This class also provides some static
member functions that provide support for attaching handlers to your windows, thereby
enabling them for drag and drop. This default support is almost always all that you need
in your applications.

552 Power GUI programming with visualAge for c++

IHandler

mREandler

fiiiiiiiiiiiiiiiiill
musourceHandler¥ mMTargctHandler+

Figure 21-3. Direct-Manipulation Handler's Class IHerarchy.

IDMSourceHandler

This class provides support for the handling of direct-manipulation events for the source
window.

IDMTargetHandler

This class provides support for the handling of direct-manipulation events for the target
window.

The Default Source and Target Handlers.
The enabling static functions of class IDMlandler, which we describe at the beginning of this
chapter, attach the default handlers. These handlers are objects of the classes
IDMSourceHandler and IDMTargetHandler or of classes derived from those classes. The
default handler objects are maintained via st,atic functions of class IDMHandler:
defaultsourceHandler, setDefaultsourceHandler, defaultTargetHandler, and
setDefaultTargetHandler.

You can access these default handlers and modify them by invoking handler functions that set
the various handler attributes. For example, if your application uses some new rendering
mechanism that you have implemented using derived IDrmenderer classes, you could add this
rendering mechanism to all windows using code like the following example:

MysrcRenderer*psrcRenderer = new MysourceRenderer;

MyTgtRenderer*pTgtRenderer = new MyTargetRenderer;

IDRElandler: : defaultsourceHandler () . addRenderer (psrcRenderer) ;
IDRElandler: : defaultTargetHandler () . addRenderer (pTgtRenderer) ;

Make certain that the lifetime of such renderer objects spans the time that the default handlers
will be using them and remove the renderers prior to deleting them. You can find out more
about renderer objects in "Rendering" later in this chapter.

Cfoapfer2J Direct Manipulation 553

Replacing the Default Handlers
You can replace the default source and target handlers entirely. Usually, you only want to do
this to override one of the virtual functions of one of the handler classes and to permit this
modified handler to be attached to windows using the enable functions of IDMlandler. You
specify the new default handlers via the IDMHandler functions setDefaultsourceHandler and
setDefaultTargetHandler. Call these functions before enabling any windows for drag and
drop.

Direct-Manipulation Operations
The information managed by the handlers is anchored by an aperczfz.o# object that represents
the ongoing direct-manipulation operation. These objects are instances of the classes shown in
Figure 21-4.

IDMOperation t

This is an abstract base class that provides common behavior and implementation for the
two concrete-derived classes.

IDMSourceoperation

This class represents a direct-manipulation operation from the source window's
perspective. It basically encapsulates the attributes of the operation and permits
manipulation of the attributes that are under the source window' s control.

IDMTargetoperation

This class represents a direct-manipulation operation from the target window' s perspec-
tive. It only permits changing the attributes that are under the target window' s control.

The handler objects handle allocating and freeing these operation objects at the appropriate
time. Most of the time, you interact with these operation objects when they are passed as
arguments to some of the virtual functions of the item-provider class that you have written.
Usually, you use the operation in one of two ways:

IRefcounted

mMOperation

fiiiiiiiiiiiiiiiill
IDMSourceoperation IDMTargofoperation

Figure 21-4. Direct-Manipulation Operation's Class IHerarchy.

554 Power GUI programming with visualAge for c++

• In its role as the collector of the items being manipulated. From this perspective,
IDMOperation objects look like sequences of items.

• As the holder of the set of attributes that apply to the direct-manipulation operations as a
whole. Examples of such attributes are the style used to display the objects being
dragged and the type of operation being performed (move, copy, or link).

The Lifetime of Direct-Manipulation Operation Objects
IDMOperation is derived from class IRefcounted. The reasons for this are twofold as
follows:

• The objects are allocated and freed by part of the direct-manipulation framework (not
by you). However, you might want to keep a reference to the object beyond the
period of time that the rest of the framework needs it.
The objects might be needed long after the events that caused their creation have
occurred. For example, rendering that takes a long time often must be done in a
separate thread. As the other thread runs asynchronously, you need a more elaborate
scheme to ensure that these objects "live" until any such secondary threads are
completed.

You can ignore this complication by making sure you always access such reference-counted
objects using the appropriate re/ere#ce objects. In the case of IDMSourceoperation, and
IDMTargetoperation, do the referencing using the corresponding nested Handle class.

For more information, see "Reference Counting" in Chapter 26, "Data Types."

Using Your Own Operation Classes
The operation classes encapsulate some of the low-level drag-and-drop Apls of the desktop.
To give you control over the use of those Apls while still permitting you to take advantage of
the robust function built into the direct-manipulation framework of Open Class Library, there
is a way for you to replace the standard operation objects with objects of classes derived from
the base IDMSourceoperation and IDMTargetoperation classes.

To modify this aspect of the behavior of the direct-manipulation framework, complete the
following steps:

1. Derive from IDMSourceoperation or IDMTargetoperation or both, and override the
virtual functions for which you want to modify the behavior.

2. Derive from the corresponding source or target handler classes or both.

3. Override the allocateoperation function of the handler class. Implement this function
by allocating an object of your derived-operation class and returning a handle for it.

4. Make your derived handler or handlers the default as described in "Replacing the
Default Handlers."

Cfeapfer2Z Direct Manipulation 555

A C++ Design Note

The mechanism for replacing the operation classes tbat the direct-manipulation framework
of Open Class Library uses demonstrates an important aspect of C++ class library and
framework design. The problem is reconciling the power of a framework with the fact that
by doing lots of work on your behalf, it becomes more difficult to tailor the framework's
behavior. In this case, we find that the framework manages the complex task of creating
and freeing these operation objects. However, if we were limited to using objects of the
base class only, then we would fail to fully exploit the virtues of C++ inheritance.

A good way to measure the capabilities of a C++ class library or framework is to ask this
question:

Can you readily override each of the key virtual
functions of each of the key objects in the framework?

In this instance, at least, with Open Class Library you can answer "Yes."

Rendering
The last set of objects that participate in direct manipulation are the re72derers. These are
objects of Open Class Library's rendering classes IDMSourceRenderer and
IDMTargetRenderer. Figure 21-5 shows the renderer class hierarchy.

Renderer objects transmit the direct-manipulation items between the source and target
windows after a user drops them. The transfer occurs using some protocol mutually agreed to
by the source and target applications. With the Open Class Library framework, the agreement
as to what protocol to use is negotiated between the source and target handlers. Each handler
maintains a collection of renderers. The handler searches this collection to find a renderer to
use for each item. Renderers are chosen depending on the type, supported operations, and
supported rendering-mechanism and format attributes of the item.

The default source and target handlers have a single renderer object attached to them. The
source handler attaches an object of type IDMSourceRenderer. The target handler attaches an
object of type IDMTargetRenderer. These default renderers can usually handle all of your
direct-manipulation operations. They support each of the protocols we described in the

IVBase

mrmenderer

IDMSourceRenderer mMTargetRenderer

Figure 21-5. Renderer Class IHerarchy.

556 Power GUI programming with visualAge for c++

section "Item Attributes-Rendering Mechanisms and Format." These renderers are sufficient
because they fully support the efficient transfer of arbitrary item contents. So, if you want to
transfer unusual data, you do not need a new renderer. Instead, you set your item contents to
the data you want the renderer to transfer.

Adding Your Own Rendering Formats
If you need to support additional rendering mechanisms and formats, derive new classes from
IDMSourceRenderer and IDMTargetRenderer. Create objects of each renderer class and add
them to the default source and target renderers using the addRenderer member function.

Rendering requires handling of an additional set of direct-manipulation window events. The
source and target handlers dispatch those events to the renderers in much the same way that
some events are eventually dispatched to the items. To add a new rendering mechanism,
process the events by overriding the functions sourceRender, targetRender, and so on.
Alternatively, you can accept the bulk of the default processing of these events and override
the lower-level functions that do the renderer-specific work. These are the functions
doRender, renderAtsource, and so on

The following drag information viewer example shows an interesting twist: it replaces the
default target renderer with one that allows all drag objects to be dropped on the viewer.
Subsequently, the viewer displays the information contained within the underlying drag
objects and structures. Override the IDMTargetRenderer member functions, canRender and
targetRender, in the new class, DragviewTargetRenderer. Relevant sections of code are
shown in the following example:

Drag Information Viewer - dm\dragview\dragview.cpp
DragviewTargetRender

targetRenderer;
IDMRenderer : : setDefaultTargetRenderer (targetRenderer) ;

IDM: : Droplndicator DragviewTargetRenderer : :
canRender(const IDMltem: :Handle&)

(
return(IDM: : ok) ;
)

DragviewTargetRenderer& DragviewTargetRenderer : :
targetRender (IDMTargetDropEvent& event ,

const IDMltem: :Handle& dragltem)
(
IMODTRACE_DEVELOP ("DragviewTargetRenderer : : targetRender") ;

// Call targetDrop override for the drag viewer item.
Boolean

bRc = dragltem->targetDrop(event) ;

// Indicate to the source that rendering of the item has
// completed.
informsourceofcompletion (dragltem,

((bRc) ? IDM: :targetsuccessful
: IDM: :targetFailed)) ;

return(*this);
)

Cfoapfer2J Direct Manipulation 557

Detailed instructions for overriding the rest of these functions are beyond the scope of this
book. Refer to the Open Class Library reference documentation and rely on your under-
standing of the underlying desktop's operations. Open Class Library supports the common
rendering mechanisms and formats and provides the means of rendering your items that should
satisfy most of your requirements.

Conclusion
In this chapter, we described Open Class Library components that you can use to add drag-
and-drop support to your applications. Adding that support is easy. It involves the following
tasks:

Adding drag-and-drop handlers to your windows

Deriving direct-manipulation item classes to hold the data that you want a user to drag
and drop.

Overriding the important functions in your item class to get application-specific
behavior when a user drops items on your windows.

Constructing an item-provider object to attach to your window that ensures your items
get used.

We described each of these tasks in this chapter and we provided detail on all of the issues
related to adding drag-and-drop support to your application. Four separate full-function
examples were presented to show you how to do that. Finally, we discussed the details of the
design and implementation of Open Class Library's direct-manipulation support to help you to
better understand how it works.

Chapter 22

Dynamic Data Exchange Framework

• Describes open class Library classes thatyou can use to add Dynamic Data
Exchange support to your applications
Describes the IDDETopicserver, IDDEclientconversation, IDDEEvent,
IDDEAcknowledgeEvent, IDDEclientAcknowledgeEvent,
IDDEAcknowledgepokeEvent, IDDEDataEvent, IDDEAcknowledgeExecuteEvent,
IDDEs erverAcknowledgeEvent, IDDEExecuteEvent, IDDEs etAcknowledgeEvent,
IDDEclientHotLinkEvent, IDDERequestD ataEvent, IDDEs erverHotLinkEvent,
IDDEPokeEvent, IDDEB eginEvent, IDDEEndEvent, IDDEclientEndEvent,
IDDEclientHotLinks et, IDDEActives erver, and IDDEActives ervers et classes
Read Chapter 4 before reading this chapter.
Chapter 20 covers related material.

Dy7®cz77®z.c Dczfcz Excfe¢#ge (DDE) is a client-server protocol for communicating between two
applications running in the same machine. In a client-server model, the client application
sends requests to a server application. The server application handles these requests from
client applications and returns information or data to the client, if appropriate. In this chapter
when we use "data," we are referring to a raw buffer of data; when we use "information," we
are referring to the data as well as information about the data. DDE is a common protocol that
is implemented by all of the Windows operating system platforms as well as the OS/2
operating system.

This chapter describes the Open Class Library classes that comprise the DDE framework.
First, we provide an overview of DDE to define the native operating system function that is
abstracted in Open Class Library's DDE framework. Next, we briefly discuss Open Class
Library's DDE design. Tben, we provide a topic on how to add DDE client support to an
application. This includes a detailed discussion of the important DDE client functions and
DDE events that you use to pass information to an application. Finally, we provide a topic on
how to add server support to an application including, again, a detailed discussion of the DDE
events that you use to pass information to the application program.

DDE Overview `
In the following topics, we describe DDE in terms of the functionality provided by the under-
lying operating system's implementation. Because DDE is based on the client-server
application model, a DDE client application must request a conversation with a DDE server

559

560 Power GUI programming with visualAge for c++

application. Once the server accepts a conversation, the client can send a variety of predefined
requests to the server. A server application sends information or data plus positive and
negative acknowledgements to client applications. A server application cannot send requests
to a client application. The only unsolicited communication that a DDE server application can
have with a client application is to notify it that it is ending a conversation.

DDE can be difficult to use for a number of reasons. Some of the larger issues are as follows:

• The DDE protocol lacks a clear definition, thus requiring study to implement it
correctly.

• Exchanging data between applications requires memory. You must correctly coordinate
the allocation, accessing, and freeing of memory between the client and server applica-
tions.

• You must register all private DDE data formats in the operating system's atom table.

• You must create a window message queue for each conversation because all communi-
cation occurs through operating system messages.

The primary reason to use Open Class Library's DDE framework is that these issues are taken
care of and hidden from you by the framework. As a result, you can concentrate your
programming efforts with DDE at a much higher level of abstraction. Using Open Class
Library's DDE framework, you can focus on requesting or providing data without focusing on
the ugly operating-system-level details of DDE.

DDE Is Transaction-Based
All communications between DDE client and server applications occur within the context of a
DDE co#verS¢f!.o#. Once a DDE client application has successfully initiated a conversation
with a DDE server application, all subsequent communications are in the form of
asynchronous transactions. These transactions are asynchronous because they are imple-
mented using operating system messages that are posted, not sent, to the other application.
This can lead to complications because the DDE messages and control blocks that the
operating system messages pass contain a minimal amount of information to tie a response to a
particular request.

As a result of the possible confusion inherent in any asynchronous communications, the DDE
protocol requires server applications to respond to requests from any one client in the exact
order that they are received in. The Open Class Library's DDE framework fulfills this
requirement. On the server side, it enforces this synchronization; on the client side, it tracks
all outstanding transactions, making sure they are responded to in the correct order. It also
provides you with information about your original request along with the response data.

Applications, Topics, and Items
For the purpose of initiating a DDE conversation, the conversation is uniquely identified by
the application name of the DDE server and the name of the fap!.c. A topic is a logical data
context. For example, for a word processing or spreadsheet DDE server application, the topic

Cfeapfe7. 22 Dynamic Data Exchange Framework 561

is usually the file name of a document or spreadsheet. For a DDE news server, the topic could
be an area of interest. Once a conversation is initiated, it is uniquely identified by a pair of
window handles, one provided by the client application and one by the server application.

An I.£e7» is a named data object that can be passed as part of a transaction within a DDE
conversation. An item can be as small as a simple data type, such as an integer or character
string, or as large as a bitmap or data file.

Data Formats
Whenever a DDE application requests or provides data, it must specify the format of the data.
This is the way DDE applications determine how to package and unpackage, or interpret, the
data that they pass back and forth. Before a DDE application can use a data format, the appli-
cation must ensure that the data format is uniquely identified by registering its name in the
operating system's atom table. The operating system defines a number of constant names for
industry-standard data formats and adds them to its atom table.

Open Class Library's DDE framework ensures that any format that your application specifies
is defined in the atom table. You can forget about atoms being used. An Open Class DDE
client application simply requests data in a format the DDE server application it is conversing
with supports. An Open Class DDE server application provides data in formats that DDE
client applications can process.

IDDE : : Format in IDDECOMM. HPP contains synonyms for the DDE formats that are predefined in
and common to both the OS/2 and Windows operating systems. The standard format for
exchanging text data is IDDE: :textFormat. It is the default format for all functions that
require a format. Table 22-1 provides a brief description of the formats contained in the IDDE
class.

Table 22-1 (Part 1 of 2). DDE Data Formats

IDDE::Format Descri'ption

bitmapFormat Specifies that the data is a BITMAPINF02 structure.

codepageTextFormat Specifies that the data is contained in a CPTEXT structure. The text
portion of the structure must be in IDDE::textFormat format. Use this
format to send text in a code page other than the default.

dibFormat Specifies that the data is a Device-Independant Bitmap File Format
(DIB) structure.

difFormat Specifies that the data is in Data Interchange Format (DIF). Software
Arts developed this format for exchanging data with Visicalc spread-
sheet programs.

displayBitmapFormat Specifies that the data is a bitmap in a private data format.

displayMetafileFormat Specifies that the data is a metafile in a private data format.

562 Power GUI programming with visualAge for c++

Table 22-1 (Part 2 of 2). DDE Data Formats

IDDE::Format Description
displayMetafilepictureFormat Specifies that the data is a metafile picture in a private data format.

displayTextFormat Specifies that the data is text in a private data format.

1inkFormat Specifies that the data is in link-file format which contains the infor-
mation necessary to establish a DDE hot link. You typically use it in
paste-link clipboard operations. The layout is:
applicationName(OxOO)topicName(OxOO)itemName(OxOO)(OxOO).

metafileFormat Specifies that the data is a metafile.

metafilepictureFormat Specifies that the data is a Metafile Picture Format (MFP) structure.

oemTextFormat Specifies that the data is in the same format as IDDE: :textFormat.

paletteFormat Specifies that the data is a PALETTEINFO structure.

sylkFormat Specifies that the data is in Microsoft Symbolic Link format. Use it to
exchange spreadsheet information in an ASCII-text format.

textFormat Specifies that the data is a null-(OxOO) terminated character string. The
data can include a carriage return (OxOD), a line feed (OxOA), or both to
mark the end of a line. This is the standard format for exchanging text.

tiffformat Specifies that the data is in Tag Image File Format (TIFF). Aldus,
Microsoft, and Hewlett-Packard developed this to describe bitmapped
data.

Note: In the Windows platforms, specify any private format as a string not as an atom. Simply pass the
atom inside of double quotes, and the DDE framework converts it to an atom.

The DDH Framework Design
On the DDE server side, IDDETopicserver is tbe primary class. It represents a DDE server for
a single topic. An IDDETopicserver object can have as many concurrent conversations as you
want, and these conversations can be with the same or different applications. The only
restriction is that they must all be on the same topic.

On the DDE client side, IDDEclientconversation is the primary class. An
IDDEclientconversation object represents a single conversation with a single DDE server
application. You can reuse an IDDEclientconversation object. For example, when you end a
conversation with a DDE server application, you can use the IDDEclientconversation object
to begin a conversation with any DDE server application on any topic.

IDDEclientconversation and IDDETopicserver contain virtual callback functions that
provide you with DDE conversation information. These functions typically pass an IDDEEvent
object, or one of its derived classes that contains a DDE request or response. Most of these
functions have a default behavior that typically does nothing. Override each callback function
that you need and provide an appropriate behavior.

Cfeapfer 22 Dynamic Data Exchange Framework 563

For an IDDETopicserver object, the callback functions pass requests for data or requests for
the server to carry out an action. The default implementation for most of these functions
returns false to indicate that the DDE server does not support this particular DDE transaction
type. To support a particular transaction type, override the function and provide an appro-
priate implementation. This typically involves setting information or data into the passed
DDE event.

IDDETopicserver : : requestData is pure virtual, so you must derive from IDDETopicserver to
provide an implementation for it. We made this function pure virtual so that you cannot create
an IDDETopicserver object. We designed it this way because, essentially, it does nothing by
default. Thus, you need to provide implementations for its callback functions for it to have
value. The rest of the callback functions have a default implementation so that you can
quickly and easily derive a class from IDDETopicserver, adding your own implementations for
the remaining functions. This enables you to build a DDE server application incrementally,
supporting only the DDE transaction types that make sense for your application.

For an IDDEclientconversation object, the callback functions pass you the responses that the
DDE server application has sent to your requests. The default implementation for these
functions is to do nothing. However, because you made the request to the DDE server applica-
tion, you want the response the server has sent to you. Override these callback functions to
process the responses, and the data and information that is part of each response.

IDDEclientconversation: :data is pure virtual, also. Thus, you must derive from
IDDEclientconversation to provide an implementation for it. We made the data function
pure virtual for the same reasons we made the requestData function of IDDETopicserver pure
virtual: You cannot create an IDDEclientconversation object because the class cannot do
anything reasonable with the responses sent by a server application. Provide implementations
for the callback functions to turn this into a useful class for your applications. As in the
IDDETopicserver class, the remainder of the callback functions have default implementations
so that you can quickly and easily derive a class with minimal capability from
IDDEclientconversation. This enables you to add function to your DDE client application
incrementally by providing implementations for the other functions based on the needs of your
application.

Start the Message Queue!
Because DDE uses object windows to communicate, an application that uses it needs to
process window messages. Even if your application has no interface components, the
IThread member function processMsgs must be executed. Although there are several ways
to accomplish this, you normally call IApplication : : current () . run () .

564 Power GUI programming with visualAge for c++

The Generic DDH Event Classes
Because IDDETopicserver and IDDEclientconversation objects pass data and information in
the form of event objects, we describe the DDE events that DDE clients and servers use in this
topic. We discuss the events that are specific to a client or server application later in this
chapter. Figure 22-1 shows the hierarchy of DDE classes.

I IHandler IIDDHclientconversationmDETopicserver IEvent

mDEBeginEvent ImDEEndEveutI
II

I

IDDEEvent I IDDEclientEndEvent II

I

I mDEAcknowledgeEvent I I mDESctAcknowiedgemfoHvent

DDEserverAcknowledgeFvent mDHExecuteEvent

mDEPokeEvemt
IDDECHentAcknowledgeEvent

mDERequestDataEvent
DDEAcknowledgepokeEvent

mDEserverHotLinREvent
®

IDDEAcknowledgeExecuteEvent DDEclientHotLihkEvent

DDEDataEvent

Figure 22-1. The DDE Class merarchy.

CfoapfeJ. 22 Dynamic Data Exchange Framework 565

The IDDEEvent Class
IDDEEvent is the main DDE Event class from which most other DDE event classes derive. The
only exceptions to this are the event classes associated with beginning and ending a conversa-
tion: IDDEBeginEvent, IDDEEndEvent, and IDDEclientEndEvent. This class provides two
important functions: the item and format functions. The item function returns the name of
the data item for which the event is sent. The format function returns the name of the format
that the data item is either rendered in or requested to be rendered in. Because an object of an
IDDEvent derived class is usually passed, you can usually obtain the names of the item and
data format.

The IDDEAcknowledgeEvent Class
IDDEAcknowledgeEvent is the parent of all DDE event classes used to pass acknowledgement
information. For many DDE transactions, one of the valid responses-and in some cases, the
only allowed response-is an acknowledgement. These acknowledgements can be positive or
negative. Negative acknowledgements indicate that the transaction was not processed and
contain information about why the acknowledgement is negative. The IDDEAcknowledgeEvent
class contains the member functions common to all acknowledgement event classes that Open
Class Library's DDE framework provides. The following list describes each
IDDEAcknowledgeEvent function :

• Call isAckpositive first for any event derived from IDDEAcknowledgeEvent. If the
function returns true, the acknowledgement is positive, and there is no reason to call
any of the class's other functions. If it returns false, use the other
IDDEAcknowledgeEvent member functions to determine why the acknowledgement is
negative.

• The isApplicationBusy function returns true if the application you are conversing with
is too busy to process your request.

• The isMessageunderstood function returns false if the application you are conversing
with cannot recognize your request. The function might return false if you request a
DDE server application to execute an unsupported command.

• The DDE protocol provides for one byte of application-specific data that can be set on
any acknowledgement. Normally, this field is used only for negative acknowledge-
ments, but the protocol does not prevent it from being set on a positive
acknowledgement. The applicationspecificData function returns this byte of data.
The format of the data in this field must be defined and recognized by any pair of appli-
cations using it.

The IDDEclientAcknowledgeEvent Class
IDDEclientAcknowledgeEvent, which is derived from IDDEAcknowledgeEvent, provides three
functions for determining what type of transaction the acknowledgement is for. These
functions are required because the acknowledged function and the

566 Power GUI programming with visualAge for c++

IDDEclientAcknowledgeEvent event are used to pass acknowledgements for the requestData,
beginHotLink, and endHotLink transactions. Use the functions isAckTORequestData,
isAckTOBeginHotLink, and isAckTOEndHotLink to determine the initiating transaction.

The IDDHsetAcknowledgelnfoEvent Class
IDDEsetAcknowledgelnfoEvent is the parent of all DDE event classes for which you can set
acknowledgement information. Many of the transactions (defined by the DDE protocol)
accept an acknowledgement as a valid response from the server application. Some of the
transactions, such as the request for a hot link, require an acknowledgement for the response.
In some cases, a DDE server application can request an acknowledgement from a DDE client
application. In all cases where you might need to send an acknowledgement to the application
you are conversing with, you are passed an object of a class derived from
IDDEsetAcknowledgelnfoEvent. Use this class's functions to provide details about a negative
acknowledgement. You can also use the application-specific data field on positive acknowl-
edgements. The following list describes each IDDEsetAcknowledgelnfoEvent function:

• Call setApplicationBusy to set the application busy flag if you cannot process a request
or the information returned in response to a request because your application is busy.

• Call setMessageNotunderstood to set the flag indicating that you could not recognize a
request or a response to a request that was sent by the application with which you are
conversing.

• The DDE protocol provides for one byte of application-specific data that can be set on
any acknowledgement. Use setApplicationspecificData to set the contents of this
field. Normally, this field is used only for negative acknowledgements, but the protocol
does not prevent it from being set on a positive acknowledgement. The format of the
data contained in this field must be defined and recognized by any pair of applications
using it.

The IDDEEndEvent class t
IDDEEndEvent is the parent of the IDDEclientEndEvent class. It provides a function common
to all events used to notify you that a conversation is ending: the sourceofEnd function. Use
it to determine why the conversation is ending. The possible values and meanings of the
Source enumeration returned by this function follow:

• client indicates that the DDE client application that this IDDETopicserver object is
conversing with is ending the conversation.

• server indicates that the DDE server application that this IDDEclientconversation
object is conversing with is ending the conversation.

• error indicates that this IDDEclientconversation or IDDETopicserver object is ending
the conversation due to an error encountered trying to communicate with the other
application in the client-server pair. This value is used particularly when the object
receives a bad return code when trying to post information to the conversing application.

Cfeapfe7. 22 Dynamic Data Exchange Framework 567

This typically occurs if the conversing application terminates without ending the DDE
conversation. In our original design, the object threw an exception when one of these
errors occurred. We later decided that throwing an exception, which would likely
terminate the application, was not warranted just because the conversing application
terminated.. Instead, the application receiving the error cleans up and ends the conver-
sation, and then notifies you by passing you an IDDEEndEvent object or
IDDEclientEndEvent obj ect using conversationEnded.

DDE Clients
IDDEclientconversation is the key DDE client abstraction in Open Class Library. The other
classes for implementing a DDE client are the DDE event classes. The hierarchy of client
DDE event classes is shown in Figure 22-1. We cover each event class in detail in the topic
covering the DDE request where it is actually used. For example, we cover the
IDDEAcknowledgeExecuteEvent class in the topic "Executing Remote Commands."

To provide DDE client support in your application, follow these steps. For multiple concurrent
conversations, follow these same steps for each concurrent conversation. (Also remember that
although an IDDEclientconversation object represents a single conversation with a single
server, you can reuse the object for a subsequent conversation once you end the current
conversation.)

1. Derive a class from IDDEclientconversation to provide implementations for the virtual
callback functions that you need. Provide an implementation for the data pure virtual
function.

2. Create an object of the class that you derived from IDDEclientconversation.

3. Initiate a conversation with a DDE server application on a specific topic.

4. Request services from the DDE server. These requests for services (transactions) are
usually requests for data, requests to accept data from you, or requests to execute
commands on your behalf.

5. Handle the request responses that the DDE server sends you in your virtual callback
function overrides.

6. End the conversation with this DDE server application when you do not need any more
services from this particular DDE server.

7. Destroy the object of the class derived from IDDEclientconversation or reuse the
object by starting over at Step 3.

These are all the steps you need for adding DDE client function to your application.

Constructing a DDm Client
Open Class Library provides two constructors for creating IDDEclientconversation objects.
The default constructor's signature is as follows:

568 Power GUI programming with visualAge for c++

IDDEclientconversation(Boolean useEventThread = true) ;
Notice that the only argument to the default constructor is a Boolean, which defaults to true.
This argument specifies whether the IDDEclientconversation object can create a separate
thread to process incoming messages from the DDE server application. We recommended that
you let the argument default to true because you gain benefits from allowing a secondary
thread to process incoming messages.

Note: This argument has no effect in the Windows operating system due to a restriction in its
native DDE implementation. Therefore, the following information regarding the benefits of
using threads does not apply in Windows platforms.

When you specify true for the useEventThread argument, the constructor creates an OS/2
operating system queue using the DoscreateQueue API. Next, the constructor creates a
secondary thread, passing it a function that remains in a while (true) loop, reading and
processing the IEvent objects in the queue using the DosReadQueue API. Every time the DDE
client application receives an inbound message from the DDE server application, the
IDDEclientconversation object writes an IEvent object to this queue using the
DoswriteQueue API. You gain two benefits by letting the IDDEclientconversation object use
a separate thread:

• The IDDEclientconversation object can guarantee that you process all messages in the
exact order that they are received from the server application.

All messages from the DDE server application are added to the end of an OS/2 operating
system queue in the form of an IEvent object. They are only removed from this queue in
the order they are received, and are, therefore, processed in the correct order.

If you do not allow the IDDEclientconversation object to use a secondary thread, the
incoming DDE messages are processed as they are received. It might seem that this
would guarantee that they are processed in the correct order, but it doesn't. The
IDDEclientconversation object passes information from the server message to the
application using a callback function. If the callback function creates a modal dialog,
the dialog creates its own message queue and dispatches messages from it. This could
cause your application to process messages from the DDE server application out of
order, depending on how quickly the user dismisses the dialog. Although your appli-
cation does not finish processing the current message until the dialog is dismissed, the
dialog could dispatch subsequent messages from the DDE server application during this
time.

The IDDEclientconversation object can help you avoid violating the operating
system's 1/10-second rule described in Chapter 20, "Applications and Threads." You
cannot accidentally violate this rule because the secondary queue is created without a
message queue.

If you choose to specify false for the useEventThread argument, and in all cases for the
Windows platforms, avoid using dialogs inside any of the callback functions and always return
promptly from the callbacks for the previous reasons. If you let the useEventThread argument
default to true, the IDDEclientconversation object throws an IOutofsystemResource
exception if the thread creation fails.

Cfeapfer 22 Dynamic Data Exchange Framework 569

The second IDDEclientconversation constructor has the following signature:
IDDEclientconversation (const char* applicationName,

const char* topicName,
Boolean useEventThread = true) ;

The application and topic names are used to begin a conversation with a DDE server appli-
cation with the specified name on the specified topic after the IDDEclientconversation
object has been successfully initialized. This constructor works as a short cut to eliminate the
need for calling begin. If you use this constructor, you don't know if the conversation has
been successfully initiated because constructors do not return anything. So, you must use
inconversation to find out if the implicit call to begin was successful.

Both constructors create an Iobjectwindow object to communicate with DDE server applica-
tions. Because the IDDEclientconversation class derives from the IHandler class, you have
a complex handler that you work with a bit differently than you do with other handlers in Open
Class Library. One major difference is that the IDDEclientconversation object adds itself as
a handler to the Iobj ectwindow object; you do not add it.

Each IDDEclientconversation object also creates several collections to keep state informa-
tion. The collections of interest to you are: an IQueue collection of transactions for which the
responses are outstanding and an Iset collection of active hot links.

The IDDEclientconversation copy constructor is private, so you cannot make a copy of an
IDDEclientconversation object. Because these objects communicate with other processes
using only window handles to identify themselves, it would not make sense to construct one
IDDEclientconversation from another. (What would this new object communicate with?) It
does make sense to create a new IDDEclientconversation object using one of the two regular
constructors. For the same reason, IDDEclientconversation : : operator= is also private.

Requesting a DDE Conversation
In the previous topic, we described a way to begin a DDE conversation as part of constructing
an IDDEclientconversation. The second way you can request a conversation is to call begin
on the IDDEclientconversation object. For this function, specify the name of the application
you want to have a conversation with and the name of the topic you want to have a conver-
sation about. For example:

Boolean bstarted =
aconversation.begin(''Financial Server" , "NYSE Stock Quotes")

The begin function returns true if the IDDEclientconversation object initiates a conver-
sation with the requested application on the requested topic. If the IDDEclientconversation
object is already conversing on any topic, it throws an IInvalidRequest exception. Again,
you can reuse the IDDEclientconversation object for a subsequent conversation once you end
the current conversation.

The IDDEclientconversation class provides a second version of begin that requires an
IwindowHandle reference as its only argument. With this version of begin, you can use objects
of this class without the standard conversation initialization as defined by the DDE protocol.
However, you must use this version if you have already agreed with another application to

570 Power GUI programming with visualAge for c++

have a DDE conversation and have an alternate method of exchanging the required window
handles. For this version of begin pass the window handle that the DDE server application
provides.

You can obtain the window handle that the IDDEclientconversation object uses for
conversing with server applications by calling clientHandle. One example for bypassing
normal conversation initialization is to use DDE for direct manipulation. Because you are
already communicating with the other process and have an alternate means of exchanging your
window handles, you might choose to use this version of begin.

Requesting Data
Use requestData to request data from a server application, specifying the name of the data
item and, optionally, the format of the data. The format defaults to IDDE: : textFormat. For
example:

aconversation.requestData(''XYZ Corp. ") ;

The IDDEclientconversation object throws an IInvalidRequest exception if it is not
currently conversing with a server application.

A server application can respond to a request for data in one of two ways. It can either send the
data item in the requested format to the client application or send a negative acknowledgement
indicating that it cannot provide the data item in the requested format.

DDE Data
The DDE Framework gets data from applications in the form of a void* pointer to a data
buffer and a length. DDE gives you data in the form of an Istring object. Thus, the Istring
object may contain a trailing null character. This occurs if the application that provides the
data counts the null-terminating character as part of the buffer.

Strip any trailing nulls from the Istring object before performing any C++ string operations
on the contents, such as using strcat for concatenation. Istring: : stripTrailing strips all

nulls in an Istring buffer.

If the server application sends the requested data item, the IDDEclientconversation object
creates an IDDEDataEvent object and passes a reference to this event by calling data. Because
this is a pure virtual function you must provide an implementation for it. You can call the
following functions of the IDDEDataEvent object to get detailed information about the event:

• data

Returns an Istring object containing the data you requested from the server applica-
tion.

• isAckRequested

Cfe¢pfe7. 22 Dynamic Data Exchange Framework 571

Returns true if the server application requests an acknowledgement when the client
application receives the data. If the server requests an acknowledgement, the
IDDEclientconversation object automatically sends it. The IDDEclientconversation
object uses the value returned from the data function to determine whether to send a
positive or negative acknowledgement to the server application. If it returns true, it
sends a positive acknowledgement. If it retrirns false, it sends a negative acknowl-
edgement. If the server application does not request an acknowledgement, the return
value of the data function is not used. The client application cannot send an unsolicited
acknowledgement.

• i sDataFromHo tLink

You need the isDataFromHotlink function because IDDEclientconversation uses the
data function and IDDEDataEvent event to pass data for both data requests and hot links.
Returns false if the server application sends the data item in response to a requestData.
It returns true if the server application serids the data item because of a data item
change for an active hot link. (Hot links are described in the next topic.)

If the server application sends a negative acknowledgement to the data request, the
IDDEclientconversation object creates an IDDEclientAcknowledgeEvent object and passes a
reference to this event by calling acknowledged.

Requesting a Data Hot Link
The DDE protocol supports feof Jz.73kS, ongoing links to data items. Once you establish a hot
link with a DDE server application for a particular data item, the server informs you whenever
the value of the data changes. To request a hot link to a data item with a server application, use
beginHotLink. Its prototype follows:

IDDEclientconversation
&beginl.IotLink(const char* item,

IDDE: :Format format = IDDE: :textFormat,
Boolean sendData = true,
Boolean pacing = false) ;

Just as for requestData, the only required argument is the name of the data item. The first
optional argument is the format you want the data to be rendered in. The format defaults to
IDDE: : textFormat. Use the two additional optional arguments to customize the type of hot
link you are requesting.

The first of these arguments specifies the type of hot link you are requesting. If you specify
true for the sendData argument (the default), you are requesting a dczfcz feo£ JZ73k. If a data hot
link is accepted, the DDE server application sends you a copy of the data item every time its
value changes. If you specify false for the sendData argument, you are requesting a 73ofz.rfz.-
cczfz.o# feof Jz.73k. If this type of hot link is accepted, the server notifies you every time the data
changes, but the new value is not sent.

The second optional argument specifies whether you want the DDE server application to pace
the rate at which updates for this data item are sent to you. The default for this argument is
false. If you specify true for the pacing argument, every time the DDE server application
sends either data or a notification for this data item, it waits until it receives an acknowl-

572 Power GUI programming with visualAge for c++

Thning Your Hot Links
A hot link can seriously impact the performance of your application in two situations. The
first occurs when you have a highly active hot link that is flooding your application with
hot-link updates. The second occurs when you have a hot link that involves transferring
large amounts of data with each hot-link update.

You can prevent these situations from degrading your application' s performance:

• When you begin the hot link, specify false for the sendData argument of
requestHotLink. When it is critical to update your local copy of the data item, call
requestData to obtain the current value of the data item from the server. This is an
especially appropriate technique when you have a hot link to a data item that changes
values frequently. You can also use this technique for large data items.

• When you begin the hot link, specify true for the pacing argument of
requestHotLink. This prevents subsequent hot-link updates from being sent to your
application until it has finished processing the current update. This is an appropriate
technique when you have a hot link to large data items or need a long time to process
data items. This technique is not as helpful for data items whose values change
frequently.

edgement from you indicating that you are ready for any additional updates. The
IDDEclientconversation object sends this acknowledgement automatically when you return
from the data or hotLinklnform callback functions; it uses the returned value to determine
whether to send a positive or negative acknowledgement.

The IDDEclientconversation object throws an IInvalidRequest exception if it is not
currently conversing or if it already has an active hot link for this data item in the requested
format. Note that you can request as many hot links as you want for an item, as long as they
are all for different formats. The server can respond to this request with either a positive or
negative acknowledgement. Request the data item using requestData if you want an initial
value for the data item because the server application can only send an acknowledgement in
response to a request for a hot link according to the DDE protocol.

The IDDEclientconversation object creates an IDDEclientAcknowledgeEvent object and
passes a reference to it by calling the acknowledged callback function.

Handling Hot Link Data
Once you have established a data hot link, the server sends you the new value of the data item
every time the value of the data item changes in the DDE server application. When the
IDDEclientconversation object receives the updated data item, it creates an IDDEDataEvent
object and passes a reference to this event when calling the data function. Again, this is a pure
virtual function so you must override the function to provide an implementation for it.

Cfeapfer 22 Dynamic Data Exchange Framework 573

We described the three functions that the IDDEDataEvent objects provide, data,
isAckRequested, and isDataFromllotLink, in the "Requesting Data" topic earlier in this
chapter. See that topic for the description of the IDDEDataEvent class and its member
functions.

The isAckRequested function returns true if the DDE server application requested an
acknowledgement, which it does if pacing is active for the hot link. The
IDDEclientconversation object automatically sends the acknowledgement to the server if it
has been requested. The IDDEclientconversation object uses the return value from the data
function to determine whether to send a positive or negative acknowledgement to the server
application.

Handling Hot Link Notifications
Once you have established a notification hot link, the server sends a notification that the value
of the data item has changed every time the value of the data item changes in the DDE server
application. When the IDDEclientconversation object receives the notification, it creates an
IDDEclientHotLinkEvent object and passes a reference to this event by calling
hotLinklnform. Explicitly request the updated data item from tbe DDE server application
using requestData to get the new value.

The IDDEclientHotLinkEvent class has two member functions, isAckRequested and
isDataRequested. Do not call isDataRequested in this context because it would not make
sense to do so. You already know that hotLinklnform is called only for notification hot links
(where data is never sent). Open Class Library provides isDataRequested only because each
IDDEclientconversation object also keeps IDDEclientHotLinkEvent objects in an Iset
object. This is how IDDEclientconversation keeps track of all of its active hot links. In this
context, you need the function to determine what type of hot link the object represents.

The isAckRequested function returns true if the DDE server application requested an
acknowledgement, which it does if pacing is active for the hot link. The
IDDEclientconversation object automatically sends the acknowledgement to the server if it
is requested. The IDDEclientconversation object uses the return value from the
hotLinklnform function to determine whether to send a positive or negative acknowledgement
to the server application.

Obtaining Information about Active Hot Links
Use the hotLinks function to obtain the current set of active hot links. The hotLinkcount
function returns the number of currently active hot links for this IDDEclientconversation
object. Each IDDEclientconversation object uses an Iset object to keep track of all of the
active hot links. The prototype of hotLinks is as follows:

IDDEclientconversation
&hotLinks (IDDEclientHotLinkset& hotLinkset) ;

IDDEclientHotLinkset derives from Iset and is defined in IDDECSET . HPP. Include this header
file to use the hotLinks function. This separate header file contains the collection classes that
the IDDEclientconversation class uses. This technique reduces overhead due to static

574 Power GUI programming with visualAge for c++

functions created by the collection template classes if you don't use any of the functions that
take or return a collection class.

To get the set of all hot links, create an IDDEclientHotLinkset object and call hotLinks. The
IDDEclientconversation object creates a copy of each IDDEclientHotLinkEvent object in its
internal hot link set and adds it to the set. If you remove any of these event objects from the
set, you must delete them when you are through using them. Open Class Library provides an
IDDEclientHotLinkset destructor that deletes each of the IDDEclientHotLinkEvent objects in
the set.

Use IDDEclientHotLinkEvent: : isAckRequested to determine if a hot link supports pacing
and IDDEclientHotLinkEvent: :isDataRequested to determine if a hot link is a data or
notification hot link. Use the IDDEEvent item and format functions to obtain the remaining
information about each hot link.

The primary reason for obtaining this set of hot links from an IDDEclientconversation object
is to make the set of active hot links in your client application persistent. You can save the
information contained in this set when your application ends, and then use it to request the
same set of hot links the next time your application runs.

Ending Hot Links
The IDDEclientconversation class provides two functions for ending hot links , endHotLink
and endHotLinks. To end a single hot link, call endHotLink, specifying the name of the data
item and, optionally, the format of the data. The format defaults to IDDE: : textFormat. For
example, if you have multiple active hot links, all in different formats, with a DDE server
application on the "XYZ Corp" data item, endjust one of the hot links as follows:

aconversation. endHotLink(`'XYZ Corp" , IDDE: : textFormat) ;

Use endHotLinks to end multiple hot links with one function call. The endHotLinks function
has one optional argument, the name of the data item, which defaults to 0. To end all hot links
for all data formats of a particular data item, specify the name of the data item. For example,
the following code ends all hot links to the "XYZ Corp" data item for all data formats:

aconversation . endHotLinks ("XYZ Corp") ;

To end all hot links for all data items for an IDDEclientconversation object, call
endHotLinks with no parameters. The IDDEclientconversation object throws an
IInvalidRequest exception if it is not currently conversing, or if no active hot links match the
arguments specified.

The server application can respond to an endHotLink or endHotLinks request with either a
positive or negative acknowledgement. For either one, the IDDEclientconversation object
creates an IDDEclientAcknowledgeEvent object and passes a reference to this event by calling
acknowledged.

Cfe¢pfe7.22 Dynamic Data Exchange Framework 575

Poking Data
The DDE protocol supports the concept of pok!.Jog d¢£cz from a DDE client application to a DDE
server application. Poking data is a request to a DDE server application to set a specified data
item to a value passed by the client application. The IDDEclientconversation pokeData
function sends a poke data request to the conversing DDE server application.

The pokeData function has three required arguments and one optional argument. The first
required argument is the name of the data item that the DDE server is to update to a new value.
The second and third required arguments are a void*, a pointer to a buffer containing the new
data item value, and an unsigned long, its length. By using a void* and length instead of just a
char* to point to the new data item value, you can poke both character strings and buffers of
data. The optional argument is the format that the data is sent in; it defaults to
IDDE : : textFormat.

The following example requests a DDE server application to set the value of the "XYZ Corp"
data item to 82. It specifies a private data format, `'private_Istring." The example creates
an Istring object from the unsigned long. The DDE server application must recognize the
format of the data so that it can receive the data as an Istring object, and convert it back to an
unsigned long using Istring : : asunsigned.

unsigned long ulvalue = 82;
Istring strvalue (ulvalue) ;
aconversation.pokeData ("XYZ Corp" ,

strvalue,
strvalue .length () ,`'private_Istring") ;

The IDDEclientconversation object throws an IInvalidRequest exception if it is not
currently conversing.

The server application responds to this request with a positive or negative acknowledgement.
In either case, the IDDEclientconversation object creates an IDDEAcknowledgepokeEvent
object and passes a reference to this event by calling pokeAcknowledged.

The only function that the IDDEAcknowledgepokeEvent class provides is pokedData, which
returns an Istring object containing the data item value that you requested the DDE server
application to poke. This Istring object is constructed from the void* pointer and length you
passed as arguments in the pokeData call to which this IDDEAcknowledgepokeEvent is a
response. (The IDDEclientconversation object keeps the details of all outstanding transac-
tions in an IQueue object.)

Executing Remote Commands
The DDE protocol provides a way for DDE client applications to send commands and
command strings to DDE server applications to execute them remotely. Typically, you would
send macros and commands to word processing or spreadsheet applications that support a
command language and support this aspect of the DDE protocol.

576 Power GUI programming with visualAge for c++

Use IDDEclientconversation: : executecommands to send commands to DDE server applica-
tions. The executecommands function has two required arguments, a void*, which points to the
command string buffer, and an unsigned long, which is the length of the command string
buffer. The DDE server application defines the format of the contents of a command string
buffer, unlike all other DDE transactions where the format of the data buffer is defined by the
specified DDE data format. Refer to the documentation of the DDE server application you are
sending commands to in order to determine the required format of the command buffer. The
IDDEclientconversation object throws an IInvalidRequest exception if it is not currently
conversing.

The server application responds to this request with a positive or negative acknowledgement.
In either case, the IDDEclientconversation object creates an IDDEAcknowledgeExecuteEvent
object and passes a reference to this event by calling executeAcknowledged.

The only function that the IDDEAcknowledgeExecuteEvent class provides is commands, which
returns an Istring object containing the command string that you requested the DDE server
application to execute. This Istring object is constructed from the void* pointer and length
passed in the executecommands call to which this IDDEAcknowledgeExecuteEvent is a
response. (The IDDEclientconversation object keeps the details of all outstanding transac-
tions in an IQueue object.)

Ending a Conversation
To end the current conversation, call IDDEclientconversation: :end. The
IDDEclientconversation object first cleans up and then resets all of its instance data to the
original values from which the object was first constructed. Then, it posts a message to the
DDE server application that instructs it to end the conversation. The
IDDEclientconversation object throws an IInvalidRequest exception if it is not currently
engaged in a conversation.

The DDE server application responds by posting an identical termination message to the DDE
client application acknowledging the end of the conversation. Then, the
IDDEclientconversation object creates an IDDEclientEndEvent object and passes a reference
to this event by calling conversationEnded.

You can call the application and topic functions of IDDEclientEndEvent to get details about
the conversation that just ended. The application function returns an Istring object
containing the name of the DDE server application with which you were conversing. The
topic function returns an Istring object containing the name of the topic you were
conversing about with the DDE server application.

You can also call sourceofEnd, which the parent class of IDDEclientEndEvent, IDDEEndEvent,
provides to determine who initiated the end of the conversation. This information is important
because an error can cause the conversation to end and because the one transaction that the
DDE protocol allows a DDE server application to initiate is an end conversation transaction.
In both cases, conversationEnded is called to inform you that the conversation is ending. See
"The Generic DDE Event Classes" earlier in this chapter for a detailed description of the

IDDEEndEvent class.

Cfeapfer22 Dynamic Data Exchange Framework 577

Miscellaneous Client Functions
The IDDEclientconversation class provides additional functions for obtaining information
on the status of an IDDEC-lientconversation object and the current conversation, if it is
engaged in one. Following is a brief description of two of these member functions:

• The iscasesensitive function returns true if the DDE server application that this
IDDEclientconversation is conversing with indicates it enforces case sensitivity. The
server provides this information when the conversation is initiated.

The outstandingTransactioncount function returns the number of outstanding trans-
actions for this IDDEclientconversation object as an unsigned long. Outstanding
transactions are those that the IDDEclientconversation object has not received a
response to from the DDE server application.

Finding Active DDH Servers
There are several ways to obtain information about active DDE server applications and the
topics they support. One of these methods is defined by the Sysfeffl topic, which is a topic all
DDE server applications are encouraged to support. You can find detailed information about
the SysterrL topic in the online Presentation Manager Guide and Roference .

The DDE protocol also provides an older mechanism for obtaining information about active
servers. Because most DDE server applications support this alternate mechanism, Open Class
Library provides explicit support for it with the supportedTopics and
supportingApplications functions. You can use these functions even when the
IDDEclientconversation object is conversing.

For both functions, you construct an empty IDDEActiveserverset object and pass a reference
to it as an argument to the function. IDDEActiveserverset de.fives from Iset, and it contains
IDDEActiveserver objects. Both classes are defined in IDDECSET.HPP. You need to include
this header file to use supportedTopics and supportingApplications.

Open Class Library provides .a destructor for the IDDEActiveserverset class that deletes each
IDDEActiveserver object it contains. If you remove any of the IDDEActiveserver objects
from the set, you must delete them. The IDDEActiveserver class provides the following three
functions:

• The application function returns an Istring object containing the name of the DDE
server application.

• The topic function returns an Istring object containing the name of a topic supported
by this DDE server application.

• The iscasesensitive function returns true if the DDE server application indicates that
it enforces case sensitivity for conversations on this topic.

578 Power GUI programming with visualAge for c++

Finding All supported Topics `
Use supportedTopics to find information about all topics that currently active DDE server
applications support. This function's prototype is as follows:

IDDEclientconversation
&supportedTopics (IDDEActiveserverset& activeserverse€,

const char* applicationName = 0) ;
To find all topics supported by all applications, let the applicationName argument default to 0.
Then, an IDDEActiveserver object is added to the set for each unique application and topic
pair supported on your system. If you specify an application name, only the topics supported
by that application are represented by an IDDEActiveserver object in the set.

Finding All Applications Supporting a Topic
Use supportingApplications to find all currently active applications that support a particular
topic. This function's prototype is as follows:

IDDEclientconversation
&supportingApplications (IDDEActiveserverset& activeserverset ,

const char* topicNalne) ;
Then, an IDDEActiveserver object is added to the set for each application that supports the
specified topic.

Dynamic Data Exchange Servers
IDDETopicserver is the key DDE server abstraction in Open Class Library. The other classes
you use to implement a DDE server are the DDE event classes. The hierarchy of DDE event
classes is shown in Figure 22-1. Each of these classes is covered in detail in the topic that
covers the DDE transaction where they are actually used. For example, the IDDEExecuteEvent
class is described in a later topic, "Supporting Command Execution."

An IDDETopicserver object can participate in an unlimited number of concurrent conversa-
tions. Multiple IDDETopicserver objects can also support the same topic in your application.
If you choose to do this, determine how you want to split the conversation load among the
multiple servers that you create for the same topic. An IDDETopicserve.r object must always
support the topic it is constructed for; you cannot change the topic.

Take the following steps to provide DDE server support in your application. Follow them once
for each DDE topic you want to support in your application because an IDDETopicserver
object can only support conversations for a single topic.

1. Derive a class from IDDETopicserver to provide implementations for the virtual
callback functions associated with DDE transactions that you want your DDE topic
server to support. Provide an implementation for the requestData pure virtual function.

2. Create an object of the class that you derived from IDDETopicserver.

3. Wait for DDE client applications to initiate conversations with you. Accept as many of
the conversations as you want.

Cfeapfer 22 Dynamic Data Exchange Framework 579

4. Wait for transaction requests from the DDE client applications with which you are in
conversation. Process the requests within a conversation in the order that they arrive in.
These requests consist of requests for data, requests for hot links, requests to execute
commands, and requests to accept data from client applications.

5. At any time, you can end one or more of the conversations.

6. Destroy the object of the class derived from IDDETopicserver. The IDDETopicserver
destructor automatically ends all conversations in which the IDDETopicserver-derived
class is currently engaged.

At a high level, these are all the steps for adding DDE server function to your application.

Constructing a DDE Server
There is only one constructor for creating IDDETopicserver objects. Following is the
prototype of this constructor:

IDDETopicserver (const char* applicationName,
const char* supportedTopic ,
IFramewindow* owner = 0,
Boolean useEventThread = true) ;

The first two arguments are required and the last two are optional. The first required argument
is the name of your application, and the second one is the name of the topic that this
IDDETopicserver object supports. DDE client applications must specify an application name
and a topic name when they request a conversation.

The first optional argument is an IFramewindow*, which defaults to 0. If your application has a
main window, we recommend that you pass a pointer to it in your first IDDETopicserver
constructor. The IDDETopicserver constructor creates a static IFramewindow object and can
use the IFramewindow* as the object's owner. (There is one IFramewindow object shared by all
IDDETopicserver objects. This IFramewindow object is reference-counted to ensure that it is
not destroyed until there are no more IDDETopicserver objects.)

Specifying an IFramewindow* prevents a problem that you can have when your application is
ending. The operating system window associated with each IFramewindow object must be
destroyed before the message loop exits. This requirement is described in Chapter 20,
"Applications and Threads." Therefor.e, you must ensure that all IDDETopicserver objects are

destructed in order for the static IFramewindow object to be destructed so that your application
can end. These destructions may not occur if you create any IDDETopicserver objects on the
stack inside of main, unless you specify this IFramewindow* argument.

The second optional argument to the IDDETopicserver constructor is a Boolean, which
defaults to true. This argument specifies whether the IDDETopicserver object can create a
separate thread to process incoming messages from DDE client applications. We highly
recommend that you let this default to true because of the benefits you gain from allowing the
use of a secondary thread for processing incoming messages. See the "Constructing a DDE
Client" topic earlier in the chapter for a detailed description of these benefits as well as
potential problems if you do not use secondary threads.

580 Power GUI programming with visualAge for c++

Note: This argument has no effect in the Windows operating system due to a restriction in the
native DDE implementation.

The IDDETopicserver constructor creates an Iobj ectwindow object to communicate with DDE
client applications. Because the IDDETopicserver class derives from IHandler, you have a
complex handler that you work with a bit differently than you do with other handlers in Open
Class Library. One major difference is that the IDDETopicserver object adds itself as a
handler to the Iobj ectwindow object.

The IDDETopicserver object also creates several collections to keep state information. The
collections of interest to you are an Iset collection to keep track of all conversations, and an
Iset collection of hot link items, where each element in the set points to an Iset collection of
active hot links for that item.

The IDDETopicserver copy constructor is private, so you cannot make a copy of an
IDDETopicserver object. Because IDDETopicserver objects communicate with other
processes using only window handles to identify themselves, it would not make sense to
construct one IDDETopicserver from another. (What would this new object communicate
with?) It does make sense to create a new IDDETopicserver object using the regular
constructor. For the same reason, the IDDETopicserver operator= is also private.

Accepting DDE Conversations
When an IDDETopicserver object receives a request to begin a conversation from a DDE client
application, it verifies that the request is valid. The IDDETopicserver object checks the
application and topic names supplied in the request with the names contained in its instance
data, ignoring mismatches due to differences in case. (The strings are all folded to uppercase,
so the matching is case-insensitive.)

If either the application or topic names do not match, the request to begin a conversation is
discarded. The exception to this is a 0-length char* for either the application or topic name.
The DDE protocol allows DDE client applications to use 0-length character strings as
wildcards for application and topic names. In this way, DDE clients can find all topics
supported by a particular application, all applications that support a particular topic, or all
active application-topic pairs. See the "Finding Active DDE Servers" topic earlier in this
chapter for more information on using wildcards.

If the names match, the IDDETopicserver object creates an IDDEBeginEvent object and passes
you a reference to this event by calling acceptconversation. You are passed an
unsigned long representing a unique conversation ID in addition to the IDDEBeginEvent
object. If you accept this request for a conversation, this ID is passed on all subsequent trans-
action requests from this DDE client. You can also use this ID to end this conversation at a
later time. Remember that conversation requests are sent, not posted, by the DDE client
application, so you must return as quickly as possible from acceptconversation.

Call IDDEBeginEvent: :application to get the name of the application with which the DDE
client wants to converse. IDDEBeginEvent : : topic returns the name of the topic that the DDE
client wants to have a conversation about. The acceptconversation function is not called
unless the application and topic names match the topic server's, so the only reason to call these

Cfe¢pfe7.22 Dynamic Data Exchange Framework 581

two functions is if you, want to know if any wildcards are being used. (For example, you may
not want to accept conversations initiated using wildcards.)

If you return false from acceptconversation, the IDDETopicserver object does not respond
to the DDE client, and the conversation is not accepted. If you return true, you indicate that
you want to accept the conversation, and the IDDETopicserver object responds to the DDE
client application to reflect this. The default behavior of acceptconversation is to return
true, effectively accepting all conversation requests. If you want to have a case-sensitive
conversation, call IDDEBeginEvent: : setcasesensitive and it is communicated to the DDE
client application.

Supporting Data Requests
When an IDDETopicserver object receives a request for data from a DDE client application,
first it ensures that it has an active conversation with the client application. If it does, the
IDDETopicserver object creates an IDDERequestDataEvent object and passes a reference to
this event by calling requestData. Because requestData is a pure virtual function you must
provide an implementation for it. The conversation ID for the DDE client is also passed by
requestData.

Because the IDDERequestDataEvent class derives indirectly from IDDEEvent, you can call the
IDDEEvent item and format functions to determine what data item is requested and in what
format. If you want to provide the requested data, use one of the two overloaded versions of
IDDERequestDataEvent: :setData. The first version of setData accepts a const char* to
support character strings. The second version supports buffers of data. It accepts a
const void* argument to point to the data buffer and a unsigned long argument for the length
of the buffer.

By calling IDDERequestDataEvent: :requestAck, you can also request that the client appli-
cation send an acknowledgement when it receives the data. To indicate to the
IDDETopicserver object that you have provided the requested data, you must return true from
requestData. If you cannot provide the requested data, return false from requestData. This
causes the IDDETopicserver object to send the client application a negative acknowledge-
ment.

If you request an acknowledgement from the DDE client application, the client returns an
acknowledgement to your IDDETopicserver object after it processes the data it receives.
When this acknowledgement is received, the IDDETopicserver object creates an
IDDEserverAcknowledgeEvent object and passes a reference to it by calling acknowledged. Do
not call the IDDETopicserver hotLinkupdate or endconversation functions from within
acknowledged. If you do, the instance data of IDDETopicserver may be corrupted or a
deadlock may occur.

The IDDEserverAcknowledgeEvent provides two functions, data and isAckTOHotLinkupdate.
Use the data function to obtain an Istring object containing the data value you provided to
the client application. This Istring object is constructed from the void* pointer and length
passed as arguments in the IDDERequestDataEvent function, setData. (The IDDETopicserver
object keeps the details of all outstanding acknowledgements in an IQueue object.)

582 Power GUI programming with visualAge for c++

Use isAckTOHotLinkupdate to determine if this acknowledgement is for data that you sent in
response to a request for data or for data that you sent as the result of an updated hot-link data
item. In this case, the function returns false because the acknowledgement applies to data
that you sent to satisfy a request for data from the client application.

Supporting Hot Links
Because the DDE protocol supports ongoing hot links to data items, you must send the updated
data item's value or a notification (depending on the type of hot link) whenever the value of
the data item changes. When an IDDETopicserver object receives a request for a hot link, it
first ensures that it has an active conversation with the client. If it does, the IDDETopicserver
object creates an IDDEserverHotLinkEvent object and passes a reference to this event by
calling beginHotLink. The conversation ID for the DDE client is also passed by
beginHotLink.

Because the IDDEserverHotLinkEvent class is indirectly derived from IDDEEvent, you can call
the IDDEEvent item and format functions to determine what data item a hot link is being
requested for and in what format. Use isDataRequested to determine what type of hot link the
DDE client application is requesting. If this function returns true, a data hot link is being
requested; if the function returns false, a notification hot link is being requested. You do not
have to send updated data item values for a notification hot link: just send a notification that
the data item value has changed.

Use IDDEserverHotLinkEvent: : ispacingRequested to determine if the DDE client appli-
cation is requesting pacing for the hot link. Pacing means you must request an
acknowledgement from the client application every time you send it a data item value update
or notification. You must then wait until the client application sends you an acknowledgement
before sending any subsequent updates or notifications. A DDE client application can use this
to avoid being overrun with updates from a highly active hot link.

If you want to accept the hot link, return true from beginHotLink. This causes the
IDDETopicserver object to send the client application a positive acknowledgement. If you do
not want to accept the hot link, return false from beginHotLink. This causes the
IDDETopicserver object to send the client application a negative acknowledgement. The
default behavior of beginHotLink is to return false.

When an IDDETopicserver object receives a request to end one or more hot links from a DDE
client application, it first ensures that it has an active conversation with the client. If it does
have one, and if it has a matching hot link to the client application, the IDDETopicserver
object creates an IDDEEvent object and passes a reference to this event by calling
hotLinkEnded. The conversation ID for the DDE client is also passed by hotLinkEnded.

Note that you do not have a choice about accepting a request to end a hot link. If the DDE
client application specifies a 0-length string for the format, all hot links for the specified item
are ended. If the client application specifies a 0-length string for the data item name, all hot
links with this client are ended. Call the item and format member functions of IDDEEvent to
obtain the name of the data item and data format for which a hot link is being ended.

Cfe¢pfer22 Dynamic Data Exchange Framework 583

Providing Hot Link Data
Keep track of all of the data items for which you.have accepted a hot link. When the value of
one of these data items changes, call IDDETopicserver: :hotLinkupdate to pass the name of
the changed data item. If you pass a 0 or a 0-length string for the name of the data item, the
IDDETopicserver object throws an IInvalidparameter exception. If there is not an active hot
link for the specified data item, the IDDETopicserver object throws an IInvalidRequest
exception. The hotLinkupdate function returns an usigned long containing the number of
hot links for which it sent a notification, or an updated data item value.

The hotLinkupdate function creates an IDDERequestDataEvent object and passes a reference
to this event by calling requestHotLinkData once for each format that this data item has a data
hot link for. The hotLinkupdate function then sends the updated data item's value to each
DDE client that has a hot link for that item and format. Thus, you do not have to keep track of
all of the formats you have accepted hot links for on each data item. The IDDETopicserver
object keeps track of everything for you. Do not call the IDDETopicserver hotLinkupdate or
endconversation member functions from wit.bin this function. If you do, IDDETopicserver
instance data may be corrupted or a deadlock may occur.

Because IDDERequestDataEvent is indirectly derived from IDDEEvent, you can call the
IDDEEvent item and format member functions to determi`ne what data item is being requested
and in what format. You must provide the data because you agreed to accept this hot link and
called hotLinkupdate to indicate that you have an updated value for the data item. Use one of
the two overloaded versions of IDDERequestDataEvent: : setData to provide the data. The
first version of setData accepts a const char* to support character strings. The second
version supports buffers of data. It accepts a const void* argument to point to the data buffer
and a unsigned long argument for the length of the buffer.

By calling the requestAck function of IDDERequestDataEvent, you can also request the client
application to send an acknowledgement when it receives the data. If pacing is active for any
of the hot links, the IDDETopicserver object automatically requests an acknowledgement. The
IDDETopicserver object enforces pacing if it is active for a hot link. If an acknowledgement is
outstanding for a hot link with pacing, no update is sent to the client application. When the
client application sends the outstanding acknowledgement, the IDDETopicserver object sends
the client the latest update or notification if the data item has changed while the acknowl-
edgement was outstanding. If data is required, the IDDETopicserver object calls
requestHotLinkData as described above.

If you request an acknowledgement from the DDE client application, the client returns an
acknowledgement to your IDDETopicserver object after it has processed the data that you
provided. When this acknowledgement is received, the IDDETopicserver object creates an
IDDEserverAcknowledgeEvent object and passes a reference to this event by calling
acknowledged. Do not call the IDDETopicserver hotLinkupdate or endconversation member
functions from within acknowledged. If you do, IDDETopicserver instance data may be
corrupted, or a deadlock may occur.

The IDDEserverAcknowledgeEvent object provides two functions, data and
isAckTOHotLinkupdate. Call data to obtain an Istring object containing the data value that
you provided to the client application. This Istri.ng object is constructed from the void*

584 Power GUI programming with visualAge for c++

pointer and length that you passed as arguments in the IDDERequestDataEvent : : setData call.
(The IDDETopicserver object keeps the details of all outstanding acknowledgements in an
IQueue object.)

Use isAckTOHotLinkupdate to determine if this acknowledgement is for data that you sent as
the result of a request for data or for data that you sent as the result of an updated hot-link data
item. In this case, the function returns true because the acknowledgement applies to data that
you sent for a hot-link update.

Supporting Requests to Poke Data
When an IDDETopicserver object receives a request to poke a new value for a data item, it
first ensures that it has an active conversation with the client application. If it does, the
IDDETopicserver object creates an IDDEPokeEvent object and passes a reference to this event
by calling pokeData. The conversation ID for the DDE client is also passed on pokeData.

To indicate to the IDDETopicserver object that you have accepted the poke data request, return
true from pokeData. This causes the IDDETopicserver object to send the client application a
positive acknowledgement. If you cannot process the poke data request, return false from
pokeData. This causes the IDDETopicserver object to send the client application a negative
acknowledgement. The default behavior of pokeData is to return false, indicating that you
cannot process the poke data request.

Supporting command Execution .
When an IDDETopicserver object receives a request to execute a command string, it first
ensures that it has an active conversation with the client application. If it does, the
IDDETopicserver object creates an IDDEExecuteEvent object and passes a reference to this
event by calling executecommands. The conversation ID for the DDE client is also passed on
executecommands.

Use IDDEExecuteEvent : : commands to obtain an Istring object containing the command string
that the client wants you to execute.

To indicate to the IDDETopicserver object that you have successfully executed the command
string, return true from executecommands. This causes the IDDETopicserver object to send
the client application a positive acknowledgement. If you cannot execute the command string,
return false from executecommands. This causes the IDDETopicserver object to send the
client application a negative acknowledgement. The default behavior of executecommands is
to return false, indicating that you cannot execute the command string.

Handling Conversation Terminations
When an IDDETopicserver object receives a request to end a conversation, it first ensures that
it has an active conversation with the client application. If it does, the IDDETopicserver
object creates an IDDEEndEvent object and passes a reference to this event by calling

Cfe¢pfe7. 22 Dynamic Data Exchange Framework 585

conversationEnded. The conversation ID for the DDE client is also passed on
conversationEnded.

You can call IDDEEndEvent : : sourceofEnd to determine what initiated the end of the conver-
sation. This is important because an error can cause the conversation to end, as well as a
request to end the conversation from the DDE client application. In both cases,
conversationEnded is called to inform you that the conversation is ending. See "The Generic
DDE Event Classes" topic earlier in this chapter for a detailed description of the IDDEEndEvent
class.

The IDDETopicserver object responds by posting an identical termination message back to the
DDE client application to acknowledge the end of the conversation.

Miscellaneous Server Functions
The IDDETopicserver class provides miscellaneous functions for obtaining information about
the status of an IDDETopicserver object and the conversations in which it is currently
engaged. Following is a brief description of two of these member functions:

• The DDE protocol does not allow a server application to initiate a conversation with a
client application. It does allow a client and server application to engage in a conver-
sation without going tbrough the standard conversation initialization. The
beginconversation function takes the window handle of a DDE client as its only
argument. Use it if you have already agreed with a client application to have a DDE
conversation, and if you have an alternate method for exchanging the required window
handles. Use IDDETopicserver: :serverHandle to obtain the topic server's window
handle to pass to the client application. The IDDETopicserver object throws an
IInvalidparameter exception if the specified window handle is not valid. The
IDDETopicserver object also throws an IInvalidRequest exception if it is already
engag.ed in a conversation with a DDE client application using the specified window
handle.

• The endconversation function ends a conversation with a DDE client application. This
is the only transaction that a DDE server application can initiate. The only argument to
this function is an unsigned long, which is the conversation ID that uniquely identifies
the conversation. If there is not a current conversation with the client application
identified by the conversation ID, the IDDETopicserver object throws an
IInvalidRequest exception. When the DDE client application acknowledges the end of
the conversation, the IDDETopicserver object creates an IDDEEndEvent object and
passes a reference to this event by calling conversationEnded. The conversation ID for
the DDE client is also passed on conversationEnded.

Chapter 23

Using Help

• Describes how to provide help in your application
• Describes the IHelpwindow andlHelpHandler classes
• Describes the IcnrHandler, IContainercolumn, IContainerobject, IpageHandler,

IMessageB ox, IFileDialog, IFontDialog, and IDMltemproviderFor classes in regards
to how they support help

• Chapters 5, 6,13,14,16,18, 21, 24, and27 coverrelatedmaterial.

An important part of creating an application is providing it with online help. Online help can
welcome a user to a new user interface and describe the visual cues it uses and the real-world
analogies it draws upon. It can encourage exploration, demonstrate features, and provide
guidance for solving problems. Online help offers the advantage of being less disruptive than
printed documentation because it does not require a user to leave the keyboard.

Open Class Library provides help support through the IHelpwindow and IHelpHandler classes,
as well as several associated event classes. Figure 23-1 shows their class hierarchy.
Additionally, Open Class Library provides help support for containers, notebooks, menus, tool
bars, and message boxes, and for drag and drop, which is scattered in a number of other
classes.

This chapter describes the help support in Open Class Library. In the cases where some
information appears in other chapters, this chapter provides references to where you can find
it. For example, this chapter does not describe information areas and fly-over help. Both of
these features display short help text that a user does not request via the Fl key. See Chapter 5,
"Frame Window Basics," for information on the IInfoArea class, which you primarily use to
show descriptions for menu items. See Chapter 16, "Tool Bars, Fly-Over Help, and Custom
Buttons," for information on the IFlyoverHelpHandler and IFlyText classes. Their primary
use is to show descriptions for the tool bar button that the mouse pointer is over.

Help Fundamentals
Online help information has many forms. Most applications provide co7®fexfz{czJ (also known as
co7®£e:#f-Se7es'z.fz.ve) and geJ®erczz (also known as exfe73ded or fczfk-orz.e7efed) help for elements in
their user interface. Contextual help presents a user with usage information for the item with
the input focus, such as an entry field, button, menu choice, or object in a container. General
help provides information that applies to an application window as a whole. This help

587

588 Power GUI programming with visualAge for c++

IBase

I

I IVBase I I He]pwindow::Setttings I

INotifier IEvent IHandler

Iwindow IHelpHandler

Helpwindow

I I I

I HelpErrorEvent I I HelpHypertextEvent I HelpMenuBarEvent I

I HelpNotryEveut I HelpstibitemNotFoundEvent I I nlelpTutorialEveut

Figure 23-1. Help class IHerarchy.

typically describes the purpose of the window, the tasks that a user can perform, and how
elements of the window interact with each other.

Other types of online help include a fczbze o/co#£e#£F and feeJp I.7®dex, which list the topics you
are providing help for, wsiz.73g feeJp which describes how to use the help system, a keyS feeJp
pcz7®eJ that lists keys that have a special purpose in your application, and a f#for}.CZJ that teaches
how to use your application.

To add help to your application, follow these steps:

1. Add elements to the user interface that enable a user to request help.

2. Create the help information, which can include help panels and a help index.

3. Provide the code to enable help support and to associate specific help panels with
specific windows in your application.

Enabling a User to Request Help
An application typically gives a user three ways to request help: by pressing the Fl key, by
selecting a Help push button, and by selecting a help-related menu choice. Build these
mechanisms into your user interface to enable a user to access help information.

Cfoapfe7.23 UsingHelp 589

FI Key
The operating system converts an Fl key press into a help request. In response to such a help
request, an application generally displays contextual help for the control or menu item with
the input focus. If no contextual help exists, it displays general help for the frame window.

Help Push Button
A user can also request help information by selecting a Help push button. This essentially
produces the same result as pressing the Fl key.

Chapter 10, "Button Controls," describes how you can create a help push button by using the
style IPushButton: :help or calling IPushButton: :enableHelp. To prevent the input focus
from changing to the push button when a tlser selects it with the mouse, use the
IButton: :nopointerFocus style or IPu;hButton: :disableMouseclickFocus function.
Clicking a help push button with the mouse then generates a contextual help request for the
current control instead of the help push button.

The Windows operating system supports a "What's This?" title bar button in dialog boxes as an
alternative to a Help push button; Open Class Library does not currently support this feature.
The styles DS_CONTEXTHELP and WS_EX_CONTEXTHELP control the appearance of the "What's
This" button.

Help Menu Choices
Menu bars typically contain choices for accessing help information. Figure 23-2 shows an
example of a Help pull-down menu for a Windows and OS/2 application.

F:..I::Ti`;``.
Figure 23-2. Sample Help Menu for a Windows Oeft) and OS/2 Application.

590 Power GUI programming with visualAge for c++

You can add help-related menu choices to both a menu bar and pop-up menu. The menu
resource that defines the Help menu shown in Figure 23-2 follows. The operating system does
not automatically add these choices for you.

Help Menu Resources - help\helpmenu\helpmenu.rc
#include "helpmenu.h"
#ifdef IC_PM /* OS/2 resources */

#include <os2.h>

MENU ID_MENUBAR
(

SUBMENU "~File" ,
(

MENUITEM "Close\tF3 '' ,
)
SUBMENU "~Help" ,
(

MENUITEM "Help ~index" ,
MENUITEM "~General help"
MENUITEM ''~Using help" ,
MENUITEM ''~Keys help" ,
MENUITEM SEPARATOR

ID_FILE

ID_CLOSE , MI S_SYSCOMMAND

ID_HELP

SC_HELplNDEx , MI S_S¥SCoDn¢AND
SC_HELPEXTENDED , MIS_SYSCOMMAND
ID_USINGHELP
SC_HELPKEYS

MENUITEM `'~About this example'' , ID_PRODUCTINFO
)

)

i;ise /* Windows resources */
#include <windows.h>

ID_MENUBAR MENUEX
(

POPUP „&File"
(

MENUITEM "Close\tF3'' ,
)
POPUP ,,&Help„ ,
(

MENUITEM `'&Contents" ,
#ifdef IPF_COMPATIBLE

MENUITEM `'Help &index"
#else

MENUITEM "&Search for
#endif

MIS_SYSCOMMAND

ID_FILE

ID_CLOSE

ID_HELP

ID_HELPCONTENTS

SC_HELPINDEX

help on... " , SC_HELPINDEX

MENUITEM "&General help" , SC_HELPEXTENDED
MENUITEM "&How to use help" , ID_USINGHELP
MENUITEM "&Keys help" , SC_HELPKEYS
MENUITEM SEPARATOR
MENUITEM "&About this example... ", ID_PRODUCTINFO

)
)
®®,

#endif

Creating Help Information
Applications provide most of their help information as help panels. You define help panels in
a help source file and then compile that file into a help file. Open Class Library supports two
formats for help files. For an OS/2 application, your help files must be in the format defined
by the J73/orm¢£z.o73 Pres'e7®f¢fz.o73 Fczcz.Zz.ty (IPF), the help component of the OS/2 operating

Cfe¢pfer23 UsingHelp 591

system. For a Windows application, you can use IPF help files or help files formatted for the
help component of the Windows operating system, Wz.7®dows HeJp.

VisualAge for C++ does not provide any tools for converting help files from one format to the
other, so the choice of which to use is mostly one of portability versus native look and feel.
For portability, use IPF help files in both the Windows and OS/2 operating systems (this also
gives you native look and feel in the OS/2 operating system). If you are developing an appli-
cation only for the Windows operating system, or if native look and feel in the Windows
operating system is important to you, use the Windows Help format. (Note, however, that if
you can locate a third-party tool that converts between Window Help and IPF help files, you no
longer have to sacrifice native look and feel for portability.) You identify the format of the
help files you are using when you construct an IHelpwindow object. See the topic "Creating a
Help Window Object" for more details

As you build your help information, keep in mind the relative strengths and weaknesses of
online information as compared to printed material. Strengths include the ability to search
entire documents for specific text, provide hypertext or hypergraphic links between related
parts of a document, display information specific to the context of a help request, and incor-
porate multimedia or a tutorial into the help information.

IPF Help Files
Both OS/2 and Windows applications can use IPF help files. When a frame window receives a
help request in the OS/2 operating system, by default it calls IPF to service that request.
VisualAge for C++ for Windows includes a version of IPF. When you use IPF help panels in
the Windows operating system, Open Class Library calls this version of IPF to display the help
panels.

Use any text editor to create the source files for IPF help files. You use the IPF tag language to
code the help information. The language provides tags for defining help panels, formatting
text into paragraphs and lists, and defining related help information such as a table of contents,
index, and hypertext links between information. The following example uses the :h3 ., :p.,
and : hp2 . tags to define a simple contextual help panel for a menu choice:

Help Panel Definition - help\helptbl\helptbl.ipf
®®,

:h3 res=PANEL_CLOSE.Close Help
:p.This is contextual help for the :hp2.Close:ehp2. menu choice.
:p.Select this choice to close the window.
®®®

After creating a help source file, compile it with the IPF compiler packaged with VisualAge
for C++, IPFC . EXE. You can use the IPF compiler to generate either a help file (with a . HLP file
extension) that your application uses to display help panels or an online manual (with an . INF
file extension). View an online manual using VIEW.EXE in the OS/2 operating system and
IVIEW . EXE in the Windows operating system.

For more details on the IPF tag language, compiler, and help files, refer to the J7e/ormczfz.o7®
Presentation Facility Programmer' s Guide and Reference inchaded withv±soalALge for C++ .

592 Power GUI programming with visualAge for c++

Although the IPF compiler does not support the use of C/C++ #def ine macros in its help
source files, you can emulate this support. Doing so allows the use of symbolic constants for
help panel identifiers, such as we used for the value of the :h3. tag's res attribute in the
previous example. This enables you to avoid synchronization problems by defining the value
of a macro in a single location while using it in several locations, such as a help source file, a
help table in a resource file, and source code. To use C/C++ macros in a help source file,
follow these steps:

1. Include the file that defines the macros into the help source file.

2. Use the preprocessor of the C++ compiler to substitute the values of the macros. Run the
C++ compiler against the help source file using the compiler options /Pc- /Pe+ /Tp.
This creates an . I file.

3. Use the IPF compiler to compile the . I file that the preprocessor produces. This creates
a . HLP or an . INF file.

Note that this technique requires you to replace apostrophes with the IPF symbol &apos . to
avoid error messages from the C++ preprocessor. You may have to use similar symbol substi-
tutions in other cases as well.

Windows Help Files
Only Windows applications can use help files created for Windows Help. These files are not
portable to the OS/2 operating system. Open Class Library calls the Windows API WinHelp to
display help information from these files.

Create help source files for Windows Help as rich-text format (RTF) files. You can create
these files best using an RTF editor enabled for this kind of work, such as Microsoft Word 6.0.
Such editors enable you to easily define help panels and format text into paragraph.s and lists.
A text editor requires you to use control-character tokens to mark up the help information,
whereas an RTF editor generates the tokens for you. The definition of a help panel follows:

Help Panel Definition - help\helptbl\helptbl.rtf
®

S{\footnote Close Help}
#{\footnote PANEL_CLOSE}\par \pard \cfl \f2 \fs28 \txo

\b Close Help\bo \par \pard \fs20 \par \pard \1io \fio
\txo This is contextual help for the \b Close \bo choice.

\par \pard \par \pard \1io \fio
\txo Select this choice to close the window.

OC0

You must also create a help project file to name and define characteristics of the help source
file. You can also code advanced configuration information into the help project file. After
creating these files, use the help compiler for Windows Help packaged with VisualAge for
C++, HCW. EXE, to compile the project file and the help source file into a help file (with a .HLP
file extension) that your application uses to display help panels.

For more information on RTF tokens, the Windows Help help compiler, and the Windows Help
help files, view the HeJp Az4£feo7.'f Gz4z.de included with VisualAge for C++ for Windows. You
can view this help information by typing winhlp32 hcw.hlp on the command line or through

Cfoapfer23 UsingHelp 593

the Microsoft Help Workshop, which you start by running HCW. EXE without any command line
arguments.

Basic Contextual and General Help
Once you add help support to your user interface and create the help information, you must
supply the code for your application to display contextual and general help. This code enables
Open Class Library to work with IPF or Windows Help to service help requests by displaying
the appropriate help panel based on the context of a user' s request.

Creating a Help Window Object
The main step for enabling help support in your application is to create an object of the
IHelpwindow class. This class is your interface with the help system: IPF or Windows Help.
Without an IHelpwindow object, you cannot display help panels by calling
IHelpwindow: : show, and Open Class Library and the help system cannot automatically display
help panels for you in response to user requests.

In addition to enabling basic help support, you can also use an IHelpwindow object to specify
configuration information. This information includes the title bar text for the help panel
window, the name of the help file containing your help panels, the location of help table
resources, and the help panel to display when a user selects the How to use help or Using help
menu item.

A help window object is specific to the thread on which you create it. Therefore, use it to
service help requests only for windows you create on the same thread. To provide help for
windows you create on another thread, create an IHelpwindow object on that thread for those
windows to use.

The following example creates a help window object that is associated with a primary window.
See the next topic for a discussion of associated windows.

Creating a Help Window - help\helpmenu\helpmenu.cpp
// Create a primary window with a help menu.
HelpMenuwindow

primary(ID_PRIMARY, 0) ;

// Create the help window and associate it with the primary window.
IHelpwindow : : Settings

settings;
settings

.setTitle(`'Help Menu Choices -Help")

.setLibraries ("HELPMENI.HLP")

. setHelpTable (ID_HELPTABLE) ;

594 Power GUI programming with visualAge for c++

#ifdef IPF_COMPATIBLE
IHelpwindow

help(settings, &primary,
IHelpwindow : : classDefaultstyle

I IHelpwindow: :ipfcompatible) ;
#else

IHelpwindow
help(settings, &primary) ;

#endif
// Attach static help-specific handlers to the associated window.
helpcormandHdr

.handleEventsFor (&primary) ;
keysHelpHdr

.handleEventsFor (&primary) ;

Associating a Help Window Object with Your Application
To provide help support for the windows in your application, you must associate your frame
windows with an IHelpwindow object. These frame windows are ¢Ssocz.¢fed wz.7}dowS. To
service a help request, the help system (for this discussion, we treat Open Class Library as part
of the help system) must locate an associated window. The help system uses the IHelpwindow
object of the associated window to identify a help file and an optional help table to find the
help panel to display.

During a help request, the associated window is also important for the following reasons:

• The help system sends help-related notifications to the associated window. Use an
IHelpHandler object to process these notifications. For example, you can process errors
that occur during the display of a help panel by overriding IHelpHandler : :handleError
(its default implementation is to display a message box).

• IPF closes a help panel window when the application or a user closes the associated
window. IPF also returns input focus back to the associated window when a user closes a
help panel window. (When using Windows Help help files, the associated window is not
used during window closing because multiple applications can share the same help panel
window.)

IPF uses the associated window as the default relative window (more on relative
windows, shortly).

Passing an IFramewindow* to an IHelpwindow constructor, as we did in the previous example,
associates that frame window with the IHelpwindow object. Calling the setAssociatedwindow
function of IHelpwindow also makes an IFramewindow object an associated window. You can
associate a frame window to only one IHelpwindow object, although many frame windows can
be associated with the same help window object. You must create the frame window and help
window on the same thread. See the next topic for more information on associating these
frame windows.

To find an associated window, the help system first checks the active frame window. If it is not
an associated window, the help system searches up the parent and owner chains of the active
window. If it finds no associated window, the help request goes unserviced, and the user sees
no help panel.

Cfe¢pfer23 UsingHelp 595

Associate all of your primary windows with an IHelpwindow object. If you create multiple
primary windows in your application, you can associate all of them to the same IHelpwindow
object (as long as you create all on the same thread). To process the help notifications that
these frame windows receive as a result, attach help handlers to them. If a primary window is
not an associated window, the help system has no way to find one because there are no
windows in its parent or owner window chain to search.

If you use IPF help files, also associate your secondary windows. Although these windows
support help without your calling IHelpwindow: :setAssociatedwindow (if their owning
primary windows are associated windows), making them associated windows gives them the
activation behavior described earlier in this topic. This also makes each secondary window a
relative window, so that IPF positions the help panel window to avoid covering it. Attach the
same help handlers to your secondary windows that you attach to your primary windows.

The following code makes a secondary window an associated window:

Associating a Secondary Window - help\helptbl\helptbl.cpp
Secondarywindow

*frame = new Secondarywindow (ID_SECONDARY_MODELESS ,
event.dispatchingwindow()) ;

frame->setAutoDeleteobj ect () ;
IHelpwindow*help = IHelpwindow: :helpwindow(frame) ;
help->setAssociatedwindow(frame) ;
fralne->show () ;

Setting Active and Relative Windows
Related to the concept of associated windows are czcfz.ve wz.#dows and JieJczfz.ve w!.#dows. When
servicing a request using help tables (more on them shortly), the help system treats the active
window as the window that a user requested help from. IPF uses the relative window to
position the help panel window (IPF attempts to avoid covering the relative window). When
using Windows Help help files, the relative window has no effect.

Calling IHelpwindow: : setActivewindow sets both the active and relative window. Unlike
associated windows, you can specify only one active and one relative window for an
IHelpwindow object; setting a new active window or relative window replaces the previous
one. If you do not set the active window or reset it to 0, the active window defaults to the
frame window that the operating system identifies as having activation. If you do not set the
relative window or reset it to 0, it defaults to the associated window.

Generally, you only need to call IHelpwindow : : setActivewindow in the OS/2 operating system
for frame windows used as page windows of a notebook. See the topic "Dialog Page Windows
of a Notebook" for more information.

596 Power GUI programming with visualAge for c++

Identifying Contextual and General Help Panels
In most cases, Open Class Library and the help system work together to service a help request
by displaying the contextual or general help panel for the current window. As a result, you
typically do not need to process help requests by calling IHelpwindow: : show to display a help
panel; you only need to identify the contextual or general help panel that each window uses.

Open Class Library gives you two methods to identify contextual and general help panels. The
method you choose is independent of whether you define your help information as an IPF or
Windows Help help file. You can use both methods in the same application-and even for
different controls or menu choices in the same frame window. Both methods require that you
define help panels with numeric identifiers rather than names.

The first method is to call Iwindow: : setHelpld and IMenu: : setltemHelpld. Currently, these
functions are available only in VisualAge for C++ for Windows. The second method is to use
help table resources. This is the mechanism that the OS/2 help system, IPF, uses to determine
the contextual or general help panel to display when servicing a help request. Open Class
Library emulates this use of help tables in the Windows operating system.

Help assigned via Iwindow: : setHelpld or IMenu : : setltemHelpld takes precedence over help
assigned via help tables. If a user requests help for a window and that window has a help panel
assigned with Iwindow: : setHelpld, Open Class Library displays that help panel. Otherwise,
if the window is a frame window, Open Class Library or the help system processes the request
using help tables. If it is not a frame window, it passes the help request up its parent window
chain until it is processed via Iwindow: : setHelpld or help tables. If a user requests help for a
menu item and it has a help panel assigned via IMenu: : setltemllelpld, Open Class Library
displays that help panel. Otherwise, Open Class Library or the help system processes the
request using help tables.

The Iwindow: : setHelpld and IMenu: :setltemHelpld Functions
Use Iwindow: : setHelpld to assign a help panel to a window. For a frame window, calling this
function is equivalent to defining a general help panel in a help table. If you assign a help
panel to a canvas, it also acts as general help for the child windows of the canvas. For other
windows, calling this function is equivalent to defining contextual help through a help table.

Use IMenu: :setltemHelpld to assign contextual help for a menu item in a menu bar, the
system menu, or pop-up menu.

Using these functions, you can dynamically change the help panels you assign to windows and
menus. You can remove a help panel you previously assigned with either function by calling it
again with a value of 0. Additionally, help support through these functions does not require
that you use unique window and menu item identifiers to display unique help panels, as is the
case with help tables. However, these functions require that the Iwindow or IMenu object for
the window or menu exists for as long as you need help support for the object.

The following code shows the use of these functions:

Cfeapfe].23 UsingHelp 597

Identifying Help Panels at Run Time - help\helpid\helpid.cpp
// Assign contextual and general help.list

.setHelpld(PANEL_LISTBOX) ;
primary

.setHelpld(PANEL_PRIMARY) ;
menubar

. setlterrHelpld (ID_FILE, PANEL_FILE)

. setltemHelpld(ID_CHOICE1, PANEL_CHOICE1)

. setltemHelpld(ID_CHOICE2, PANEL_CHOICE2)

. setrtemllelpld(ID_CLOSE, PANEL_CLOSE) ;

Help Tables
You can use help table resources to statically identify the contextual and general help panels
for elements in your user interface. When you identify help panels for windows and menus in a
help table, you do not need Iwindow or IMenu objects for them. You specify these elements in a
help table simply by their window or menu item identifiers.

If a help request Teaches a frame window that has no help assigned via Iwindow: : setHelpld,
Open Class Library or the help system uses help tables to service the request. In the OS/2
operating system, the frame window calls IPF via a system help hook. IPF uses the help tables
and its subtables to do a lookup to determine the proper contextual or general help panel to
display, based on the identifier of the window with the input focus. In the Windows operating
system, Open Class Library does this lookup.

To do the lookup, Open Class Library (or IPF) uses the frame window that a user requested
help from (the active window) to find an IHelpwindow object and an entry in its help table.
This entry provides both a general help panel and a help subtable. Open Class Library (or IPF)
uses the identifier of the control or menu item from which a user requested help to locate an
entry in the help subtable. This entry provides a contextual help panel. If Open Class Library
(or IPF) does not find an entry that matches the control or menu item, it displays the general
help panel for the frame window.

You define help tables in a resource file using the keyword HELPTABLE, and help subtables
using the keyword HELPSUBTABLE. A help table contains many HELPITEM statements; each
identifies a frame window and its general help panel and help subtable. A help subtable
contains many HELPSUBITEM statements; each identifies a control or menu item and its
contextual help panel. For controls, only create HELPSUBITEM entries for those that accept the
input focus, such as buttons and entry fields. Include menu items from menus that the frame
window or its controls own, such as the menu bar, system menu, or pop-up menus. An appli-
cation typically uses one help table and many subtables for each thread. You compile the
resource file using the resource compiler to produce a resource library. See Chapter 24,
"Using Resources," for information on building resource libraries.

A frame window that requires a unique general help panel must have a window identifier
unique from all other frame windows. This allows you to create an entry in a help table just for
the frame window. Controls that need unique contextual help panels must have window
identifiers that are unique in the subtable to which they belong. IPF reserves the use of the
window identifier OxFFFF, so do not assign this value to any frame window or child window
that can accept the input focus. Also, do not define a help panel with an identifier of OxFFFF.

598 Power GUI programming with visualAge for c++

Figure 23-3 illustrates the relationship between a help table, a help subtable, an application
window, and a contextual help panel.

. IHLPTAB LE
-I Franel Fr¥eenwt±fime:°W subtab|e|D GeneralhelppanellD

I EntryfieldELEancel
Franel ID Franel subtable IDI Franel general help

Frane2 ID Frane2 subtable ID Frame2 general help

Frane3 ID Frane3 subtable ID Frane3 general help

Con
IHLPSUBTABLE for Franel

trol or menu item D Contextual help panel ID

Entry field ID Entry field contextual help

Cancel ID Cancel contextual help

OKID OK contextual help-I ContextualHelpforoK

Figure 23-3. Relationship of Help Tables to an Application Window.

A help table resource for an OS/2 and Windows application follows:

Help Table Resources - help\helptbl\helptbl.rc
#include "helptbl.h"
#ifdef IC_PM /* OS/2 resources */

#include <os2.h>

C0

HELPTABLE ID_HELPTABLE
(

HELPITEM ID_PRIMARY,
SUBTABLE_PRIMARY ,

HELPITEM ID_PRIMARY2 ,
SUBTABLE_PRIMARY2 ,

HELPITEM ID_SECONDARY_MODELESS ,
SUBTABLE_SEC_MODELESS

HELPITEM ID_SECONDARY_MODAL
SUBTABLE_SEC_MODAL,

)

PANEL_PRIMARY

PANEL_PRIMARY2

PANEL_SEC_MODELESS

PANEL_SEC_MODAL

Cfoapfer23 UsingHelp 599

HELPSUBTABLE SUBTABLE_PRIMARY
(

HELPSUBITEM ID_LISTBOX,
HELPSUBITEM ID_FILE,
HELPSUBITEM ID_CHOICE1,
HELPSUBITEM ID_CHOICE2 ,
HELPSUBITEM ID_CLOSE ,

)

HELPSUBTABLE SUBTABLE_PRIMARY2
(

HELPSUBITEM ID_ENTRY1,
HELPSUBITEM ID_HELP_BUTTON,

)

HELPSUBTABLE
(

HELPSUBITEM
HELPSUBITEM

)

PANEL_LISTBOX
PANEL_FILE
PANEL_CHOICEI
PANEL_CHOICE2
PANEL_CLOSE

PANEL_ENTRY1_PRIMARY2
PANEL_HELP_BUTTON_PRIMARY2

SUBTABLE_SEC_MODELESS

ID_ENTRY1,
ID_HELP_BUTTON,

HELPSUBTABLE SUBTABLE_SEC_MODAL
(

HELPSUBITEM ID_ENTRY1,
HELPSUBITEM ID_HELP_BUTTON,

)

#else /* Windows resources */
#include <windows.h>

®®

ID_HELPTABLE HELPTABLE
(ID_PRI-Y,

ID_PRIprm¥2 ,

PANEL_ENTRY1_SEC_MODELESS
PANEL_HELP_BUTTON_SEC_MODELESS

PANEL_ENTRY1_SEC_MODAL
PANEL_HELP_BUTTON_SEC_MODAL

SUBTABLE_PRIMARY ,
SUBTABLE_PRIMARY2

ID_SECONDARY_MODELESS , SUBTABLE_SEC_MODELESS
I D_S EC ONDARY_MODAL , SUBTABLE_S EC_MODAL ,

)

SUBTABLE_PRIMARY HELPSUBTABLE
(

ID_LISTBOX,
ID_FILE'
ID_CHOICE1,
ID_CHOICE2 ,
ID_CLOSE,

PANEL_LISTBOX
PANEL_FILE
PANEL_CHOICEI
PANEL_CHOICE2
PANEL_CLOSE

)

SUBTABLE_PRIMARY2 HELPSUBTABLE
(

ID_ENTRY1,
ID_HELP_BUTTON,

PANEL_ENTRY1_PRIMARY2
PANEL_HELP_BUTTON_PRIMARY2

)

SUBTABLE_SEC_MODELESS HELPSUBTABLE
(

ID_ENTRY1,
ID_HELP_BUTTON,

)

SUBTABLE_SEC_MODAL
(

I D_ENTRY1,
ID_HELP_BUTTON,

)

#endif

PANEL_PRIMARY
PANEL_PRIMARY2
PANEL_SEC_MODELESS
PANEL_SEC_MODAL

PANEL_ENTRY1_SEC_MODELESS
PANEL_HELP_BUTTON_SEC_MODELESS

HELPSUBTABLE

PANEL_ENTRY1_SEC_MODAL
PANEL_HELP_BUTTON_SEC_MODAL

600 Power GUI programming with visualAge for c++

Other Kinds of Help
Most applications provide more than just contextual and general help. Figure 23-2 shows Help
pull-down menus that show other standard forms of help. Near the figure is the resource that
defines the menu.

Open Class Library does not service these help requests through help tables and help
subtables. Open Class Library and the help system have built-in support for some of these
forms of help, such as a General help menu choice that runs the SC_HELPEXTENDED system
command. However, others you must process with the IHelpHandler class.

Keys Help Panel
Define a Keys Help panel to list and describe the special-purpose keys that your application
uses. To create a Keys help choice in the menu bar, define a menu item that runs the
SC_HELPKEYS system command. The default processing for this system command is to generate
a help notification that you process in a help handler (the operating system does not provide a
default Keys Help panel).

Specify the Keys Help panel by overriding the IHelpHandler : : keysHelpld function in a help
handler attached to your associated windows. Your keysHelpld function specifies the help
panel to use by storing the panel identifier as the event result. Return a value of true from
keysHelpld to indicate that no other handler needs to process the event. A help handler that
identifies a Keys Help panel (one with a help panel identifier of PANEL_KEYS_HELP) follows:

Displaying a Keys Help Panel - help\helpmenu\hkeyshdr.hpp
#include <ihelphdr.hpp>
#include `'helpwin.h" // For PANEL_KEYS_HELP.

class KeysHelpHandler : public IHelpHandler {
protected:virtual Boolean

keysHelpld (IEvent& event)
(

event. setResult (PANEL_KEYS_HELP) ;
return true;

)
}; // KeysHelpHandler

A Keys help choice also appears by default in the menu bar of an IPF help panel window. Your
help handler is also called when a user selects that menu choice.

Using Help Panel
The Using Help panel describes the features of the Help system and explains how to view the
help information you have provided. This type of help is also known as feeJp /or feeJp. The
operating system provides a default Using Help panel. You can replace the default by calling
the IHelpwindow: : setusingHelp function and passing it the help panel identifier of your own
Using Help panel.

Cfeapfer23 UsingHelp 601

To display the Using Help panel from a menu, create a command handler that calls
IHelpwindow: :show with the IHelpwindow: :using enumeration. Code from a command
handler that displays the Using Help panel follows:

Command Handler for Displaying "Using Help" - help\helpmenu\hcmdhdr.hpp
®,®

case ID_USINGHELP :
// A user has selected the ''Using help"
//(or ''How to use help") choice.

IHelpwindow
*help = IHelpwindow: :helpwindow(event.window()) ;

help->show(IHelpwindow: :using) ;
dontpasson = true;
break;

)
•®®

Help Contents Panel
The table of contents panel shows a hierarchy of topics that you have provided in the help file.
For an IPF help file, the help compiler builds this list from the way you have tagged your help
file. The :hl. through :h3 . tags you use (or the heading tags you list on the :docprof . tag)
define the topics in the contents. For a Windows Help kelp file, you create this panel yourself
and identify it in the help project file.

To display the help contents from a menu, create a command handler that calls
IHelpwindow: : show, passing it the IHelpwindow: : contents enumeration.

Help Index Panel
The help index panel shows a list of topics you have provided in the help file. For both an IPF
and Windows Help help file, the help compiler builds this list from the way you tag your help
file. For IPF, the : il . and : i2 . tags you use define the topics in the index. For Windows Help,
you create an index entry using a K-footnote.

To display the help index from a menu, create a menu item that runs the SC_HELPINDEX system
command.

Product Information Window
Use a product information window to display information about your application. This
information could include a logo, copyright, trademarks, or a user's registration number. To
create a product information window, process a user's request to display it in a command
handler by creating an IMessageBox or IFramewindow object. Code for a command handler
that processes the About this example... choice in the menu resource for Figure 23-2 follows.

602 Power GUI programming with visualAge for c++

Command Handler for Product Information - help\helpmenu\hcmdhdr.hpp
®,®

case ID_PRODUCTINFO :
// A user has selected the ''Product information" choice.

IMessageBox
msg(event.dispatchingwindow()) ;

ms9r
.setTitle("About This Example")
.show(`'This is the help menu example program from "''\"Power GUI Programming with VisualAge for C++. \"'',

IMessageBox: :nolcon I IMessageBox: :moveable,
PANEL_PRODUCT_INFO_MSG) ;

dontpasson = true;
break;

)
®®®

Special-Case Contextual and General Help
The topic "Basic Contextual and General Help" describes the use of the Iwindow: : setHelpld
and IMenu: : setltemHelpld functions and help tables for supporting contextual and general
help. For most windows, following these steps is all you need to do to enable help support.
However, some windows require special considerations for displaying contextual or general
help. These windows include containers, notebooks, and message boxes.

Containers
When a user presses the Fl key when a container or an object in the container has the input
focus, the container performs special processing of the WM_HELP message. As a result, it does
not route the WM_HELP message to its parent window, so you cannot plan on the request being
processed through help tables and subtables.

Instead, the container generates a notification event that you can process with the help virtual
function of the IcnrHandler class. IcnrHandler passes this function an IcnrHelpEvent object
that identifies the container object with the input focus. If a user is editing the container
object, the event also identifies a column in details view. To make things easier,
IcnrHandler: :help has a default implementation for displaying a help panel if you identify
the panel in one of following ways:

• Override the Icontainerobject: :helpld virtual function
• Call the Icontainercolumn: :setHelpldfunction
• Call Iwindow: :setHelpld.

See Chapter 13, "Container Control," for additional details.

The following code shows how a container object overrides IContainerobject: :helpld to
supply the PANEL_CONTAINER contextual help panel:

Cfeapfe7.23 UsingHelp 603

Help for a Container Object -help\helpothr\helpothr.hpp
class Cnrobject : public IContainerobject {
public:virtual void

handleopen (IContainercontrol* container) ;
virtual unsigned long

helpld () const;
virtual IContainerobj ect

*ob].ectcopy ();
)i

Help for a Container Object -help\helpothr\helpothr.cpp
unsigned long Cnrobject: :helpld () const

// Return the help panel identifier for a container object.
return PANEL_CONTAINER;

)

Unfortunately, this strategy for handling contextual help does not apply to the use of a Help
push button. The container does not detect such a help request because the button routes the
request to its owner window, which is not typically the container. If you require a user
interface that combines a container and a Help push button on the same frame window, display
the general help panel for the frame window in this case.

Dialog Page Windows of a Notebook
When you use a frame window as the page window of a notebook, you are using it as a child
frame window. For contextual and general help requests to be serviced through help tables and
subtables, create a help subtable for the dialog. Alternatively, you can assign contextual and
general help for dialog page windows using the Iwindow: : setHelpld function.

The remainder of this topic deals with considerations for the OS/2 operating system. To use
help tables with a dialog page window, identify the child frame window as the active frame
window. Without adding this special code, IPF instead recognizes the notebook's frame
window as the active window and uses it to search help tables and subtables.

The following code snows a handler class that calls IHelpwindow: :setActivewindow
whenever the operating system activates the window. This call makes the child frame window
both the active window and the relative window. We attach this handler to all dialog page
windows.

Making a Child Frame Window the Active Window - help\helpothr\childhlp.hpp
class ChildHelpHandler :
public:virtual ChildHelpHandler

&handleEventsFor
&stopHandlingEventsFor

protected:virtual Boolean
dispatchHandlerEvent

ChildHelpHandler
&setActivewindow

public IHandler {

(IFramewindow* child) ,
(IFramewindow* child) ;

(IEvent& event) ;

(IEvent& event,
Boolean active = true) ;

604 Power GUI programming with visualAge for c++

private :virtual IHandler
&handleEventsFor
&stopHandlingEventsFor

}; // ChildHelpHandler

Iwindow* window) ,
Iwindow* window) ;

Making a Child Frame Window the Active Window - help\helpothr\childhlp.cpp
IBase : : Boolean

ChildHelpHandler: :dispatchHandlerEvent (IEvent& event)
(

unsigned long
activewindow = true;

switch (event.eventld()) `
(

case WM_ACTIVATE :
// The frame window is gaining or losing activation.
activewindow = event .parameterl () .numberl () ;
// Fall into the WM_HELP case.

case WM_HELP:
// Add this in case help is initialized or this handler
// is attached after the frame window is activated.
this->setActivewindow(event, activewindow) ;
break;

default:
break;

)return false;
)

ChildHelpHandler&
ChildHelpHandler: : setActivewindow (IEvent& event,

Boolean active)
(

IHelpwindow
*help = IHelpwindow: :helpwindow(event.window()) ;

if (help)
(

IFranewindow
*frame = 0;

if (active)
(

frame = (IFramewindow*) event.window() ;
)
help->setActivewindow(frame, frame) ;

)return *this;
)

Using Iwindow: : setHelpld enables you to avoid the 6ntire problem of trying to correct for an
incorrect active window. Because no significant problems result from having an incorrect
active window, you do not need to use the ChildHelpHandler class. Also, do not attempt to
make a dialog page window an associated window.

Other Page Windows of a Notebook
The page windows of a notebook can be any type of window. If they are not frame windows,
they are typically containers or canvases. The container requires its own help processing. The
use of the IcnrHandler class, described in the previous topic "Containers" also applies to
containers when used as page windows of a notebook.

Cfeapfe].23 UsingHelp 605

Windows other than a container or a frame window forward WM_HELP messages to their parent
window. As a result, standard help processing can occur via Iwindow: : setHelpld and help
tables. In the case of help tables, the help subtable of the frame window containing the
notebook is used to service the help request.

However, having several page windows share the same help subtable can cause problems. If
you want different controls to use different contextual help panels, give those controls unique
window identifiers. Often, it is not practical to limit the window identifiers that you use in this
way. You also cannot assign different general help panels to each page window if the page
windows are not frame windows. The general help panel of the notebook's frame window
effectively becomes the general help panel for each of the page windows. You can provide
unique general help for each of these page windows, however, by dynamically providing the
general help panel rather than relying on help tables and subtables for this feature. This
technique is described in the section "Dynamic Contextual or General Help."

You can also use the Iwindow: : setHelpld function to assign the contextual help appropriate
for the controls on different page windows and to assign general help to each of the canvas
page windows. The help panels you assign to the canvas page windows act as general help in
the sense that the help system displays them for child controls without contextual help.
However, a General help menu item displays the general help for the frame window
containing the notebook rather than the general help panel for the current canvas page window.
The technique to dynamically change the general help of the notebook's frame window can
solve this problem.

Notebook Tabs
You cannot use help tables and subtables to process contextual help for a notebook tab. As is
the case with container, notebooks generate their own notification events when a user presses
the Fl key while a major or minor tab has the input focus. To process this notification, provide
a page handler and ovelTide the IpageHandler: :help function. The IpageHelpEvent that is
passed to this function identifies the notebook page with the tab. Attach this handler to the
notebook or its owner window.

Example code for such a handler follows. This handler requires the notebook to store the
identifier of the help panel for each tab as the user data for the page.

Help for a Notebook Tab - help\helpothr\helpothr.hpp
class NotebookTabHelpHdr : public IpageHandler {
protected:virtual Boolean

help (IpageHelpEvent& event) ;
} ; // NotebookTabHelpHdr

606 Power GUI programming with visualAge for c++

Help for a Notebook Tab - help\helpothr\helpothr.cpp
IBase: :Boolean NotebookTabHelpHdr: :help (IpageHelpEvent& event)
(

// Display help for a notebook tab. Get a previously stored help
// panel identifier from the user data of the page window.
Boolean

stopprocessingEvent = false;
IpageHandle

page = event.pageHandle() ;
INotebook : : Pagesettings

settings = event.notebook()->pagesettings(page) ;
unsigned long

panel = settings.userData() ;
if (panel)
(

event.helpwindow()->show(IResourceld(panel)) ;
stopprocessingEvent = true;

)
return stopprocessingEvent ;

)

Message Boxes
To define the general help panel for a message box, pass the help panel identifier when you
call IMessageBox: : show. You cannot define contextual help for the push buttons of a message
box. Help table and subtable entries that you create for a message box are not used, as well as
any calls to Iwindow: : setHelpld. When constructing the IMessageBox object, you must also
specify an owner window that is or leads to an associated window.

Avoid using the identifier of the help panel for a message box as a window identifier for a
frame window. The current implementation of IMessageBox in the OS/2 operating system may
otherwise display the help panel of the message box for one of your frame windows.

Following is an example of a message box with general help. The identifier for the general
help panel is PANEL_PRODUCT_INFO_MSG. See Chapter 27, "Error Handling and Reporting," for
more information on the IMessageBox class.

Message Box with General Help - help\helpmenu\hcmdhdr.hpp
IMessageBox

msg(event.dispatchingwindow()) ;
ms9r

.setTitle(''About This Example")

.show(`'This is the help menu example program from "`'\"Power GUI Programming with VisualAge for C++. \''",
IMessageBox: :nolcon I IMessageBox: :moveable,
PANEL_PRODUCT_INFO_MSG) ;

File and Font Dialogs
These windows do not process help requests in the same way that other frame windows do. As
a result, you cannot use the Iwindow: : setHelpld function with these dialogs or their child
controls. However, you can service their help requests using help tables. To do this, create a
help subtable for the file or font dialog and adding an entry for it to the help table of its owning
frame window. Note that you can only use help tables for these dialogs if you display them as
secondary windows. See the help\helpothr program for an example.

Cfe¢pfer23 UsingHelp 607

Drag and Drop
A user can request help while dragging an object by pressing the Fl key during the drag opera-
tion. To process this help request, create an item-provider class derived from the template
class IDMltemproviderFor and provide an implementation for the provideHelpFor virtual
function. Open Class Library calls this function so that the object being dragged can supply
help when a user presses F1. Requesting help cancels the drag operation.

The following example code illustrates this technique:

Help while Dragging a Container Object -help\helpothr\helpothr.hpp
class CnrDragHelpprovider : public IDMltemproviderFor< IDMcnrltem > {
public:virtual Boolean

provideHelpFor (IDMTargetHelpEvent& event) ;
} ; // CnrDragHelpprovider

Help while Dragging a Container Object -help\helpothr\helpothr.cpp
IBase : : Boolean

CnrDragHelpprovider: :provideHelpFor (IDMTargetHelpEvent& event)
(

IHelpwindow*help = IHelpwindow: :helpwindow(event.dispatchingwindow()) ;
help->show(IResourceld(PANEL_DROP)) ;
return true;

)

Managing Contextual or General Help Dynamically
The Iwindow: : setHelpld and IMenu : : setltemHelpld functions provide you with an easy way
to dynamically change the contextual or general help of a window or menu item.

Even if you do not use these functions and instead provide help through a help table and
subtables, you can still dynamically control contextual help panels. On the OS/2 operating
system, you can also dynamically control the help panel displayed for general help.

To allow a help handler to manage contextual help for a special control, omit an entry for the
control from its frame window's help subtable. You must then create a handler derived from
IHelpHandler, providing an implementation for its helpsubitemNotFound virtual function.
IHelpHandler calls helpsubitemNotFound when the user requests contextual help for any
control without a help subtable entry.

To manage general help in the OS/2 operating system, provide a value for tbe frame window's
general help panel that does not correspond to an actual help panel. You must tben create a
handler derived from IHelpHandler, overriding the handleError virtual function.
IHelpHandler calls handleError when a user requests general help and the general help panel
cannot be found (in the Windows operating system, this case simply results in the display of an
error message). Based on run-time information (for example, whether a push button is enabled
or disabled), you can display the appropriate help panel using tbe IHelpwindow: :show
function.

608 Power GUI programming with visualAge for c++

The DynamicpageHdr class in the help\helpothr example program shows how you can override
the helpsubitemNotFound and handleError virtual functions to dynamically control the
contextual and general help for a notebook page window. The helpsubitemNotFound function
follows:

Dynamically Displaying Help - help\helpothr\helpothr.hpp
class DynalnicpageHelpHdr : public IHelpHandler {
protected:virtual Boolean

handleError (IHelpErrorEvent& event) ,
subitemNotFound (IHelpsubitemNotFoundEvent& event) ;

);

Dynamically Displaying Contextual Help - help\helpothr\helpothr.cpp
IBase : : Boolean DynamicpageHelpHdr : : subitemNotFound

(IHelpsubitemNotFoundEvent& event)
(

Boolean
stopprocessingEvent = false;

if (event.iswindow())
(

// The help system cannot find an eritry in a help subtable for
// the control with the input focus. By omitting the entry,
// we can hook this error case to dynamically display the
// contextual help panel for the current control. In our case,
// we can display different help panels for two controls with
// the same window identifier.
unsigned long

topicld = event.topicld() ,
subtopicld = event.subtopicld() ,
helppanel = 0;

if (topicld == ID_PAGE1 && subtopicld == ID_ENTRY3)
(

helppanel = PANEL_ENTRY3 ;
)

#ifdef IC_PM
// For Windows, we can also use the Iwindow: :setHelpld function
// for dynalnically controlling the contextual help panel of a
// control. We call Iwindow::setHelpld in place of using the
// below code, which would have worked].ust as well, for the
// ID_ENTRYC entry field.
else if (topicld == ID_PAGE2 && subtopicld == ID_ENTRYC)
(

helppanel = PANEL_ENTRYC;
)

#endif
if (helppanel)
(

IFranewindow*frame = (IFramewindow*) event.dispatchingwindow() ;
IHelpwindow

*help = IHelpwindow: :helpwindow(frame) ;
help->show(IResourceld(helppanel)) ;
event.setResult(true) ;
stopprocessingEvent = true;

)
)
return stopprocessingEvent;

)

Chapter 24

Using Resources

• Describes open class Library classes you can use to load and manage operating
system resources from a resource library

• Describes the IResourceLibrary, IResourceld, IDynamicLinkLibrary,
IBitmapHandle, IsystemBitmapHandle, IPointerHandle, IsystempointerHandle,
IprocedureAddress, and IDLLModule classes

• Chapters 5, 6, 8,15, 20, 23, and29 coverrelatedmaterial.

Resoz47iccs are user-interface elements such as text strings, bitmaps, icons, dialog boxes,
menus, and accelerator tables. These resources are read-only data that you store in your
application's executable file. Perhaps the largest benefit from using resources is that you can
build and maintain them separately from the code of your application. This enables you to
build applications for different natural language environments and to make changes to the text
of the application without modifying code. It also enables you to use graphical designers to
build screen layouts and images without requiring them to understand the logic you use to
display these items.

This chapter describes some basic concepts involved in using resources, including how to
package and load your resources, and it describes how Open Class Library makes using
operating system resources easier. Figure 24-1 displays the classes in Open Class Library that
you use to load and interact with resources. Detailed information on creating specific types of
resources are covered in the following chapters:

• Dialog boxes are discussed in chapter 5, "Frame window Basics."
• Menus and accelerators are covered in chapter 6, "Menus and Keyboard Accelerators."
• Bitmap andicon resources are discussed in chapter 8, "Static controls."
• Help table resources are coveredin cbapter 23, "Using Help."

Resource File Fundamentals
A refo#7ice scrz.p£/I.Je is a text file containing statements that describe the typical components
of a user-interface application. You can describe dialog boxes, menus, the location of bitmaps
and icons, accelerator tables, string tables, and help tables using the resource tag language. If
you intend to build resources using a resource script file, refer to Vz.Sz4¢JAge /or C++ TooZs
Re/ere7®ce for a description of how to code the necessary resource statements.

609

610 Power GUI programming with visualAge for c++

Figure 24-1. Resources Class Ifierarchy.

Typically, you use resource editors, such as the ones provided with VisualAge for C++, to
create your resource script file. In particular, the resource workshop or dialog box editor can
help you define dialog boxes containing any of the operating system-supported windows, such
as entry fields, list boxes, combination boxes, buttons, and static text controls. These editors
generate a resource script file. You can use this file as a starting point for adding additional
resources to your application. Use the resource compiler to convert the resource script file
into a binary image so that it can be added to your application.

Once you have the binary image for your resources, add it to either the application's main
executable file or a separate dynamic link library (DLL). In the Windows operating system,
use the linker to add this binary image. In the OS/2 operating system, use the resource
compiler to attach this binary image. The primary use of a DLL is to build code that the
operating system loader links to your application's executable file (EXE) when the application
executes. Although we touch on this use of a DLL later in the chapter, we start by describing
the use of a DLL as a storage place for resources.

Chapter 5, "Frame Window Basics," describes how you use Open Class Library to load dialog
boxes from a resource file. Many of the Open Class Library sample applications that
VisualAge for C++ provides use resources; use them as a reference to help you add resources
to your application. Chapter 15, "Canvases," describes an alternative, more flexible approach
to using dialog boxes in your application.

Building a Resource DLL
Using a DLL is a good choice for delivering the resources associated with your application. If
you store your resources separately from the application's main executable file, you can write
a single application to support many different natural languages, such as English, German, and
French. You can build your application to support more than one natural language and can
switch between languages while your application is running. In the topic "Application

Cfeapfe].24 Using Resources 611

Framework Support of Resources," we describe how Open Class Library provides explicit
support to help you switch from resources in one DLL to resources in another. The Hello 6
sample program that VisualAge for C++ provides is a good example of how to build such an
application.

When writing portable applications, you need to be aware of the differences in resource
formats between the OS/2 and Windows operating systems. VisualAge for C++ for Windows
has several tools to assist your applications in translating resources from one operating system
to the other. Use IBMPCNV.EXE and IBMPCNI.EXE to convert bitmaps and icons from one
operating system's format to the other's format. IRCCNV.EXE is a utility that converts
resource script files from one format to the other. The only caveat is that it does not support
conversion of dialog resources. Hello 6 is also a good example of using these tools to build a
portable application.

Storing resources in a separate DLL also speeds the building of your application. When you do
not store your resources in your application's EXE, you do not need to reattach the resources
every time you link the executable file.

The steps involved in storing resources in a DLL are straightforward. The following example
demonstrates these steps by showing how to build a DLL with a single piece of text in a
resource file:

1. Create a separate header file to provide the numeric identifiers that the resource script
file and your application program use to identify the resources as follow:

Numeric Resource Identifiers - reslib\dlltext\mytext.h
#define MY_TEXT 100

2. Create the resource script file with the text string stored in a STRINGTABLE resource as
shown in the following code. See the chapters referenced previously for examples of
more complex resource script files.

Resource Script File - reslib\dlltext\myeng.rc
#include "mytext.h"
#ifdef IC_PM /* OS/2 resources */
#include <os2.h>
#else /* Windows resources */
#include <windows.h>
#endif
STRINGTABLE PRELOAD
BEGIN

rm_TEXT,
END

''Using resources is easy"

3. Build a dummy source file to put into the DLL as shown in the following code. This step
is necessary because a DLL must be linked with at least one object module.

Dummy DLL Function - reslib\dlltext\dummy.cpp
void ADummyFunction ()
(
)

612 Power GUI programming with visualAge for c++

4. For the OS/2 operating system only, create a module definition file to describe the
contents of your DLL as shown in the following code. Note that the library name must
match the name of the DLL.

Module Definition File - reslib\dlltext\myeng.clef
LIBRARY MYENG
DESCRIPTION 'English Resource DLL'
DATA NONE

5. Compile the dummy file into an object file and the resource script file into a resource
file as follows:

icc -c -Ge--Gin+ dummy.cpp
#ifdef IC_PM
rc -r myeng.rc myeng.res
#else
irc -r myeng.rc -Fomyeng.res
#endif

6. Link the objectfile and resource file into a DLL as shown in the following code. In the
Windows operating system, you can pass the resource file to the linker directly; in the
OS/2 operating system, attach the resource file as a separate step.

#ifdef IC_PM
icc -Ge--Gin+ /Femyeng.dll dummy.cpp myeng.clef
rc myeng.rc myeng.dll
#else
icc -Ge- -Gin+ /Femyeng.dll dummy.obj myeng.res
#endif

Open Class Library Support for Resources
You need three pieces of information to load an operating system resource: the type of the
resource, its unique numeric identifier, and the identity of the executable file where you placed
the resources. Classes in Open Class Library represent each of these pieces of information.
This chapter also discusses the design and use of these classes, and it shows you how they
handle the mechanics of loading resources. Open Class Library's application framework does
most of the work for you.

Accessing Resources
The base class, IResourceLibrary, defines the protocol necessary to load specific kinds of
resources. It represents the storage location for resources in an application's EXE. The
previous example showed how to put a string resource into a DLL. If instead of using a DLL
we put the resource directly into an EXE, you could load and print the string with the
following code:

Cfe¢pfe7.24 Using Resources 613

EXE Resource Example - reslib\exetext\exetext.cpp
#include <iostream.h>
#include <istring.hpp>
#include <ireslib.hpp>
#include "mytext.h"
void main(int argc, char *argv[] , char *envp[])
(

IResourceLibrary resLib;
Istring str = resLib.1oadstring(MY_TEXT) ;
cout << "The resource text is [" << str << "]" << endl;

)

IDynamicLinkLibrary is derived from IResourceLibrary and represents resources stored in a
DLL. Any resource that you can load from an EXE using an IResourceLibrary object, you can
load from a DLL using an IDynamicLinkLibrary object. In addition, as we describe later in
the topic "Dynamic Binding and IprocedureAddress," IDynamicLinkLibrary has support for
dynamically linking to functions contained in the DLL. With only a slight change to our
previous program, we can load the resources from MYENG . DLL as follows:

DLL Resource Example - reslib\dlltext\dlltext.cpp
#include <iostream.h>
#include <istring.hpp>
#include <ireslib.hpp>
#include `'mytext.h"
void main(int argc, char *argv[] , char *envp[])
(

IDynamicLinkLibrary dllLib (`'myeng") ;
Istring str = dllLib.1oadstring(MY_TEXT) ;

Gout << "The resource text is [" << str << ``]" << endl;
)

You rarely need to use an IResourceLibrary or IDynamicLinkLibrary object to load
resources, however. Many classes in Open Class Library let you pass the numeric resource
identifier and they handle the task of loading the resource. Table 24-1 shows how the
IResourceLibrary functions relate to the classes in Open Class Library that use them. It also
shows the relationship between these functions and the Software Developer' s Toolkit resource
keywords that you use to create these resources in a resource script file.

Using the Application Framework's Support for Resources
To make it easier for you to use resources, Open Class Library enables you to store an
IResourceLibrary or IDynamicLinkLibrary object in the application framework. By default,
Open Class Library uses the resource library stored in the framework whenever it loads a
resource that you do not specifically provide a resource library for.

If you do not provide a resource library, the framework loads resources using the resource
library obtained by calling ICurrentApplication: :userResourceLibrary. By default, this
resource library is in your application's EXE. To use a DLL instead, call
ICurrentApplication: :setuserResourceLibrary with the name of a DLL. To switch to a

614 Power GUI programming with visualAge for c++

Table 24-1. Relationship of Resource Constants to IResourceLibrary Functions

Resource Keywofd IResourceLibraryFunction
> Rel ated Class es

Reference

ACCELTABLE (OS/2) loadAccelTable IAccelTableHandle Chapter 26
ACCELERATORS (Windows) IAcceleratorIAcceleratorTable Chapter 6

BITMAP loadBitmap IBitmapcontrol Chapter 8
IBitmapHandle Chapter 26
IsystemBitmapHandle Chapter 26

DLGTEMPLATE (OS/2)DIALOG(Windows) loadDialog IFramewindow Chapter 5

HELPTABLE loadHelpTable IHelpwindow Chapter 23

ICON 1oadlcon IIconcontrol Chapter 8
POINTER (OS/2) loadpointer IPointerHandle Chapter 26
CURSOR (Windows) IsystempointerHandle Chapter 26

MENU (OS/2) loadMenu IMenu, IMenuBar Chapter 6
MENUEX (Windows) IPopUpMenu

MESSAGETABLE loadMessage Istring Chapter 26
IMessageBox Chapter 27

STRINGTABLE loadstrin8 Istrin8 Chapter 26

different DLL later, call the function again with the name of the new DLL. To revert to using
the application' s EXE for resources, call the function and pass a 0 pointer for the DLL name.

ICurrentApplication: :setuserResourceLibrary constructs and stores either an
IDynamicLinkLibrary if you pass the name of a DLL or an IResourceLibrary if you pass 0.
ICurrentApplication: :userResourceLibrary returns a reference to this resource library.
Any time Open Class Library needs a resource library and you don't explicitly provide one, it
calls this function. This behavior enables you to build an application that can easily switch
from one set of resources to another.

Specifying DLL Names
When you provide the name for a DLL, you usually do so by specifying just the file name
without the path or file extension (.DLL). When you specify it this way, the OS/2 operating
system searches the directories specified in the LIBPATH environment variable to find the
first DLL with a matching name; the Windows operating system searches the directories
listed in the PATH environment variable.

If you do not want the operating system to search the environment-specified path first for a
DLL, add the path and file extension to fully qualify the file name.

Cfeapfer24 UsingResources 615

Using setResourceLibrary or setuserResourceLibrary
A common mistake is to confuse the two ICurrentApplication functions
setResourceLibrary and setuserResourceLibrary. These functions control two different
sets of resources. ICurrentApplication : : setResourceLibrary indicates the source of the
resources which Open Class Library uses. These are resources such as the bitmaps for the
standard tool bar buttons or the pushpin on the tool bar. See Chapter 29, "Packaging and
Performance Tuning," for more information on using this function.
ICurrentApplication: : setuserResourceLibrary controls the source of user-defined
resources and is one of the main subjects of this chapter.

The following example creates a simple frame window containing a piece of text from our
resource DLL. This example demonstrates two things. First, it shows you how to store the
resource library in the application framework. Second, it demonstrates how classes in Open
Class Library use this framework for loading resources. When the sample puts text into the
IstaticText field, it only provides the resource identifier. IstaticText : : setText is respon-
sible for loading the text from the application' s resource file stored in the framework.

Dynamically Changing Resources - reslib\stattxt\stattxt.cpp
#include <ifralne.hpp>
#include <iapp.hpp>
#include <isEattxt.hpp>
#include "mytext.h"
void main(int argc, char *argv[] , char *envp[])
(

// Store the location of our resources from MYENG.DLL
// in the application framework.
IApplication : : current ()

. setuserResourceLibrary ("myeng") ;

// Create a frame and a text field for the client area.
IFramewindow frame("Text from a Resource File") ;
IstaticText text(loo, &fralne, &frame) ;

// Align the text field and add the text from a resource.text
. setAlignment (IstaticText : : centercenter)
. setText (MY_TEXT) ;

// Put the text field in the client and show the window.
frame

. setclient (&text)

. setFocus ()

. show() ;

// Run the application.
IApplication : : current () . run () ;

}

Using Numeric Resource Identifiers
As you have already seen, you reference all resources in a resource file using the numeric
identifier provided on the resource definition. The numeric identifier for these resources is
limited to a value less than 64K. The last example demonstrated how functions in Open Class
Library use this identifier to load resources from your application's resource .library. What if

616 Power GUI programming with visualAge for c++

you want to load most of your resources from the application's resource library, but you want
to load a small number of specialized resources from a different resource library?

You can switch the application's resource library by calling setuserResourceLibrary
multiple times, but this solution only works in a single-threaded application. Under this
scenario, you can ensure that no other function loads a resource from the application's
resource file during the time you have it changed. However, this is not acceptable in a multi-
threaded application unless you limit all uses of resources to a single thread.

The class IResourceld is designed to solve this problem. In addition to storing the numeric
resource identifier, an IResourceld object also stores a reference to a resource library. If you
do not provide a resource library when you construct an IResourceld, the IResourceld
constructor stores a reference to the application's default resource library by calling
ICurrentApplication : : userResourceLibrary.

Usually, you do not specify the resource library when constructing an IResourceld. You have
seen that by not doing this, you have the ability to switch resource libraries while the appli-
cation is running. However, if you have some resources in a location different from the
application's main resources, you can use them at any time by providing a different resource
library on the IResourceld constructor. To modify the last example so that it loads the text for
the static text field from the application's EXE instead of using the application's resource
library stored in MYENG . DLL, you code the following:

// Put text from the EXE resource file into the text field.
text . setText (IResourceld (MY_TEXT, IResourceLibrary ())) ;

Figure 24-2 displays the relationship between Open Class Library resource classes and the
resources in the EXE or DLL.

Figure 24-2. Resource Component Relationships.

Cfe¢pfer24 UsingResources 617

The control classes in Open Class Library that accept IResourceld objects in their interface
use the resource library stored in the IResourceld to load whatever resources are necessary.
For example, IstaticText : : setText contains code that is similar to the following for loading
its text:

IstaticText: : setText (const IResourceld& resid)
Istring newText = resid.resourceLibrary() .1oadstring (resid) ;
// The rest of the routine would be here.

IBitmapHandle and IPointerHandle
IBitmapHandle and IPointerHandle are classes that encapsulate the operating system handle
for bitmaps (HBITMAP) and icons (HPOINTER in the OS/2 operating system, HCURSOR and HICON in
the Windows operating systems). The implementation of these two classes uses a reference-
counting mechanism that enables bitmaps and icons to be loaded once and used multiple times.
Only use these bitmaps and icons through their respective handle classes to take advantage of
this performance benefit.

Assume you are building a class that requires a bitmap. You need to keep this bitmap to
periodically update the display. You can accomplish this by storing an IBitmapHandle object
in the private data of the class to bind a reference to the bitmap. You then add functions to
enable the bitmap to be identified to the object. It might look something like the following
example:

class MyBitmapcontrol : public IControl
(
public :

// Normal constructors
MyBitmapcontrol

&setBitmap
&setBitmap
&setBitmap

private i
IBitmapHandle

aBitmap;
);

(const IBitmapHandle& bitmap) ,
(const IResourceld& bitmapld) ,
(unsigned long bitmapld) ;

Note that we provided three separate versions of the setBitmap function. The first one takes
an IBitmapHandle and enables the bitmap to be loaded outside our class and passed in so that
an already loaded bitmap can be reused. The second version enables us to load the bitmap
from the information in the IResourceld. The last version resolves the ambiguity that results
by calling this function with a number because both an IResourceld and an IBitmapHandle
can be implicitly constructed from a number. This last function results in the number being
used as a bitmap identifier, not an IBitmapHandle. This function loads the bitmap from the
default application resource library. Implement these three functions similar to the following
code:

MyBitmapcontrol& MyBitmapcontrol : : setBitmap (
const IBitmapHandle& bitmap)

(
this->aBitmap = bitmap;
refresh () ;
return *this;

)

618 Power GUI programming with visualAge for c++

MyBitmapcontrol& MyBitmapcontrol : : setBitmap (
const IResourceld& bitmapld)

setBitmap (bitmapld. resourceLibrary () .1oadBitmap (bitmapld)) ;
return *this;

)

MyBitmapcontrol& MyBitmapcontrol : : setBitmap (
unsigned long bitmapld)

setBitmap (IResourceld (bitmapld)) ;
return *this;

IsystemBitmapHandle and IsystempointerHandle
Both the OS/2 and Windows operating systems deliver several built-in bitmaps and icons. It is
unnecessary to put these icons and bitmaps into a resource file, so using them is particularly
easy. IsystemBitmapHandle and IsystempointerHandle both provide a set of enumerations
for specifying the particular bitmap or icon to use. For example, if you need the bitmap for a
folder in your application, you use the following code:

IsystemBitmapHandle folder (IsystemBitmapHandle : : folder) ;

Dynamic Binding and IprocedureAddress
There are two ways to bind to and execute functions contained in a DLL. The most common
method occurs when you statically link to the function by using an import library containing
the function. When you do this, the operating system opens the DLL whenever users start your
application. Although this method is the most common, it may cause one or more DLLs to be
loaded for your application even though your application never calls any functions in those
DLLs. Further, if you use a large number of DLLs in your application, your application may
take a long time to load and display its initial window.

For this reason, operating systems support a feature called dy#czmz.c bz.#dz.jog. Dynamic binding
means that an application can reference a set of functions in a DLL, the references get resolved
at run time, and the DLL is only loaded when requested. Dynamic binding enables you to
control when your DLL gets loaded because you explicitly load it yourself. To use functions in
a DLL that you have dynamically loaded, the operating systems provide a mechanism to query
the address of functions by using either the name of the function or the ordinal assigned to the
function. Using dynamic binding in combination with querying a function's address ensures
that you don't load a DLL unless you intend to execute a function in the DLL.

The class IDynamicLinkLibrary enables you to dynamically load a DLL. The class
IprocedureAddress enables you to determine the address of functions in the DLL. If you are
dynamically linking to functions in the DLL, ensure that the DLL stays open for the length of
time that the function needs it. You do this by keeping an IDynamicLinkLibrary object around
while you need it. The class IprocedureAddress works with IDynamicLinkLibrary to manage
this for you. It does this by establishing a link to the DLL on its constructor and by releasing it
in its destructor.

Cfoapfe7.24 UsingResources 619

Assume vie need to bind to a C function in a DLL called isvalid that takes an integer
argument and returns an integer result. To keep it simple, we add the function to the DLL that
we created for our English resources, RTENG.DLL. To our DUMMY.CPP in the DLL, we add the
following code and rebuild the DLL:

Loading a Function Address - reslib\procaddr\dummy.cpp
extern `'C"
(

#pragma export(isvalid, ''isvalid", 1)
//Return true if "number" is less than 10.
int isvalid(int number)
(if (nuter<10)

return 1;
else

return 0;
)

)

To use the function isvalid in the urENG . DLL requires the following code:

Loading a Function Address - reslib\procaddr\procaddr.cpp
#include <iprocadr.hpp>
// Define the type of our function.
typedef int (*IntReturninglnt) (int) ;
void main()

// Use IprocedureAddress to bind to our function in the DLL.
IprocedureAddress<IntReturninglnt>isvalid (" isvalid" , "MYENG") ;
int checklt=0;
int valid=0;
while (checklt != 99)
(

cout << "Enter a number (99 to quit)" << `'\n";
cin >> checklt;
valid = isvalid(checklt) ;
cout << "isvalid() returned " << valid << `'\n";

)
)

In summary, you dynamically bind functions in a DLL to reduce the time it takes to load and
execute an application. Thus, you avoid loading the DLL until you need it. With the current
implementation of IprocedureAddress, you can achieve this by "scoping" an
IprocedureAddress to the function that calls it, as we did in the preceding sample. The
problem with this strategy is that the DLL is unloaded when tbe IprocedureAddress goes out
of scope and is destructed if no other reference binds it. Note that we are dynamically binding
to a C function. Dynamically loading and calling a C++ member function is complex, so we do
not recommend it. Before you dynamically load a DLL that uses thread local storage in
Windows 95, read the warnings about thread local storage in the VisualAge for C++ for
Windows documentation. Also, see "Using Static Objects" in Chapter 29, "Packaging and
Performance Tuning," for an idea of how to accomplish this using static objects.

620 Power GUI programming with visualAge for c++

DLL Reference Counting
IDynamicLinkLibrary also adds support to reference-count the use of the DLL. The
IDynamicLinkLibrary constructor opens the DLL if it is not already open, and the
IDynamicLinkLibrary destructor closes the DLL if no other IDynamicLinkLibrary objects
reference it. The implementation of IDynamicLinkLibrary uses another object called
IDLLModule to manage the use of the DLL. Creating and destroying IDynamicLinkLibrary
objects increments and decrements the use count of an IDLLModule object. On the first request
to open the DLL, IDLLModule opens it. On additional requests to open the DLL, IDLLModule
increments the use count. If you want to keep a DLL open, keep an IDynamicLinkLibrary
object around to bind a reference to the DLL.

Chapter 25

Storing Data in a Profile

• Describes open class Library classes you can use to store and retrieve profile
information from initialization files

• Describes the Iprofile and Iprofile::Cursor classes
• Chapter 26 covers related material.

This chapter describes how you can use the Open Class Library Iprofile class to store and
retrieve data in text, binary, or integer format from system and user profiles or initialization
files. Open Class Library provides the Iprof ile class to support both system and application
profiles.

Overview
The operating system provides a set of functions that you can use to organize, read, and write
pieces of data into special files. The system itself uses these functions to store system
configuration information, such as information about the classes and instances of objects on
the desktop.

Many applications have a similar need to store information that must be preserved between
invocations of the application. For example, the VisualAge for C++ debugger stores infor-
mation about the options you have set and the breakpoint settings to be used when you debug a
given application in its profile. Think of profiles, and the data you store in them, as a means of
storing variables that preserve their values between runs of your program. The Iprof ile class
provides a way to use these special files and store data using Open Class Library, which is
easily accessed by your applications.

Using the Profile-A Simple Example
The Iprof ile class provides functions to query and set persistent application data based on
application-defined key and value pairs. The profile data set stores information using the
following two keys:

• Applicationname, whichis stored as a string

• Key name, which is stored as either a string or aninteger

621

622 Power GUI programming with visualAge for c++

In the following example, we use the Iprofile class to store information about a fictitious
software product in the Windows registry or an OS/2 initialization (. ini) file, and then we
retrieve that same information:

Basic Profile Example -profile\basicpro\basicpro.cpp
#include <iprofile.hpp>
#include <iostream.h>
int main()
(

// We construct an Iprofile object and provide the name of our
// key or .ini file.
#ifdef IC_PM

Iprofile profile (`'Tennware.ini");
#else

Iprofile profile (`'Tenn's Software");
#endif
// We add two elements under that key.

profile. addorReplaceElementwithKey ("Bitmap" ,"horse . bmp" ,
"Visual Tenn") ;

profile. addorReplaceElementwithKey ("User count" ,
61368,`'Visual Tenn") ;

// Print to screen.
cout << `'The key value pairs are: " << endl;

// We cursor through our profile.
Iprofile: :Cursor cursor (profile, ''Visual Tenn") ;
for (cursor

cursor
cursor

/ / Vle rc5IrL€Ne
// the screen.

(Istring
cout <<

setTOFirst () ;
isvalid () ;
setTONext ())

the stored key value pairs and display them on

keyName = profile.applicationorKeyAt (cursor) ;
keyName << ": ";

if (keyName == ''User count")
cout << profile. integerwithKey (keyName, "Visual Term'')

<< endl;
else

cout << profile. elementwithKey (keyName, "Visual Tenn")
<< endlj

Behind the Scenes
The Windows operating system stores its configuration information in a special file called the
regz.sfry. The purpose of the registry is to provide one source for configuration and user-
preference information, to track and con figure devices and applications, and to provide
security. The data in the registry is critical to the correct operation of the operating system and
it varies according to the Windows platform used. The registry preserves case information but
ignores the case in all operations; so, application and key names are not case-sensitive. Users
can access the registry by using the registry editor that the operating system provides.

Cfe¢pfe].25 Storing Data in aprofile 623

The registry is a hierarchical database made up of keys that are linked together to form tree
structures. The registry has six 7ioof keyS that serve as entry points to the database for any
application. Each key can contain subkeys and data entries. Links provide a mechanism to
traverse the database from a root key to other keys. Each key in the registry has a name and a
default value.

An OS/2 profile resembles a simplistic relational database and you can use it as such. It is
comprised of a number of "tables"-applications. Each table consists of a number of
"rows"-key and data pairs. Profiles do not provide database features such as data integrity
and data security. They only provide a convenient means of organizing and storing nones-
sential application data.

The OS/2 operating system uses the following two special profiles:

• Sysfe77® pro/z.Je, which primarily holds operating-system configuration information. This
file (usually \os2\os2sys . ini on your OS/2 boot drive) holds information about system
colors, print spooler settings, and similar basic information. You cannot store infor-
nation here, but sometimes you might need to read from it.

USer pro/I.Je, which holds information that conceptually is an attribute of a user of the
system. This includes per-user information that your application maintains. You can
store data in this profile, however, we recommend you store as little as possible. (You
learn more about this later in this chapter.) This profile is usually named \os2\os2 . ini,
and it is found on your OS/2 boot drive.

The structure of these profiles is the same as the profiles you create and maintain within your
own applications using the Iprofile class.
Each piece of data is identified by a key.

Collections of data are combined into
groups identified by an appJz.cczfI.o# name.
The application names and keys are
null-terminated character arrays. The
application names must be unique within
a profile. The keys must all be unique
within a given application. You can use
the same key in more than one applica-
tion. Figure 25-1 shows the structure of a
profile.

Open Class Library uses the same
concepts on the Windows platform, but it
stores both profiles in the Windows
registry. If you want to use a system
profile, Open Class Library stores it under
the HKEY_LOCAL_RACHINE\ \Software key
in the registry. When you specify a user
profile, Iprof ile uses the
HKEY_CURRENT_USER\\Software key.

Each file is comprised of individual pieces of data.

Kev1 Data 1
Kev2 Data 2

Figure 25-1. Proffle Structure.

624 Power GUI programming with visualAge for c++

Open Class Library stores application-defined profiles under the key
HKEY_LOCAL_MACHINE\ \Software\ \profileName, where profileName is a name that the appli-
cation supplies.

Figure 25-2 demonstrates the structure of the registry using the Windows registry editor.
Notice that the keys created by the preceding example are contained in the registry once you
run the program. The system profile name we specify is reflected and the value of the key is
shown as two items: the data itself and the data type.

&eg,`St#l Edit ¥ieev tlg'p
Mp Computer

ca HKEy_[L.A§§E§_F±DOT
EE HKEY_[UPIPIENT_LJ§EB
rm HKEy_Lt]thL_IvlACHiNE
fa..ti [onfig
fa..tin Enum
i..ffl hardware
fa..ffi Network

E Security
a SOFTWABE
fa..ti Classes
E..ti DAxl.,N,
fa..& Description
fa..a ,BM
i..EE Jenn's Software
i E]..ti visualJenn
i i ian Bitmap€

i..EEi- Lotus
user count

a..in Microsoft
fa..EE ODB[
a sJ,Stem

ffl HKEY_USEBS
ffl HKEY_[UPIBENT_[ONFIG

in..ffl HKEy_DyN_DATA

[value not Set]
''horse.bmp"
"§tling''

Figure 25-2. Windows Registry Structure.

Constructing Profile Obj ects
As you saw in the previous example, you need to create Iprof ile objects first, which cause the
profile to open automatically. After you have constructed an Iprof ile object, you can
immediately begin reading and writing to that object.

Cfeapfer25 StoringDatain aprofile 625

The general purpose Iprof ile constructor accepts as an argument the name of the profile file.
If this isn't a fully-qualified file name, then the operating system searches for the profile using
the current drive or the current directory.

If the operating system cannot find the profile, then it creates and opens a new Windows
registry key or OS/2 . ini file for the new profile. In the OS/2 operating system, it is difficult
to detect whetber or not you have the correct file name. You have to resort to using plain file
input/output functions to detect this situation. The sample code provided at the end of this
chapter shows how you can implement an enhanced profile that lets you detect when a profile
does not exist.

Iprofile provides two static functions, systemprof ile and userprofile, that return Iprofile
objects corresponding to the system and user profiles, respectively. If you need to perform
only one operation on that profile, then you can apply the appropriate function to the result of
one of the functions, as follows:

if (Iprofile: :systemprofile().includesApplication("MYAPP"))
// The application is already present.

else
// The application is not present.

If you are going to use the system or user profiles for more involved processing, then invoke
the static function once to construct a local Iprofile object. Then, use that local object to
access the profile.

// Access user profile through local object for efficiency.Iprofile
userprof(Iprofile: :userprofile()) ;

Storing Your Profile Name in the User Profile
Before putting configuration and initialization data into the Windows registry or OS/2 . ini
files, ensure that your application divides the data between system data and user data.

Storing vast amounts of data in the user profile complicates the process of backing up and
restoring your application profile data and the system profile data. Instead, store your appli-
cation data in a profile specific to your application. Use the user profile only to store the
location of this application profile.

This strategy works well because the operating system tracks the user profile location. The
system takes care of accessing it, regardless of how you have installed your system or in what
directory you have placed the file. Storing your application's profile name in this way ensures
that you can always locate that name and, subsequently, your application profile.

In the Windows operating system, similar rules apply. Store data that exceeds one or two
kilobytes (K) in a data file and refer to it by using a key in the registry. Do this because the
Windows registry is user-configurable, but is limited by system resources.

The same Iprof ile code that creates a different . ini file in the OS/2 operating system creates
a new registry key in the Windows operating system.

626 Power GUI programming with visualAge for c++

Another useful convention when using OS/2 . ini files is to give users the ability to specify
where they want your application to place its profile data. The first time your application runs,
it detects that you have not already stored a profile path and prompts the user for one. We
show this technique in the following example:

Istring
profpath;

try
(
// Get previously stored path if there is one.
profpath = Iprofi.1e: :userprofile () .elementwithKey("profpath",

MYAPP„) ;
)

catch (const IAccessError &exception)
(
// Prompt user for directory to place profile in.
ProfpathDialog

dialog () ;
dialog . showModally () ;
profpath = dialog.text() ;

// Save path in user profile for next time.
Iprofile : :userprofile ()

.addorReplaceElementwithKey(profpath, `'profpath", "MYAPP") ;
)

Iprofile
myprofile(profpath + "\MYAPP.INI") ;

Working with Application Names
As described previously, you group the various data objects in a profile into separate applica-
tions. The Iprof ile class provides you functions that work with these profile applications in
various ways.

The Default AppHcation Name
Many Iprofile member functions accept an application name as an argument. However, often
you find yourself specifying the same application name on many function ca'11s because your
application only interacts with a particular subset of the profile data. An Iprof ile object
maintains a de/cI#Jf appJz.c¢fz.o7® .7®clme, which makes profiles more usable. You set the default
application name via Iprofile: :setDefaultApplicatioriName. If you do not specify the
application name for a function that accepts an application name as an argument, Iprof ile
uses the value you specified for the defaultApplicationName. The default application name
is the value that Iprofile uses if you do not specify an argument; it is not the default argument
itself, which is 0.

This default name provides the default argument value for almost all the member functions
that accept an application name argument.

Cfe¢pfer25 StoringDatain aprofile 627

Removing All of the Keys in a Profile Application
You can delete all the key and data pairs within a given application using the Iprof ile
member function deleteElementwithApplication. This function requires the name of the
application you want to remove as an argument. The default argument is the default appli-
cation for the profile, so specify the correct application name or specify that you do intend to
delete the default application name.

Enumerating All of the Applications in a Profile
In most cases, you know what applications and keys are in your profiles because your appli-
cation is the only one writing to it. Sometimes, particularly when writing profile maintenance
utility programs, you want to figure out what applications a given profile contains. The
Iprof ile class provides facilities for doing that.

You can use the nested class Iprofile: :Cursor to enumerate all of the applications in a
profile as well as all of the keys within an application (we describe this in a later topic). To
enumerate applications, construct the Iprofile: :Cursor by providing a reference to the
Iprof ile you want to examine. The cursor class provides the standard set of cursor functions:
setTOFirst, setTONext, setToprevious, invalidate, and isvalid. You obtain the appli-
cation name where the cursor is using the Iprofile member functions applictionorKeyAt.
This function returns an Istring with the application name. The following example shows the
enumeration of all of a profile' s applications:

Iprof ile : : Cursor
cursor(aprofile) ;

for (cursor.setTOFirst() ;cursor.isvalid() ;cursor.setTONext())
(Istring

nextApp = aprofile.applicationorKeyAt (cursor) ;
// Do something with nextApp.
)

Reading and Writing Data
You find a collection of key and data pairs within a profile application. The keys must be
unique within the application but not within the profile as a whole. The application name plus
the key form a concatenated key.

Iprof ile supports two kinds of data, Istring (for text and arbitrary structures), and long (for
any numeric values).

Reading and Writing String Data
Most of the time you are reading and writing textual data to your profile. Iprofile supports
this by using Istring objects to specify the data to be written and by returning Istring objects
from the member functions that read data.

628 Power GUI programming with visualAge for c++

You write data using the Iprofile member function addorReplaceElementwithKey. The
following example shows how simple it is to use this function:

Istring
app,
key,
data;

aprofile
.addorReplaceElementwithKey(key, data, app) ;

Note that the key always comes first. The third argument, the application name, is optional. If
you want the key and data pair written to the default application for the profile as shown, leave
this argument off of the call.

Because an Istring can hold embedded nulls, Iprof ile supports the writing of data with
embedded nulls using this same technique. For example, the following code writes a
"shallow" copy of an object of any arbitrary.class to the profile. It does not copy the entire

object if the object stores pointers or references.

Myclass
myobJ'eCt;

aprofile
. addorReplaceElementwithKey (key,

Istring (&myobject,
sizeof myobject));

Read Istring data from the profile using the Iprofile member function elementwithKey as
shown in the following example:

Istring
data = aprofile.elementwithKey(key) ;

Myclass
myobject(* (Myobject*) (char*)aprofile) ;

This example shows how to extract Myobject, which is embedded in the Istring that is read
from the profile. As in all cases where you use such code, ensure that the objects actually hold
the kind of data that you specify and that you always match the code that saves and restores
objects. Using the Iprofile class, you can only retrieve information from the Windows
registry that was placed there using an Open Class application and the Iprofile class.

Reading and Writing Numeric Data
Iprof ile also supports storing integral numeric data directly, without having to convert it to
or from an Istring. The addorReplaceElementwithKey function is overloaded to accept a
value of type long. By casting to type long, you can write other integral numeric data using
this function. Usually, you do not need an explicit cast; the value you provide as an argument
is converted while still preserving the bit value. The following code writes an unsigned short
value to the profile:

unsigned short
data;

aprofile.addorReplaceElementwithKey(key, data) ;

Cfoa!pfer25 Storing Data in aprofile 629

Read numeric data using the integerwithKey member function of Iprof ile. For example, to
restore the value written in the previous example, use the following code:

unsigned short
data = aprofile.integerwithKey(key) ;

The compiler performs the conversions in this example, which ensures that the value restored
is the same as the original. Always restore a value to the same type of variable from which you
saved it. Unfortunately, neither profiles nor the Iprof ile class stores any indicator of the type
of data they hold. For example, you cannot tell if you wrote a particular data object as a long
or an unsigned char. In fact, you cannot even tell if you wrote it as an Istring or a long.
Data written in one format can always be read in the other format.

Iprofile writes out all numeric data as four bytes of binary data. These four bytes are simply
the bits of the long argument to addorReplaceElementwithKey. As a result, you can identify
objects that may be numeric by checking the length. If you read the object as an Istring and
its length is not exactly four bytes, then it was not written as a numeric value. If the lengtb is
four, then you can reread the value as an integer.

Compatibility with Operating System Proffle Functions
You can read from and write to profiles directly using the Windows Reg or the OS/2 Prf
functions. In this section, we explain how you can write data using one technique and read it
using another.

The Windows operating system provides some extended registry functions for use with 32-bit
systems. On 16-bit systems, you use the corresponding standard function. For example, use
Regsetvalue or RegsetvalueEx to write data and RegQueryvalue, RegQueryvalueEx, or
ReqQueryMultiplevalues to obtain the value of that data.

The OS/2 functions support data in slightly different formats.

Data written with RegsetvalueEx or PrfwriteprofileData is read using the Iprofile member
function elementwithKey. The resulting Istring contents matches the data buffer that was
written. In the event that the data written was the contents of a variable of type long, the value
can be obtained using Iprofile: :integerwithKey. If the data written consists solely of
decimal digits and an optional leading minus sign, obtain the numeric value returned by
RegQueryvalueEx or PrfQueryprofilelnt by using Iprofile: :elementwithKey. Then,
convert the contents using Istring : : aslnteger.

Data written with Iprofile : : addorReplaceElementwithKey and an argument of type long is
read using RegQueryvalueEx or PrfQueryprof ileData. This function reads the four bytes of
data, which can then be converted to a long value by various means, such as using a union or
casting the buffer address to type long*.

Data written with Regsetvalue or Prfwriteprofilestring is read using the Iprofile member
function elementwithKey. Because the string data written includes a terminating null and
Iprofile cannot determine how it was written, the resulting string's contents includes a
terminating null. (In the OS/2 operating system, it may have been written using

630 Power GUI programming with visualAge for c++

PrfwriteprofileData and might already have a null character at the end.) This null would be
in addition to the null that Istring places at the end of the string's contents. Most of the time,
using the resulting Istring as a null-terminated character array is not affected by this.

Data written with Iprofile : : addorReplaceElementwithKey and an argument of type Istring
can be read using RegQueryvalueEx or PrfQueryprof ileData. Iprofile does not normally
write the trailing null in text data objects. This means if you read data written by Iprofile
using standard OS/2 functions, you must use PrfQueryprofileData and append the null byte
yourself. You do not do this if the data is simply a buffer instead of a text string. If the data
written is an ASCII representation of a number in the range -32768 to 32767, use
PrfQueryprof ilelnt to read this data directly into a variable of type long.

Enumerating the Data Elements
You can query the set of keys you store within a given profile application by using an
Iprofile: :Cursor. To do this, you use a technique similar to enumerating the profile appli-
cation names as described previously. To enumerate the keys, construct the cursor by
providing both the name of the application and the Iprofile to be examined. Call
Iprofile: :applicationorKeyAt to obtain the key name at the cursor argument's current
position.

The following is an example of the basic code you use to enumerate all of the keys in a given
profile application:

Istring
appName j

Iprofile : : Cursor
cursor(aprofile, appName) ;

for (cursor.setTOFirst() ;cursor.isvalid() ;cursor.setTONext())
(Istring

nextKey = aprofile.applicationorKeyAt(cursor) ;
// Do something with nextKey.
)

Deleting Data
You can remove data from a profile using the Iprof ile member function,
deleteElementwithKey. This function removes a single key and data pair. Use
deleteElementwithApplication to remove all of the key and data pairs within a single appli-
cation name.

The new function, deleteprofile, removes the specified profile from the system. Uninstall
utilities use this function to erase the . ini file or remove the appropriate key and subkeys in
the registry.

Cfoapfe].25 StoringDatain aprofile 631

Sample Programs
We bave included two sample programs that display the contents of an arbitrary profile. They
provide the complete set of Iprof ile read functions, but they do not write any data. One
program is a command-line program; the other uses the same classes to give a graphical repre-
sentation of the profile contents.

In addition to demonstrating the use of Iprof ile objects, the programs have the following
features:

A class ViewprofileArgs that manages the program's arguments. The constructor for
this class parses the user input, validates it, and stores the resulting program options for
subsequent querying.

An enhanced derivative of Iprof ile, named Enhancedprof ile, which adds additional
support for detecting missing profile files at construction time and adds a function to
dump the profile contents to an output stream.

Additional classes, ProfileApplication and Prof ileKey, which simplify working with
application profiles and key and data pairs. +

The complete definition of the classes that implement the profile readers are contained on the
example program disk. Table 25-1 indicates the location of the profile reader components
after you install these programs.

To run either program, type: profile /? `

This gives you the command-line arguments you need to display the profile. For example, to
view the system profile, type: profile /s. i

632 Power GUI programming with visualAge for c++

Table 25-1. Profile Reader Components

Component Example LocationJ*

Profile Viewer Example Program profile\viewprof\viewprof.cpp

Enhancedprofile, ProfileApplication, and profile\viewprof\enhprof.hpp
ProfileKey Interfaces profile\advpro\enhprof.hpp
Enhancedprofile, ProfileApplication, and profile\viewprof\enhprof.cpp
ProfileKey Implementation profile\advpro\enhprof.cpp
ViewprofileArgs Interface profile\viewprof\vprofarg.hpp

profile\advpro\vprofarg.hpp
ViewprofileArgs Implementation profile\viewprof\vprofarg.cpp

profile\advpro\vprofarg.cpp
GUI Profile Viewer Example Program profile\advpro\profile.cpp
ProfileAppobj ect and Application View profile\advpro\appview.hpp
Interface

ProfileAppobj ect and Application View profile\advpro\appview.cpp
Implementation

ProfileKeyobject and Keyview Interface profile\advprovceyview.hpp

ProfileKeyobject and Keyview Imple- profile\advprovleyview.cpp
mentation

Profileobj ect and Profileobj ectview profile\advpro\profobj.hpp
Interface

Profileobj ect and Profileobj ectview profile\advpro\profobj.cpp
Implementation

Profileview Interface profile\advpro\profview.hpp
Profileview Implementation profile\advpro\profview.cpp

Chapter 26

Data Tlypes

• Describes the basic data type classes that open class Library provides
• Describes the following classes: Ipair, IPoint, Isize, IRange, IRectangle, Istring,

I0String, IBuffer, IstringTest, IstringTestMemberFn<>, Istringparser,
IDB CSBuffer, IAccelTblHandle, IAnchorBlockHandle, IBitmapHandle,
IEnumHandle, IHandle, IMessageQueueHandle, IModuleHandle, IPointerHandle,
IpresspaceHandle, Iprocessld, IprofileHandle, Is emaphoreHandle, IstringHandle,
IsystemBitmapHandle, IsystempointerHandle, IThreadld , IwindowHandle, ID ate,
ITime, IBitFlag, IColor, IDevicecolor, IGUIColor, IRefcounted, IReference<>

Open Class Library provides data-type classes to define and implement the behavior of the
more complex user-interface and application components of the library. These classes are also
useful outside the context of Open Class Library, and they provide examples of how to exploit
the power of C++ to declare and implement new data types.

The Open Class Library data types provide textbook examples of using C++ as a data
abstraction tool. They generally do not make use of the additional C++ features that enable
object-oriented programming. One characteristic distinguishes these data types from the more
functionally rich, larger-scale objects of Open Class Library: they encapsulate data rather
than provide behavior, thus making data easier for you to use.

Using Data Type Objects
This section provides general advice on using the Open Class Library data types. You use
objects of these data types to describe data members of other classes or to hold concrete
information during execution of member functions. Such usage matches the key design points
for the data types: they are relatively small and have straightforward, efficient constructors
and destructors.

Use these data types exactly as you would use the built-in types of C++. In general, this means
you do not need to be concerned with the creation or implementation of the objects. The
classes exploit the features of C++ so that object construction, assignment, copying, and so on
all work the way you expect, just as they do for the built-in types.

633

634 Power GUI programming with visualAge for c++

Further, these data types define operators in ways that make sense. If an addition operation
makes sense for the type, then the class defines operator+. If a function is the best match for
the concept of an addition operation for that type, then the class implements that function as
operator+. When you use these types, you simply write your code in a way that seems natural
and intuitive. The classes do what you expect.

You can use Open Class Library data types as data members of other classes, as arguments or
return values of member functions, and as automatic variables in member functions.

Data Members
You often use data type objects as data members of other classes. For example, a Customer
class might have an Istring data member that holds the customer name. You allocate and
create these data members when you allocate and create the enclosing object.

Open Class Library data types are designed as follows:

• They are space-efficient. The enclosing objects do not pay a size penalty for having data
members of these data types, even if the data members are not initialized or are
undefined. This means it is just as efficient to have a null Istring data member as a null
Istring pointer.

Their constructors and destructors are efficient. This is important because inefficiencies
in this area accumulate in the enclosing objects.

To take advantage of these efficiencies, define data members as actual objects of the data types
rather than as pointers or references, thus saving time and space costs. The extra complexity
of managing pointers also defeats the inherent simplicity of the data types. The code to
manage the pointers costs more space than it usually saves.

Most of the Open Class Library data types have default constructors that result in reasonable
values. The constructors of classes that use these types for data members do not even have to
explicitly create those data members.

Arguments or Return Values
Using data types as arguments or return values requires member functions to get or set the
data. The data types are designed so that you can easily and efficiently pass data type objects
as arguments to, or return them as results from, member functions.

Open Class Library classes almost always return data types by value. Fortunately, these
objects are efficiently copied. Functions that return by value relieve you from being
concerned with managing storage for their results.

In addition, Open Class Library classes almost always accept arguments of data types as
references to constant objects. For example, member functions that accept a size argument
declare that argument to be of type const Isize&. Passing such arguments by value is less
efficient. The compiler passes a reference in a single register's contents. But more important,
the copy constructor call necessary to pass the argument by value is unnecessary because the
called function does not need its own copy.

Chapter26 DataiTypes 635

Although data type arguments could be passed using a pointer, Open Class Library uses refer-
ences because they better convey the semantics of such interfaces. In most cases, such
arguments are required by the function. A pointer, which could be 0, does not accurately
describe the interface. Also, the use of a reference indicates that indirection occurs only for
performance reasons. You write the code for both the caller and called function as if the
argument is passed by value.

Automatic Variables
You can also use data type objects to hold local data in member functions. For example, you
can use automatic instances to hold function results or to calculate new data member values.
In this case, dynamic allocation is inappropriate. To allocate temporary data using
operator new is unnecessary and prone to error because you might forget to free the temporary
object. Note that in all of the examples in this chapter, none of the data type objects is
allocated dynamically on the heap with operator new.

Ordered Pairs
A basic data type that Open Class Library provides is a general purpose, two-dimensional
vector, or o7idered p¢I.r, of signed long values. The base class for this type is Ipair. The
library provides three derived classes that represent specific applications of such ordered
pairs. They are IPoint, Isize, and IRange.

Ipair Base Class
The Ipair base class provides most of the implementation for all of the types of ordered pairs.
It consists of a pair of coordinates of type Ipair : : Coord, which is an alias for long. Although
you can use objects of type Ipair, you almost always use the derived classes described in
Table 26-1 to ascribe a specific semantic interpretation to the ordered pair.

Ipair provides almost all of the functionality of each of these specific types of ordered pairs.
We do not describe these functions completely here because many of them are intuitive. You
can manipulate Ipair objects much like you do a built-in type. For example, Ipair objects
define all of the mathematical operators and they work as you would expect them to (+ adds,
- subtracts). This section mentions each functional category of Ipair, and we discuss any
interesting or nonobvious details of the functions in the category.

Table 26-1. Derived Ordered-Pair Classes

Class Description
IPoint Presents the ordered pair as a point in two-dimensional space.

Isize Presents the ordered pair as a width and height.

IRan8e Presents the ordered pair as the boundaries of a range of numbers.

636 Power GUI programming with visualAge for c++

Almost the entire implementation is inlined. Most functions consist of one or two assignments
of simple expressions. In most cases the compiler generates efficient code for these functions.

Ipair Constructors
You can create an Ipair object from 0, one, or two coordinate values. If you do not provide
any coordinate values, Ipair assigns both the value 0. You can also create an ordered pair
from an existing Ipair object using the generated copy constructor. The derived classes
provide their own constructors. If you derive your own ordered-pair classes, your constructors
will probably use the Ipair constructor that accepts values for both coordinates.

Accessing the Coordinate Values
Access the two coordinate values that the Ipair object maintains by using the functions
coordl and coord2. Set them to new values by using the functions setcoordl and setcoord2.
Usually, you use objects of some derived class, and those derived classes assign the coordi-
nates more meaningful names. For example, the class IPoint uses the functions x, y, setx, and
setY.

Comparison Functions
You can compare any two Ipair objects for equality or inequality. Compare them using any of
the other logical comparisons operators >, <, >=, or <=. One ordered pair is less than another
ordered pair if both coordinates are less than the corresponding coordinates in the other
ordered pair. If you plot the two ordered pairs being compared on conventional x-y axes, the
lesser pair is below and to the left of the greater pair.

Assigrment Functions
You assign one Ipair object to another using operator=. Ipair provides other assignment
operators that perform some mathematical operation on the ordered pairs and assign the result
to the left-hand argument.

Mathematical Operators
The standard mathematical operators for ordered pairs are addition, subtraction, multiplica-
tion, and division. Ipair also supports the remainder operator (%). Each operator performs the
specified operation on the corresponding coordinates of the two operands. For example,

Ipair(1,2) * Ipair(2, 3) == Ipair(2, 6)
Because an Ipair is created from an integral expression, you can add Ipair objects, for
example, to an int. The expression:

Ipair(1048, 762) / 2

evaluates to
Ipair(524, 381)

Chapter26 DaLtaLTypes 637

Open Class Library declares the operators as friend functions rather than as member functions
of Ipair so you can use numbers on either side of the operator. You can write 5 * apair or
apair * 5.

The multiplication and division functions are also overloaded to accept an argument of type
double. This permits greater precision when they operate on points using a floating-point
factor or divisor.

Miscellaneous Functions
Ipair provides other ordered-pair functions. Table 26-2 describes these functions.

Table 26-2. Miscellaneous Ordered-Pair Functions

Function Description
transpose Swaps the coordinates of the ordered pair. There are two versions. One is a member

function that transposes the ordered pair to which the function is applied. The other is a
nonmember function that accepts an Ipair and returns a new transposed Ipair. Use the
nonmember function to preserve the original Ipair.

dotproduct Calculates the dot product of the Ipair object that the function is invoked against and an
argument Ipair. The dot product for the Ipairs (xl,yl) and (x2,y2) is defined to be
xl*x2 + yl*y2. Written in terms of Ipairs, an example is:

Ipair(3,4).dotproduct(Ipair(-8,-6)) == 0

Lines from the origin to these two points are perpendicular.

scaleBy Multiplies the two coordinates of the ordered pair by different floating point values. This is
in contrast to operator *, which always multiplies the coordinates by the same floating point
value or by integral expressions. The result replaces the ordered pair to which this function
is applied.

scaledBy Similar to the preceding function, scaledBy differs in that it does not modify the ordered
pair to which you apply the function. Instead, it returns the result as a new ordered pair.
Use this function to preserve th.e original ordered pair.

maximum Returns the larger of the ordered pair to which the function is applied and an argument
ordered pair. The two comparands are compared using operator >.

minimum Returns the smaller of two ordered pairs.

asstrin8 Returns an Istring object that contains a representation of the ordered pair. The result is in
the form "(coordl,coord2)" with the coordinate values as decimal digits.

ostreamextractor This extractor puts tbe result returned by asstring to the stream.

638 Power GUI programming with visualAge for c++

IPoint Class
The most commonly used of the ordered-pair derived classes is IPoint. Open Class Library
window and control classes use IPoint and IRectangle, which is built on IPoint, to handle
window geometry.

IPoint provides an abstraction to general ordered pairs. Specifically, the two coordinates are
treated by the point as the x and y coordinates in two-dimensional space. IPoint provides the
functions x, y, setx, and set¥ so that you can access the coordinates from that perspective.

IPoint provides essentially the same constructors as Ipair does. You can use an additional
constructor to create an IPoint object from an object of type POINTL (defined in both the
Windows and OS/2 developer's toolkits). IPoint also provides a conversion function
aspoINTL.

IPoint inherits all its other functions from class Ipair.

IPoint and POINTL
An IPoint object is bitwise-compatible with both tbe Windows and OS/2 POINTL structures.
You can choose to exploit this by passing IPoint* as PPOINTL, but IPoint provides support
for converting from and to type POINTL, so it is unnecessary to take that risk. However, the
risk is small. If you are concerned that the compiler or Open Class Library might change so
that these types are no longer compatible, add the following code to your programs to detect
such a change:

IASSERT((sizeof POINTL == sizeof IPoint) &&
(offsetof(POINTL,y) == offsetof(IPoint,y))) ;

This comment also applies to Isize and SIZEL.

Isize class
Another specialized ordered pair that Open Class Library commonly uses is Isize. It inter-
prets the ordered pair as width and height values. Thus, this class has functions width, height,
setwidth, and setHeight that you can use to manipulate these values.

Isize provides the common constructor types that you find in Ipair and IPoint. In addition,
two other constructors create an Isiz`e object from Windows and OS/2 RECTL and SIZEL struc-
tures. The resulting Isize values represent the size of that rectangle. Isize also provides
asRECTL and assIZEL functions that return a suitable structure based on an Isize object.

IRange class
The other ordered-pair derived class that Open Class Library provides is IRange. Objects of
this class represent number ranges. The coordinates are the lower and upper bounds of that
range. The coordinate accessing functions are lowerBound, upperBound, setLowerBound, and
setupperBound.

Chapter26 DaLta\'lypes 639

The lower and upper bounds or any Ipair object creates IRange objects. IRange also furnishes
a default constructor that constructs the range [0,0] and a generated copy constructor.

IRange provides a range-specific function called includes. This function accepts a number as
an argument and returns a Boolean to indicate if the argument falls within the number range.
Use this function as shorthand for the logical expression:

(aRange.1owerBound() <= x) && (aRange.upperBound() >= x)

IRectangle Class
The class IRectangle does for rectangles what IPoint and Ipair do for points. The same way
that IPoint objects simplify the manipulation of POINTL-type data and leave you with simpler
and more readable code, IRectangle simplifies your code that manipulates window size,
position rectangles, and other windowing geometry.

Mathematically speaking, an IRectangle object represents a locus of points in
two-dimensional space. The rectangle defines the set of points by the two points that lie at the
(minimum x, minimum y) and (maximum x, maximum y) corners of the rectangle. The
coordinate system orientation of the application determines the relative locations of these two
points. In an application with lower-left orientation, the (minimum x, minimum y) point is the
lower-left corner, and the (maximum x, maximum y) point is the upper-right corner. In an
application with upper-left orientation, the two points are the upper-left and lower-right
corners, respectively. The rectangle includes all points both greater than or equal to the first
point and less than the second point. IPoint objects represent these points. Figure 26-1 shows
an IRectangle object in upper-left orientation and labels its important attributes.

Figure 26-1. Schematic of an IRectangle Object in an Upper-Left Orientation.

640 Power GUI programming with visualAge for c++

Notice that the rectangle is skewed towards the upper-left corner of the page. The rectangle
does not include its maximum x and maximum y edges. This ensures the integrity of the
mathematical property that the area of the rectangle (the number of discrete points within it) is
always equal to the width of the rectangle multiplied by its height.

Rectangle Attributes
The IRectangle class provides functions that return separate attributes of the rectangle,
functions that return various points on the perimeter of the rectangle, and a function that
returns the point nearest the center of the rectangle. Figure 26-1 shows these points and labels
them with the name of the IRectangle function that returns them. The function names are
orientation-independent. IRectangle also provides a set of synonym functions that imply
orientation. For example, the bottomLef t function is a synonym for minxMinY, and topRight
is a synonym for maxxMax¥. In the synonym function names, bottom and top indicate minimum
and maximum y, and left and right indicate minimum and maximum x. They thus have a
correct denotation in applications with lower-left orientation.

Four functions return the coordinates of the boundaries of the rectangle. The boundaries and
labels, which again match the function names, appear on the x and y axes in Figure 26-1.
Other functions return the width and height of the rectangle. IRectangle: : size returns an
Isize object with the width and height of the rectangle, and IRectangle: :area returns the
product of the width and height of the rectangle.

Rectangle Constructors
Use any of the sets of arguments in Table 26-3 to create an IRectangle object.

Rectangle Operators
The IRectangle class provides the operators in Table 26-4. (There is no intuitive meaning for
the addition and multiplication operators.)

Rectangle Thansformations
You can stretch and move IRectangle objects in a variety of ways. Although there are eight
basic transformations, you can specify the arguments to each of them in different ways.
Table 26-5 describes the transformations.

Notice there are two separate functions for each transformation. The ones whose names are in
present tense modify the rectangle and return a reference to it. The functions whose names are
in past tense describe the result of the function, which is a new rectangle. Thus, the former
modify the rectangle and the latter do not.

Cfe¢pfer26 DataTypes 641

Table 26-3. IRectangle Constructors

Arguments Description
None The default null constructor returns a rectangle located at (0,0) with size (0,0).

two points This constructor interprets the argument points as the opposite corners of the
rectangle you are constructing. These points are either the lower-left and upper-
right corners or the upper-left and lower-right corners, depending on the
relationship of the points you provide and the orientation of the application.

a point and a size The resulting rectangle has its (minimum x, minimum y) corner at the specified
point and has the specified size. This is similar to the way you specify Windows
and OS/2 operating system window rectangles (x, y, cx, and cy values).

four coordinate values The four values become the coordinates of the rectangle' s minimum y, minimum
x, maximum y, and maximum x edges, respectively. Although this looks like the
way you specify window rectangles in the Windows and OS/2 operating systems,
it does not produce the desired result if you use it this way. For example, speci-
fying an initial window rectangle as IRectangle(100,100,100,100) produces a
window with no height or width because its minimum and maximum points are
the same, not a window with size (100,100).

a RECTL object This object permits conversion from a standard presentation system rectangle
structure to an IRectangle object. You can convert the reverse way using the
member function asRECTL.

a RECT object Converts from a Windows RECT structure to an IRectangle object. There is no
(Windows operatingsystemonly) reverse conversion function.

a width and a height The (minimum x, minimum y) corner is at (0,0).

any ordered pair The ordered pair specifies the width and height of the rectangle, and the rectangle
position is at (0,0). The argument pair can be an Isize or IPoint object. The result
is the same.

Table 26-4. IRectangle Operators

Operators Description
== and != These comparison operators check whether the two operands are identical.

& and &= These operators provide for rectangle intersection. The result is a rectangle
comprised of the points in both argument rectangles. If the rectangles do not
overlap, the result is a null rectangle. See Figure 26-2 .

I and 1= These operators provide for rectangle union. The result is the smallest rectangle
that contains both of the argument rectangles. See Figure 26-2.

642 Power GUI programming with visualAge for c++

AIB 8.1r`+\ ? +,i

A A&B
#

Figure 26-2. Rectangle Intersection and Union.

Table 26-5. IRectangle Transformation Functions (Part 1 of 2)

Functions Arguments
*Description%

Centering at a given location

centerAtcenteredAt const IPoint & Moves the rectangle so that its center ends up at the argument point.

Expanding from the center

expandBy const Ipair & Expands the rectangle by increasing the width and height by different

expandedBy amounts, which the coordinates of the argument pair specify. Each
corner is adjusted by this amount away from the center.

Coord Expands by the same factor in both directions.

Moving relative to current position

moveBy const Ipair & Moves the rectangle from its current position by the vector specified in

movedBy the argument ordered pair. Use combinations of positive and negative
coordinates to move the rectangle in any direction.

Moving to an absolute position

moveTo const IPoint & Moves the rectangle so that its (minimum x, minimum y) corner is at the

movedTo argument position.

Cfe¢pfe7.26 DataTypes 643

Table 26-5. IRectangle Transformation Functions (Part 2 of 2)

Functions Arguments
J*Des€ription

Scaling

scaleBy const Ipair & Multiplies each point in the rectangle by the argument ordered pair.

scaledBy This function moves the (minimum x, minimum y) corner of the
rectangle using sizeBy to resize the rectangle at its current position.
Scaling by (-1,-1) rotates the rectangle 180 degrees from the coordinate
system' s origin.

Coord Multiplies the points of the rectangle by the argument coordinate value.
This function scales the rectangle by the same amount in each direction.

double Multiplies the point of the rectangle by the floating-point value.

double, double Scales the rectangle by different factors in the x and y directions.

Shrinking towards the center

shrinkByshrunkBy const Ipair & Adjusts the position of each corner of the rectangle by the specified
amounts in either direction (towards the center for positive coordinate
values).

Coord Moves the corners of the rectangle the same amount horizontally and
vertically.

Sizing to an absolute size

sizeTo const Ipair &
aSetsthesizeoftherectangle to the value specified by tbe argument. The

sizedTo position of the rectangle remains the same.

Sizing to a relative size

sizeBy const Ipair & Multiplies the size of the rectangle by the argument ordered pair and

sizedBy resizes the rectangle to that size. The position of the rectangle remains
the same.

Coord Scales the width and height by the same factor.

double Scales the width and height by the same floating-point value.

double, double Scales the width and height by different floating-point value.

644 Power GUI programming with visualAge for c++

Testing Functions
Table 26-6 describes the IRectangle functions that test the characteristics of the rectangle.

Table 26-6. IRectangle Testing Functions
iFunction>

DescriptionF`

contains Accepts an IPoint object as an argument. It determines whether the rectangle
contains this point and returns true or false accordingly.

intersects Accepts another rectangle as an argument. It returns an indicator of whether the two
rectangles have any points in common.

Character Strings
The Open Class Library classes Istring and I0String provide a comprehensive and efficient
C++ encapsulation of character strings.

Standard C and C++ character arrays and the built-in techniques for handling them are prone
to numerous problems, as follows:

• If you allocate the storage for the array dynamically, you must explicitly free this
storage, something you might forget to do.

• You must allocate enough space for the terminating null character. Otherwise, whatever
occupies the following byte of memory is overwritten when you do something like
strcpy into that string.

• You must place the null character in the last element of the array. Otherwise, the bytes
that follow in memory are interpreted as part of the string, and you are likely to
overwrite them or they can cause you to overwrite data elsewhere.

• If you have functions that return character arrays, you must determine what allocates the
space for them and what deletes them. This not only complicates the interface, but often
results in storage not being released.

Replacing char* with an Istring Object
In the Istring implementation objects are bitwise identical to an equivalent char* pointer.
Thus, you can redefine a plain C structure with Istring in place of char* and still be
compatible with both C++ and C, even though the latter does not detect that the field holds
a C++ object. Open Class Library exploits this feature of Istring. For example,
IContainerobject redefines portions of the OS/2 container MINIRECORDCORE structure so
that the char* elements can be replaced with Istring objects.

Chapter26 Da[taLTypes 645

Where Do You Start: 0 or 1?
The string objects defined by the class Istring are indexed starting at 1. The string objects
defined by the class I0String are indexed starting at 0. In all other respects, these two
classes are identical. You can use either version of Istring.

Open Class Library interfaces are defined in terms of Istring, but because an I0String
object is essentially an Istring object, you can use tbe former everywhere in your code.
Then, the string objects are converted as needed. If you prefer the conventional 0-based
indexing that you use for C arrays, use I0String. Byplacing typedef I0String String; in
ISYNONYM. HPP, you can use String as a shorthand for I0String.

In the version of I0String shipped with Open Class Library in VisualAge for C++ for
Windows, version 3.5, however, a virtual destructor was inadvertently added to the
I0String class but not to the Istring class. The two classes are now temporarily bitwise
incompatible. If you use I0String in place of Istring, your code might not compile (for
example, with the Istringparser class). And, if you use I0String in a class derived from
IContainerobj ect to provide information for the container, the details view does not work.
For more information on this problem, see the Frequently Asked Questions document
shipped with the product.

All these problems are solved if you use Istring objects rather than traditional C character
arrays. In addition, objects of this type provide a comprehensive set of functions that operate
on the string contents. The Istring class turns character strings into a first-class data type of
C++ with the following characteristics:

• Istring objects free the dynamically allocated character arrays that they manage.

• The class terminates all strings with a null character.

• The class provides conversions from and to traditional char* pointers so that an Istring
object' s contents are efficiently passed to code that receives data in this format.

Operator char* versus Operator const char*
There is some danger in permitting the Istring contents to be implicitly accessed using
operator char*. By rights, the function should be operator const char*. The only reason
it works the way it does is that prior to the updated toolkit that shipped with IBM' s C Set ++
2.0, the declarations for all of the OS/2 and Presentation Manager functions used non-const
character pointers. If Istring permitted conversion to const char* only, users would have
to do inordinate numbers of casts to type PSZ. So, the operator was declared non-const out
of necessity. By the time IBM updated the OS/2 toolkit, programmers had written code that
was dependent on being able to convert to a non-const pointer.

Thus, ensure that you do not inadvertently pass an Istring object to a function that
modifies the pointed-to storage unless you know what the effects on the Istring object will
be. Passing such a pointer to strcat, for example, might prove to be a mistake.

646 Power GUI programming with visualAge for c++

Implementation of the Istring Class
You can use Istring objects effectively without understanding the implementation of the
class. However, if you understand the implementation, you can use the class better and avoid
pitfalls.

First, look at a simple Istring object. The following code declares and defines an Istring
object with contents consisting of the character string "Hello, World!":

Istring s("Hello, World!");
This Istring object results in the arrangement of Istring and IBuf fer objects shown in
Figure 26-3.

Istring
S

contents nullI

I+ I

T IBuffer
1 13 H e 1 1 a W a r 1 d I® \0

use count length

Figure 26-3. Sinple Istring Obg.ect Configuration.

In this configuration, note the following points:

• The Istring variable s occupies only four bytes and the contents of those bytes is a
char* pointer to the contents.

The character array to which the Istring object points includes a trailing null character.
The contents include only the bytes preceding this null. The extra byte is solely for the
purpose of making the string contents compatible with code that handles null-terminated
C character arrays.

The character array to which the Istring points is a portion of an enclosing IBuf fer
object. The IBuf fer object implements the language-sensitive behavior of Istring
objects. The Istring object delegates functions that are language-sensitive to this
IBuf fer object.

Because Istring objects are essentially smart pointers to IBuf fer objects, you rarely, if
ever, need to allocate Istring objects dynamically on the heap. You gain nothing by
adding an additional layer of pointers and dynamic storage allocation calls. The
following code results in two dynamic storage allocations: one to allocate space for the
Istring object, and another to allocate space for the Istring object' s contents:

Istring*p=new Istring("Dynalnic") ;

Chapter26 Datz\Types 647

The following alternative version requires only a single dynamic storage allocation
request for the Istring object's contents:

Istring s(`'Dynamic");
The IBuf fer object caches the length of the Istring object for performance reasons.
The strlen function or equivalent is not called every time the length of the contents is
required. The length does not include space for the terminating null cbaracter. In this
example, the length is 13, which is just enough space for "Hello, World!".

• The IBuf fer object also contains a use count. This value and its usage are discussed
next.

Consider what happens when the Istring object's contents include a null character. In the
example, if you execute the following code, the blank within "Hello, World!" is changed to a
null character:

s[7] = '\0';

This results in the object's configuration shown in Figure 26-4. The only difference is that the
seventh byte of the contents is now a null character rather than a blank. Notice that the length
of the contents has not changed.

I Istring I
S I I contents null

I

I+I

T IBuffer
1 13 H e 1 1 a \0 W a r 1 d I® \0

use count length nJ]|

Figure 26-4. An Istring Object with an Embedded Null.

The next example shows you how the Istring class shares the string contents that the IBuf fer
object defines. First, add a statement to the example as follows:

Istring s2(s);
This line creates another Istring object named s2 and gives it the same value as s. This
produces the objects pictured in Figure 26-5.

The figure shows that if you create two Istring objects and assign one to the other, you get a
single IBuf fer object that is shared by the two Istring objects. The use count on the IBuf fer
object is incremented each time the buffer is shared, and it is decremented when a reference to
the buffer is removed. When the use count goes to 0, the IBuf fer object is deleted.

648 Power GUI programming with visualAge for c++

I Istring I
IIIIIIIREI

contents
I

I+ I

T IBuffer
2113 H| e| 1 I 1 I o| , |\O|W| o I r| 1 I d| ! \0

use count length

s2l `Strin91

Figure 2615. An Istring Object with a Shared IBuffer Object.

An Istring object shares its contents whenever possible. Most often, this happens when you
assign one Istring object to another. Assignments happen implicitly, too. For example,
returning an Istring object from a function effectively assigns the returned Istring object to
the variable reserved in the calling code. This sharing does not extend to the assignment of
char* strings, including literal strings. An Istring object must make a copy of these strings.

The final example shows what happens when you manipulate one of the two Istring objects
that share the same buffer contents. Consider the following expression:

s = "Good-bye";

This statement must change s so that its contents are now the string "Good-bye". The contents
of s2 must remain unchanged. The question is: how does the Istring class handle a modifi-
cation to one of the Istrings objects that shares its contents? The example results in Istring
and IBuf fer objects' configurations as shown in Figure 26-6.

As this figure shows, when s changes, it allocates a new IBuf fer object to hold its new
contents. The string decrements the use count for the old IBuf fer object when s is changed to
point to the new IBuf fer object. Had the use count gone to zero, the original IBuf fer would
have been deleted. In this example, however, the original IBuf fer object remains with s2 still
pointing to it.

Cfeapfe7.26 DataTypes 649

I Istring I
IIIIIIEI

contentsI

I+ I

T IBuffer
1 9 G a a d b y e I® \0

use count length contents

I I

IBuffer
1 13 H e 1 1 a \0 W a r 1ldl ! \0

use count length

s2 I Istring I11

Figure 26-6. Istrings After Copy-on-Write.

Copy-on-Write
The technique of detaching from the old shared contents and allocating new contents when
one of the references changed is called capy-o73-wrz.£e.

There is some overhead involved in implementing this technique. The class must manage
the reference counts and add additional logic to deal with sharing the representation.
However, such a scheme is usually beneficial, especially for a general-purpose string class.
Such strings are frequently passed between objects on function calls as either arguments or
return values. By using a copy-on-write implementation, neither the caller nor the called
function need to track what the other party is doing with the strings.

If the caller takes the Istring results and just reads the value, then no copy is made. Only
when the caller subsequently modifies the result is a copy made. Since such modifications
are relatively unlikely, delaying the copy until it is necessary will probably provide a
savings.

650 Power GUI programming with visualAge for c++

Reference versus Value Semantics
Your code could implement a C++ string class that has s2's value change as s changes, and
vice-versa. Objects that change in this way exhibit re/ere#ce-siem¢7cfz.cs; that is, they
behave as if the objects are pointers.

However, concrete data types should always exhibit vczJz4e-se7„¢7®fz.cS; that is, they behave
as if the objects are distinct values rather than pointers. The latter behavior follows from
the definition of concrete data types: they represent concrete objects, and two instances,
therefore, represent two separate objects. As a consequence, operations performed on one
should not affect the other. For this reason, all of the Open Class Library concrete data
type classes provide value semantics.

String Constructors
The Istring class has 18 public constructors. This may seem like an inordinate number, but
each one provides some specific feature that the others do not. Further, the constructors fall
into a small set of categories that make it easy for you to choose the appropriate constructor
for a given task.

Most of the time you use a constructor that allows you to specify the initial contents of the
Istring object. You can create an Istring object from almost any primitive C++ type. The
resulting object contains the most reasonable ASCII representation of the argument value.

A list of the most important, interesting, and useful hints and tips about creating Istring
objects follows:

• The default constructor builds a string with empty contents. It has length zero. If you
convert this string to a char*, the result points to a null character. Therefore, a null
Istring object is more convenient to use than a null char* pointer that you must check
before accessing its contents.

• The copy constructor is important because it provides the only means for two Istring
objects to share the same string contents.

• The constructors that take char* pointers (plain, signed, or unsigned) all make a copy of
the argument character array, up to and including the terminating null character.

• For efficiency, always create a new Istring object from an existing one rather than from
the existing string's contents (as a char*). Conversely, if you want to copy an existing
string, cast the source Istring to type char*, as follows:

Istring source("source string") ;
// Force a copy of the buffer.
Istring copy((char*)source) ;

If you create an Istring object from a char* pointer with value 0, the it initializes itself
to be null.

Cfo¢pfe7.26 DataTypes 651

• You can create an Istring object from the contents of up to three separate buffers of
arbitrary data. One advantage of these constructors is that they are much more efficient
than using concatenation to build up the string's contents. Here are some additional
details to note about these types of Istring constructors:

The argument buffer pointers are of type void*, denoting that these buffers are not
null-terminated. You must also pass the buffer length because the buffers can
contain embedded null characters.

The buffer pointer values can be 0. If they are, the corresponding portion of the
string contents are filled with the pad character. The pad character is an optional
argument on these constructors. The default pad character is a blank.

The pad character is only in effect for 0-valued buffer pointers. If you try to create
an Istring object with the following code, you do not get "helloxxxxx":

Istring padded("hello",10, 'x');
Instead, the Istring constructor uses the ten bytes residing at the location
specified by the "hello" literal string.

Use these constructors to allocate Istring objects that you plan to use as buffers.
For example, Istring(0,1024) creates an Istring object with an empty
1024-byte buffer.

If you create an Istring object from a numeric type (a type other than char), the
resulting string's contents are an ASCII representation of that number. For example,

Istring(1234) == ''1234"
Istring(3.14159) == "3.14159"

\ Null Istring objects
The Istring class shares a single null IBuf fer contents object among each and every null
Istring object in your application. This is important because it means defining a null-
valued Istring object is extremely efficient because allocation of dynamic storage does
not occur. This is part of the reason why allocating Istring objects dynamically using
operator new is rarely necessary.

Overloaded String Operators
The Istring and I0String classes provide a complete set of unary and binary operators. We
do not discuss these operators in detail because most of them work the way you would expect.
However, to provide some insight into the power and usefulness of some of the more obscure
Istring operators, we describe the operators that you can use to twiddle the bits of the
Istring contents. Table 26-7 describes these operators.

The second operand of the bitwise binary operators is replicated (or truncated) by the opera-
tors. In effect, the second operand becomes the same size as the first operand.

652 Power GUI programming with visualAge for c++

Table 26-7. Istring Bitwise Operators

Operator Description ul Examples
Operator& Bitwise AND. Result bits are set only if the bits of both Istrin8 s("5„);

operands are set. s & "koF„ == „\x05„s&"\xFF„==sIstring("a")&"\xDF" == "A"

Operatorl Bitwise OR. Result bits are set if the corresponding bit Istring s("Hello");
is set in either or both operands. s I " " == "hello"Istrings2("\xO\xl\x2");s2I«0„==«012„

operator^ Bitwise exclusive OR. Result bits are set only if the Istring s("Bicapitalized");
corresponding bits in the operands are different. s ^ " " == "blcAPITALIZED"s^«ci?c!ci..^«?1?"-_-_s

Operator- Unary bitwise negation. Result bits are the inverse of Estring(" ") == "\xDF"
the operand bits.

If you use Istrings objects to manipulate textual data only, you may not find a use for these
operators. However, if you are using Istrings to hold binary data, these operators greatly
simplify that operation. If you are writing a computer hardware simulator, an Istring object
can hold the emulator's "memory" and might be able to emulate the machine's exclusive OR
instruction by using Istring : : operator^. Or, you might use an Istring object to hold bitmap
bits and then want to manipulate those bits using the higher-level Istring operators.

The exclusive OR operator is interesting. Applying it twice with the same operand creates an
identity operation; that is, the result is the original operand. Thus, you can use this operator to
implement a simple (but not totally secure) encryption scheme.

The following code reads data from stdin, performs an exclusive OR with an arbitrary key,
and writes the result to stdout:

Using Istrings with Binary Data - data\cipher\cipher.cpp
#include <istring.hpp>
#include <iostream.h>
#include <stdio.h>
int main (int argc, char *argv[])

(int
result - 0;

/ / Get a lyf5ry .Istring
key(argv[1]);

Cfeapfe7.26 DataTypes 653

// Ensure a key was specified.
if (key.length())

(
// Put input and output files in binary mode.
if (!freopen("', "rb", stdin)"

!freopen("', `'wb'', stdout))
(
cerr << "Error opening input/output files.\a" << endl;
result = 2;
)

else
(
// Read from stdin, XOR the bytes with the key,
// and write to stdout.Istring

buffer(0, 4096); // Allocate 4K buffer.
while (true)

(size_t
n = fread((char*)buffer,1, buffer.length(), stdin);

buffer ^= key;
fwrite((char*)buffer,1, n, stdout);
if (n < buffer.length())

break;
)

)
)else
(
cerr << "You must specify a key!\a" << endl;
result = 1;
)return result;

)

From this code example, you see how to use an Istring object to manage a buffer rather than
to simply hold some text. You gain the benefit of the storage management support inherent in
Istring and obtain all of the string manipulation functions that Istring provides.

Use this cipher program from a command prompt as follows:
C>cipher "some secret key" <input.txt >output.txt
C>cipher `'some secret key" <output. txt

This sequence of commands writes the original file to stdout. The intermediate output. txt
file holds the contents of input. txt, thus rendering the contents unusable without the user
having the secret key.

String searches .
The Istring class provides a comprehensive set of string search functions. Table 26-8 lists a
set of ccz7®o7ez.cczJ search functions. Canonical functions search the string from left to right
starting the search at the position you specify. If you do not specify an explicit starting
position, the search starts at the beginning of the string. You can also search a string from right
to left. The functions to do that have similar names, but have the prefix Zczs'f: 1astlndexof,
1astlndexofAnyof, and lastlndexofAnyBut. These functions accept a starting position and
search from that point back to the beginning of the string. By default, they start searching
from the end of the string.

654 Power GUI programming with visualAge for c++

Table 26-8. Istring Search Functions

Search Eunctiom Description
indexof Searches for the next occurrence of the argument string and returns the position at

which the next occurrence was found. It returns 0 if the argument string is not
found.

indexofAnyof Interprets the argument as a set of characters. Use this function to search a string
for characters in this set. The returned value is the position in the string of the first
character that is a member of the argument set. If the string holds none of the
argument characters, the function returns 0.

Use this function to search for the next occurrence of any of a set of delimiters, to
find the next numeric digit, and so on.

indexofAnyBut Searches for characters not in the argument set. This is similar to indexofAnyof,
but does not search for characters in the argument set. Thus, use it to find the next
nonnumeric digit, the next non-whitespace character, and so on.

Table 26-9 lists a set of search function arguments which you can use to specify a search
argument.

Table 26-9. Istring Search Function Arguments

Argument Typer\ Description
Istring& An Istring object. You can also pass an Istring argument as a char* in almost all

cases (except when the Istring contains embedded nulls). Using an Istring
argument does provide some performance advantages, too.

For indexof, the Istring argument is the string for which you are searching. For
indexofAnyof or indexofAnyBut, the characters in the string are the set of
characters that are accepted or rejected.

char* A char* pointer to an array of characters. Use it when you pass a literal string as
the search argument. The search functions treat the char* argument the same as
they treat an Istring argument.

char A single character. It is passed to the search functions directly without having to
build an Istring object or character array around it. In this case, indexof and
indexofAnyof are identical.

IstringTest& An arbitrary "string-test" object. For complex search criteria that the basic Istring
search functions do not cover, you can usually implement the criteria using a class
derived from IstringTest.

The indexof function passes the string test object one character at a time until a
character tests true. indexofAnyof works the same way. If you pass
indexofAnyBut an IstringTest object, the function passes the object characters
until one tests false.

Chapter26 DaLta[Types 655

Even with 24 search functions, choosing the right function is not difficult if you understand the
underlying model. To determine the right function to use, decide whether you want to search
for a given string, one of a set of characters, or a character not in a given set. Then decide
whether you want to search from the beginning of the string or the end. Do not be concerned
about the search argument because the C++ overloaded functions ensure that the proper
function gets called.

In addition to the basic set of search functions, Istring also provides the advanced search
functions described in Table 26-10.

Table 26-10. Advanced Istring Search Functions

Search Function Description
isAbbreviationFor Tests whether the Istring object is an acceptable abbreviation for the argument

string. The string passes this test if it matches the argument string and has suffi-
cient length (which you specify as an additional, optional argument).

isLike Performs a fuzzy comparison of two character strings.

The following code uses the isAbbreviationFor function to evaluate a "PRINT" string
abbreviation.

Istring keyword("PRINT") ;
Istring inputl("PR");
Istring input2("P");

// These expressions evaluate to true.
inputl. isAbbreviationFor (keyword) ;
input2. isAbbreviationFor (keyword) ;
// This expression evaluates to false.
input2.isAbbreviationFor(keyword, 2) ;

Use the isAbbreviationFor function to test input for command keywords, validate input data,
and so on. Also use it as shorthand for testing whether the beginning of one string matches
another. The expression astring. isAbbreviationFor (anotherstring) is identical to the
expression astring == anotherstring.substring(1, astring.length()). The first
expression, in addition to being much easier for you to type and your program to read, is also
far more efficient than the latter. The substring call in the second version requires your
program to create a copy of the portion of the string being compared.
Although the isLike function is not quite a full, regular-expression parser, it is built in and it
is efficient. Use it to implement sophisticated searches with minimal effort. For example, the
following program searches, or greps, a file for lines that match an arbitrary pattern.

Grep for Matching Pattern - data\igrep\igrep.cpp
#include <istring.hpp>
#include <fstream.h>
int main (int argc, char *argv[])

(int
result = Oj

656 Power GUI programming with visualAge for c++

// Validate the input arguments.
if (argc != 3)

(
cerr << `'Usage: igrep <file> <pattern>\a" << endl;
return 0;
)

Istring
file(argv[1]),
pattern(argv[2]);

// Pad the pattern at both ends with wildcards (so the pattern
// is found anywhere in an input line)
pattern = Istring(0, 1,

(char*)pattern, pattern.length() ,
0,1'
'*');

// Open the input file.
if stream

input(file);
if (!input)

(
cerr << ''Error opening file.\a" << endl;
return 0;
)

// Read lines, looking for a pattern.
unsigned

lineNo = 0;
while (input)

(Istring
line = Istring: :1ineFrom(input) ;

1ineNo++;
if (line.isLike(pattern))

(
result++;
cout << Istring(1ineNo) .rightTustify(4) << " "

<< line << endl;
)

)return result;
)

You can include special characters in the isLike function argument string to further qualify
the search. The special character * matches an arbitrary string of 0 or more characters. For
example, astring.isLike(''*") returns true for all strings, and astring.isLike(`'*{*}*")
returns true for all strings that contain a matched set of braces. The character ? matches
exactly one arbitrary character. For example, astring. isLike (`'x ?=*") returns true for any
string containing code that applies any operator-plus-assignment operator to the variable x,
and astring . isLike (" ?* ") returns true for any string containing at least one character.

IstringTest Class
In Table 26-9, you saw that all of the basic Istring search functions are overloaded to accept
an IstringTest object. Use the version of those functions that takes an IstringTest
argument to implement your own special-purpose search functions.

Chapter26 DataLTypes 657

The IstringTest class helps you to easily and efficiently search a string's contents for the
next punctuation character. Without the version of indexofAnyof that accepts an IstringTest
object, you would have to resort to code like this: astring. indexofAnyof (" ; ' : \"\" , . ?").
The problem with this code is that the argument does not include the whole set of punctuation
characters. ANSI C specifies that the ispunct function of the Standard C library returns true
for any characters considered to be punctuation. And even if you write a test program to
determine the exact set of punctuation characters, that is not an ideal solution because the set
can vary based on the C locale in effect.

Instead, you need to somehow pass the ispunct function to the Istring object and get it to call
that function instead of searching against the argument set that contains the characters.
IstringTest enables you to do that. To exploit this capability, derive from the IstringTest
class and override the virtual member function test to implement your character-testing logic.
Istring calls the IstringTest object' s test function, which tests individual characters during
execution of the various search functions.

The base IstringTest class has a constructor that accepts a pointer to a C function of the same
type as the standard C library character test functions ispunct, isspace, isdigit, and so on.
To apply this function to Istring objects, find the position of the next punctuation character
using: astring.indexofAnyof (ispunct).

If you want to use your own string-testing logic, you have two choices. One choice is to write
a C function that applies the test, and then wrap this function with a generic IstringTest
object. For example, to search for the next occurrence of either white space or punctuation,
write the following code:

extern `'C" int myTest(int c)
(

return isspace(c) 11 ispunct(c);
)

Then use this function as follows:
astring.indexof (myTest)

The alternative is to derive a new class from IstringTest and override the test member
function, as follows:

Deriving from IstringTest - data\strngtst\strngtst.cpp
class MyTest : public IstringTest {
public i

MyTest ()
: IstringTest(user, 0)
('
)virtual int test (int c) const
(

return isspace(c) I I ispunct(c);
)

);

Then use this class as follows:
astring.indexof (MyTest())

There are some things to watch for when deriving from the IstringTest class. First,
IstringTest has no default constructor. You have to implement a constructor in any derived
class and explicitly create the IstringTest base class in the constructor's member initializer

658 Power GUI programming with visualAge for c++

list. IstringTest provides a protected constructor expressly for use by such derived classes.
This constructor accepts two arguments:

• An enumerator that specifies the type of the value the IstringTest object is holding.
When deriving from IstringTest, specify user.

• Avoid* pointer. This is a pointer or integral value of your choosing. It gives you a way
to reuse the space that the base IstringTest class uses to hold its C function pointer.
You most often specify 0 for this value.

Second, the virtual function test is a const member function. Make sure your overridden
function's signature matches. Cast away the const when your derived IstringTest objects
must maintain state information during the search. In the following example, a derived
IstringTest object returns true until it encounters a character that is not greater than or equal
to the preceding one.

class Ascending : public IstringTest {
public :

Ascending ()
: IstringTest(user, 0),

previous(0)
(
)virtual int

test (int c) const
(

if ((unsigned char)c >= previous)
(

((Ascending*) this) ->previous = c;return true; ;
)

else
(
return false;

)
private :unsigned char previous;

);

Note how you must "cast away const" in the body of the test member function to update the
test object's data member.

Open Class Library provides one IstringTest-derived class template called
IstringTestMemberFn. This class template makes it easy for you to use a member function of
any of your classes to search Istrings.

The template argument for IstringTestMemberFn is the name of the class containing the
member function that is to supply the string search logic. Objects of a template class created
using IstringTestMemberFn require two arguments to be created:

• An object of the class whose member function you are using.

• Apointer to the member function to be used to test the string's characters. The member
function must meet the protocol required by Istring and IstringTest, that is, it must
accept a single argument of type int and return a Boolean.

The class template accepts any valid combination of const or non-const objects and const or
non-const member functions. The following example shows how to use this class template.
First, you need a class with a member function that qualifies.

Chapter26 DataLTypes 659

class Tester {
public :virtual int

isAscending (int c)
(
if ((unsigned char)c >= previous)

(
previous = c;return true; ;
)

else
return false;

)
private :unsigned char

previous ;
);

The isAscending function of this class implements the same ascending check as you saw in the
previous example. Normally, your class is one you are using elsewhere in your program, and it
possesses some data or logic that lends itself to searching your Istring objects.

To use Tester : : isAscending to search a string, you write code as follows:
Tester

tester;
IstringTestMemberFn<Tester>

testobj (tester, Tester: :isAscending) ;
result = input.indexofAnyBut(testobj) ;

The class template generated by IstringTestMemberFn holds a reference to the object you pass
on the constructor. Thus, you must take care that this object's lifetime extends beyond that of
the template class object. Usually, you just create the class template objects at the point of the
Istring search function invocation and let it be deleted immediately after performing the
search.

Testing
Istring also provides a set of functions that test the contents of a string. The testing functions
are similar to tbe searching functions in the previous topic, "String Searches." The former
returns a Boolean answer to questions of the form "does the string contents meet some
criterion?" The latter returns a more precise answer to questions of the form of "at what
position is the first character that meets or fails some criterion?"
The testing functions are effectively a subset of the searching functions. The most substantive
difference is that the testing functions have names more suited to that purpose. For example,
rather than indexof, the testing function is named includes. Rather than
! indexofAnyBut (isalpha) , the equivalent testing function is isAlphabetic.

Editing
Your character string data does not consist solely of constants. Istring provides a compre-
hensive set of functions that lets you manipulate the contents of an Istring. Each edit
operation applies some change to the string and returns a reference to the edited object.

660 Power GUI programming with visualAge for c++

Vlat's in a Name?
Should Istring provide two functions that do the same thing? The answer is yes because
the source code you write is not just read by the compiler; you, and possibly others, also
read it.

The naming convention for the member functions of Open Class Library are based on
making your source code readable. You can read a book and understand it, even though the
ideas are new to you, because the words in the book follow certain syntactic and semantic
rules built into the language in which it is written. You can use what you know about the
language to form an educated assessment of the meaning of what you read.

Source code is no different. Our use of natural language extends to the way we think. If you
think "if the string has any blanks in it, then I need to ..., " it is much easier to write, and later
read, code of the form:

if (astring.includes(isspace))
®®®

The code in this case follows the conventions we expect from natural language. Member
functions in Open Class Library can be categorized into parts of speech. Some are nouns;
these nouns describe the returned object. Some are verb phrases; these make sense in
context of if and while statements. Some are imperatives; these make sense when directed
at objects to instruct them to do something.

We not discuss the editing functions in detail here. We do, however, discuss some of the more
advanced editing functions and provide general information that guides you in using the
others.

Having just read about searching and testing of Istrings, you are now familiar with the idea of
using IstringTest objects to do specialized searching and testing. There is one category of
Istring editing functions that use IstringTest objects. They are the strip functions shown in
Table 26-11.

Table 26-11. Strip Functions

Function Description v ,

strip Removes both leading and trailing characters that meet the argument condition.

stripLeading Removes characters from the beginning of the string. The characters are removed
starting at the beginning of the string and continuing until a character is encountered that
fails to pass some test specified by the function argument.

stripTrailing Removes characters starting from the end of the string and working backward that meet
the argument test condition.

Each of these functions has overloaded versions that accept an IstringTest object as an
argument. For example, you write such code as follows to strip all leading and trailing
punctuation from an Istring. And, as with the searcb functions, you use the class template

Cfoapfer26 DataTypes 661

IstringMemberFn or extend IstringTest further by deriving from it and adding logic to strip
off arbitrary characters.

astring.strip(ispunct) ;
Another of the Istring editing functions is overlaywith. Use this function to overlay a
portion of the string with the contents of another string. This function provides a more
efficient way to build up compound strings from pieces than the commonly used concatenation
Operator.

In the following example, Istring objects hold a drive letter, a path name, a file name, and a
file extension. You want to create from these parts a fully qualified file name. You might be
tempted to write the following code statement:

Istring
filename = drive + `':" + path + ''\\" + file + "." + ext;

Because of the way Istring managesfstorage, this code does about seven times as much work
as is necessary. Each invocation of Istring: :operator+ allocates space for new Istring
contents and copies both operands into it. To counter this, use overlaywith as follows:

int length = drive.length
path .lengthfile .length
ext .length (
3;

Istring
filename(0,length);

filenane
.overlaywith(drive)
.overlaywith('':",length = drive.length())
.overlaywith(path, length += 1)
.overlaywith("\\", length += path.length())
.overlaywith(file, length += 1)
.overlaywith(".",length += file.length())
.overlaywith(ext,length += 1);

Although this version is more difficult to read, it results in a single allocation of an Istring
buffer. It also copies the contents of each of the various components only once. Therefore, if
code efficiency is critical, you may have to sacrifice code readability.

Word Functions
Istring also provides functions that handle the string contents as a set of white-space-
delimited words. These functions provide logical access to this set of words, and let you
search for a given sequence of words. In this section we discuss some of these functions
described in Table 26-12.

The logical sequence of words these functions handle always use 1-based indexing. This
applies to the 0-based I0String functions as well. These functions search a string for a given
phrase (that is, a sequence of words as contained in an argument string) and return either the
position in the string at which the phrase begins or the index of the word at which the phrase
begins. The difference is rather subtle, so remember that all Istring functions with the prefix
index return character positions within the string.

The wordlndexofphrase function is invaluable when translating user input to an index of an
array of possible values. For example, consider a program that accepts as input any one of the
subset of Istring editing function names {center, 1eftJustify, rightJustify}, an argument

662 Power GUI programming with visualAge for c++

Table 26-12. Word Functions
*Function i`®,Deschintion

indexofphrase Returns the character position in the string at which the argument phrase begins. It
returns 0 if it does not find the argument phrase. For example,
Istring("a b c").indexofphrase("b c") returns 3.

wordlndexofphrase Searches for the argument phrase and returns the index of the first word of that
phrase within the string. Istring("a b c").wordlndexofphrase("b c") returns 2.

string, a number, and a pad character. The program's output is the contents of the input string
modified as indicated by the requested function and its arguments. One solution is to use an
array of Istring member function pointers and to translate the function name argument into
an index into this array, as follows:

typedef
unsigned (Istring: :*editFn) (unsigned, char) ;
editFn table[] = { Istring: :center,

Istring : : 1ef tTustify,
Istring: :rightTustify) ;

Istring fns = { center leftJustify right.ustify) ;
unsigned i = fns.wordlndexofphrase(argv[1]) ;
cout << (input.*table[i-1]) (n, pad) << endl;

Because word indexing is 1-based, wordlndexofphrase returns 0 if the input string is invalid.
This behavior is used by placing the address of a default function in the first element of the
editFns array. This function then gets used if you provide invalid input or do not provide any
input.

String Parsing
You can also use Istring to split up a text string into its component parts, or foke73S. This
technique is called pczrsz.jog. The Istringparser class provides this function for Open Class
Library. The following code uses Istringparser to separate name into tokens:

#include <istring.hpp>
#include <istparse.hpp>
#include <iostream.h>
int main ()

(
Istring firstName, 1astName, rank, starship;
Istring name ("Jean-Luc Picard,Captain,USS Enterprise") ;
name >> firstName >> 1astName >> ", " >> rank >> ", " >> starship;
cout << "firstName is "<< firstName << endl <<"1astNalne is " << lastName << endl <<

"rank is " << rank << endl <<
"starship is " << starship << endl;

return 0;
)

Chapter26 Dz\tz\Types 663

The output from this program is as follows:
f irstName is Jean-Luc
lastNalne is Picard
rank is Captain
starship is USS Enterprise

Notice that we do not refer to the Istringparser class directly, and you might have to look
twice to determine where we use an object of that class. Further, all constructors for the
Istringparser class are protected, so you cannot create an object of this class directly.
Instead, you create Istringparser objects by invoking a friend function: one of nine
overloaded versions of operator>>. Do this as follows:

• Provide an Istring object as the left-hand argument of the operator. This string
specifies the text you want parsed by the subsequent parsing expressions.

• Provide as the right-hand argument any of the various types of foke7®S or p¢ffer#S
accepted by the operator>> functions. We describe these in Table 26-13.

Table 26-13. Right-hand Arguments for Istringparser Friend operator>>

Argument Type Description
Istring& token The next token in the left-hand argument of the expression is copied

into the Istring object. The delimiter between tokens is a space. If
only one operator>> is used in an expression, the resulting token is the
entirety of the original string.

const Istring& pattern The parser position moves to the first occurrence of the pattern in the
const char* pattern source string. Subsequent calls to operator>> in the same expression
char pattern begin parsing from the new position. If the pattern is not found, the

parser moves off the end of the source string.

unsigned long delta The parser position moves to the right by the delta. The movement is
int delta relative to the current parser position, not to the beginning of the

string. Subsequent calls to operator>> in the same expression begin
parsing from the new position.

const IstringTest& test The IstringTest object is applied to each character in the source string
beginning at the current parser position and continues until a character
tests true. If no character tests true, the parser moves off the end of the
source string.

Istringparser::Command Tbe parser position moves using one of the Istringparser: :Command
command enumerations {reset, skipword, skip }. Istringparser: :reset returns the

parser to the beginning of the string. Istringparser::skipword and
Istringparser: :skip cause the parser to skip over the next word
(space-delimited token).

constlstringparser::Skipwords& The parser skips the number of words indicated when the
skipobject Istringparser: :Skipwords object is constructed.

664 Power GUI programming with visualAge for c++

The return value of the expression is an Istringparser object. When returned, this object has
already completed its first parsing operation depending on the type of the right-hand argument.
You can use the resulting Istringparser object to do additional parsing by applying the same
right-shift operators (>>) to the parser object.

This example shows the step-by-step explanation of how the parsing in the previous example
occurs:

name >> firstName // Calls operator>>(const Istring&,Istring&) .
// This creates an Istringparser object, uses it
// to parse the first token (set the contents of
// the variable firstName) , and returns
// the parser.

>> 1astName // Calls Istringparser: :operator>>(Istring&).
// The parser returned by the first operation is
// used to parse the next token and set the
// contents of lastName. The tokens are space
// delimited.
// Calls Istringparser: :operator>>(const char*) .
// This advances the parser to the next
// occurrence of the pattern ",".

>> rank >> "," >> starship; // Makes similar calls to those
// described above. The token placed in the
// rank variable is delimited by commas.
// The remainder of the text is
// parsed into the variable starship.

You can also create an Istringparser object by applying the left-shift operator (operator<<)
to an Istring object. The right-hand operand in this case is an unsigned long that indicates an
absolute column position. When this operator is used, the parser position in the source string
moves to the column specified. Column positions are 1-based. Further parsing operations
continue from this new position in the source string. We discuss absolute column positioning
in more detail later.

All Istringparser objects are temporary. Because the constructors are protected, you use the
shift operators to create an Istringparser object. If you need to, make the parser object live
long enough to access it later. You could add the following code, but we do not advise doing
SO:

Istringparser &parser = (Istringparser &) (astring >> aToken) ;
Instead, to do subsequent parsing, capture the remainder of the text in an Istring token and
resume parsing with that as the starting point.

Extracting Tokens
The most useful parsing operation is to extract some portion of the pclrse fexf (the portion of
the original text yet to be parsed) into an Istring variable. The previous example demon-
strates how to do this: apply the right-shift operator to an Istringparser or Istring object
when you are beginning a parsing statement, and specify the Istring variable that is to receive
the next token as the right-hand argument.

The result is that the next token from the text being parsed is assigned to the Istring variable.
To identify the next token requires some explanation. The string parser assigns to the Istring
variable the portion of the text being parsed between its current position (that is, where it left
off in parsing the preceding text) and the position indicated by the following parsing opera-
tions:

Chapter26 DataLTsrpes 665

If there is no subsequent parsing operation, the string parser assigns the remainder of the
parse text to the string.

If the next parsing operation is to extract another token, the string parser assigns to the
string the next word from the parse text.

If the next parsing operation is to match some pattern, the string parser assigns to the
string the portion of the parse text lying between the current position and the position at
which the pattern is located.

If the next parsing operation involves column positioning, the parser assigns to the string
the portion of the parse text that lies between the current position and the position
specified by that column position.

This basic description of extracting tokens coupled with the semantics of C++ leads to the
following observation: the value of an Istring variable that is assigned a token during
parsing will likely change as the parsing proceeds. The following example shows this:

Istring
text(`'one two"),
a, b, c;

text >> a; // a == "one two"
text >> b >> c; // b == `'one", c == "two"

Both parsing statements begin by calling the function operator>> (Istring&, Istring&) . This
function constructs an Istringparser object from the first argument and then calls
operator>>(Istring&). That function has to extract the next token and assign it to its
argument. But what does it assign? Because it is called exactly the same way in both cases, it
has to do the same thing, which is to assign the parse text in its entirety. Only when the second
call to that function occurs (which happens only in the second case) does the string parser
complete the parsing of the first token. Thus, the value of the variable b changes from
"one two" to its final value of "one". This works this way because the Istringparser object
keeps a parsing history. As the text is parsed, a history of what has been done is saved. When
the next operator is applied, the object can correct its action.

Matching Patterns
After basic extracting of tokens, you will likely find the ability to control tbe building of
tokens based on the contents of the parse text to be the most useful feature of the string-parsing
component of Open Class Library. With pattern matching, you can adjust the position in the
parse text to skip over uninteresting portions and to locate more important tokens. For
example, the following program invokes the system dir command and parses the output to find
the oldest and newest files:

666 Power GUI programming with visualAge for c++

String parsing with pattern matching - data\stparse\stparse.cpp
#include
#include
#include
#include
#include
#include
#include
int main

=idate . hpp>
=itime.hpp=
=istring.hpp>
<istparse.hpp>
< ios tream . h>
<stdlib.h>
<f s tream . h>
M

(
// List a directory and redirect it to a file.

#ifdef IC_PM
int rc = system ("dir /N > dir.out");

#endif
#ifdef IC_WIN

int rc = system ("dir > dir.out");
#endif

if (!rc)
(

// Create an input stream.
if stream input("dir.out");
if (!input)
(

cerr << "Error opening file.\a" << endl;
return 0;

)
// Create variables to hold parsing tokens.Istring line,

patternl = Istring(0, 1,„ bytes " ,
Istring (" bytes ") .length ()

0,1'

pattern2 = Istring(0, 1,„ =DIR= „ '
Istring (" <DIR> ") .length () ,
0,1'
'*'),

month, day, year,
hour, minutes, AMPM,
date,
time,
size,
sizeEAs,
filenane,
oldestFilename,
newestFilename;

IDate oldestDate, newestDate(1,1) , theDate;
ITime oldestTime, newestTime(0, 0) , theTime;

// Skip the first five lines of the output that contain nonpertinent
// information.
for (int i=0; i<5; i++)

Istring: :1ineFrom (input) ;

Chapter26 DataiTypes 667111111111-
// Read lines and look for the oldest and newest files.
while (input)
(

// Get a line.
line = Istring: :1ineFrom(input) ;
// If the line is the surmary information at the bottom,
// quit the loop.
if (line.isLike (patternl))

break;
// Only process the line if it contains information for a file,
// not a directory.
if (!1ine.isLike (pattern2))
(

// Parse the line into its tokens.
// OS/2 has an EA size field; Windows does not.

#ifdef IC_PM
line >> date >> time >> size >> sizeEAs >> filename;

#endif
#ifdef IC_WIN

line >> date >> time >> size >> filename;
#endif

// Strip leading or trailing white space from the file name.
filename . strip () ;
// Our output file will always be the newest, so exclude it.
if (filename != "DIR.OUT")

// Parse the date and create an IDate object. Hardcode the
// default separators. A more robust solution would query
// them from the system.

#ifdef IC_PM
date >> month >> I-I >> day >> I-I >> year;

#endif
#ifdef]C-W[Ndate >> month >> I/i >> day >> I/I >> year;

#endif
IDate theDate (IDate: :Month(month.aslnt()) ,

day . aslnt () '
year . aslnt () +1900) ;

// Parse the time and create an ITime object.
time >> hour >> " : " >> 1 >> minutes >> 2 >> AMPM;
ITime theTime (((AMPM == "a") 11

(AMPM == „A„)) ?
hour.aslnt() : hour.aslnt() + 12,
minutes . aslnt ()) ;

Check to see if the date of the current f ile is older
than the oldest or newer than the newest.
the variables.
((theDate < oldestDate) I I
((theDate == oldestDate) && (theTime <

oldestTime)))
(

oldestDate = theDate;
oldestFilename = filename;
oldestTime = theTime;

)
if ((theDate > newestDate) 11

((theDate == newestDate) && (theTime >
newestTime)))

(
newestDate = theDate;
newestFilename = filename;
newestTime = theTime;

)

If so, reset

668 Power GUI programming with visualAge for c++

// Report our findings.
cout << "Oldest file is " << oldestFilename <<" with date " << oldestDate.asstring() <<

" and time " << oldestTime.asstring() <<
endl ;

cout << "Newest file is " << newestFilenalne <<" with date " << newestDate.asstring() <<
" and time " << newestTime.asstring() <<
endl ; .

)
else

cout << "Dir command could not be completed. " << endl;
return Oj

)

Sample output from this program follows:
Oldest file is CDFS.IFS with date 12-12-94 and time 18:25:00
Newest file is CONFIG.SYS with date 08-26-96 and time 19:34:00

The following example uses the char*, Istring&, char, and int versions of operator>>.
Parsing the whole line invokes Istringparser: : operator>> (Istring&) repeatedly. Because
the tokens are separated by spaces, there is no need to search for any specific delimiter.

// Parse the line into its tokens.
#ifdef IC_PM

line >> date >> time >> size >> sizeEAs >> filename;
#endif

However, when the date is parsed, the day, month, and year are delimited by special characters,
so Istringparser : : operator>> (char) is used.

// Parse the date and create an IDate object.
#ifdef IC_PM

date >> month >> I-' >> day >> '-I >> year;
#endif

Positioning by Relative Column Offsets
Sometimes the data you want to extract is dictated by the format of the data rather than by its
content. For those situations, use parsing operations that specify positioning within the parse
text at columns relative to the position at which the last pattern was matched. This invokes
Istringparser : : operator>> (int) .

The data\stparse example shown previously uses this technique. To parse the time into its
component, use Istringparser: : operator>> (char*) and Istringparser: : operator>> (int)
as follows:

// Parse the time and create an ITime object.
time >> hour >> " : " >> 1 >> minutes >> 2 >> AMPM;

The hour >> " : " portion of the code places the part of the source string prior to the ":" into the
hour variable. (Notice that the use of ":" is identical to `:' because the char* string is only one
character long.) After the hour is parsed, the parser position is on the ":" in the source string.
Next, a call to Istringparser: :operator>>(int) is made and the parser position is moved
forward one position to skip the ":". The parser then places the rest of the source string into
the minutes variable. Istringparser: :operator>> (int) is called again, the parser position
moves forward 2 places, and the source string contents between the prior position and the
current position are placed in the minutes variable. The last call to operator>> places the
remainder of the source string in the AMPM variable. So, for example, if time is "3:22A", after
parsing occurs hour contains "3", minutes contains "22", and AMPM contains "A".

Chapter26 DaLtaiTypes 669

Positioning by Absolute Column
You can use the left-shift operator to position the parser to an absolute column position. This
is most useful when the format of the string data you are parsing is well-defined and consis-
tent. Unlike using Istringparser: :operator>>(unsigned long) , which moves the parser
position relative to the current position, Istringparser : : operator<< (unsigned long) moves
the parser to an absolute 1-based column position in the text being parsed. You can modify the
data\stparse example to parse the time variable using this technique. The code is as follows:

// Parse the time and create an ITime object.
Istring temp;
time >> hour << 2 >> temp << 3 >> minutes << 5 >> AMPM;

The parsing begins as it did before. However, when the parser encounters the first
Istringparser: :operator<< (unsigned long) , it moves the parser position to the column
specified, which is 2, and copies all the text between the previous position (the beginning of
the string) and the current position to the hour variable. Subsequent calls to
Istringparser: :operator<<(unsigned long) work in exactly the same way. The data
between columns 2 and 3 is copied to temp, between 3 and 5 is copied to minutes, and the
remainder of the string is copied to the last variable. You can "see" this behavior by looking at
the code. Each variable is delimited by the column numbers that define its content, where the
first column is inclusive and the last is not. Thus, because the temp variable is between 2 and 3
in the parse statement, its data is defined as starting in column 2 and extending to column 3.

We also defined Istring temp;, a temporary variable, to hold a column that we wanted to
"throw away" or skip when using absolute column positioning. To avoid doing this every time

we wanted to skip one or more columns, Istringparser provides two ways to skip columns.

Skipping
Sometimes you need to skip over items when parsing data. Instead of defining temporary
variables each time to hold the superfluous data, you can use Istringparser : : skip to indicate
to the parser object that you want to skip the next token. The token is defined by its context.
The following code uses this technique in the data\stparse example to parse the time variable:

// Parse the time and create an ITime object.
time >> hour << 2 >> Istringparser: :skip << 3 >> minutes << 5 >> AMPM;

By its context, the token that is skipped is defined as "the token that starts in column 2 and
extends to column 3," just like the temp variable was. You could also use
Istringparser: :skip in parsing the line variable. When the line is parsed, portions are
parsed into variables called size and sizeEAs, but these items are never used; they are thrown
away. You could use Istringparser : : skip instead, as follows:

// Parse the line into its tokens.
#ifdef IC_PM

line >> date >> time >> Istringparser: :skip >>
Istringparser: :skip >> filename;

#endif
Again, the context of the parsing statement defines the skipped tokens. Because we do not
specify any special characters or positions as delimiters, two space-delimited tokens are
skipped.

670 Power GUI programming with visualAge for c++

Istringparser: : skip is part of the Istringparser: :Command enumeration that contains the
reset, skip, and skipword literals. Istringparser: :reset sets the parser position back to
the beginning of the parse text. Istringparser: :skip and Istringparser: :skipword are
equivalent .

If you want to skip more than two or three items in a parse statement, the repeated use of
Istringparser: : skip can become cumbersome. With the Istringparser: :Skipwords class,
you can skip as many tokens as you want with one call to Istringparser : : operator>>. To do
that, you construct the Istringparser: :Skipwords object with an unsigned long that
indicates how many tokens you want to skip, and then use the object in your parsing. The
default number of words to skip is one. When we use Istringparser : : Skipwords, the code to
parse the input line in the data\stparse example becomes:

Istringparser : : Skipwords wordsToskip (2) ;
// Parse the line into its tokens.

#ifdef IC_PM
line >> date >> time >> wordsToskip >> filename;

#endif

REXX
If you have used the REXX programming language, you probably noticed that the Istring
searching and editing functions resemble those that REXX provides. The same is true with
the Istring parsing function that Istringparser provides. If you are familiar with REXX,
you can quickly adapt to string parsing in C++ using the function that the Istringparser
class provides. For example, the following REXX code displays the directories that
compose the PATH environment variable:

path = VALUE("PATH", , `'OS2ENVIRONMENT")
while path <> '``'

do
parse var path dir ";" pathsay dir

end
Using Istringparser, you implement the same function as follows:

Istring
path(getenv(`'PATH"));

while (path.length() > 0)
(Istring

dir;
path >> dir >> `';" >> path;
cout << dir << endl;
)

Follow these steps to convert REXX to C++:

1. Drop the parse var (or parse value and with) portions of the REXx statement.

2. Insert a right-shift operator (operator>>) between each element in the REXX parse
statement.

Chapter26 DaLtg\Types 671

IstringTest in Parsing
If you have a specialized set of tokens that you want to skip or to accept in your parsing text,
you can use an IstringTest object as an argument to Istringparser: :operator>>. The
IstringTest object is called for each character until it returns true. For example, if you want
to skip all of the parse text until you find any type of punctuation, use the following code:

#include <istring.hpp>
#include <istparse.hpp>
#include <iostrealn.h>
#include <ctype.h>
extern "C" int myTest(int a)
(

return ispunct(c) ;
)

int main ()
(
Istring input ("Some text delimited by%The rest of the text.") ,

beginningofstring,
restofstring;

input >> beginningofstring >> myTest >> 1 >> restofstring;
// Report our findings.

cout << `'Beginning is " << beginningofstring << " and
restofstring is " << restofstring << endl;

return Oj
)

The output from this program is as follows:
Beginning is Some text delimited by and restofstring is The rest of the
text .

See the previous section on IstringTest for more details on how to use that class.

Conversions
You can convert the contents of an Istring object to a variety of other formats. The Open
Class Library string classes provide functions that convert an Istring object's contents to
other data types. These conversions fall into two main categories: those that return an object
of some built-in C++ type (described in Table 26-14) with a value derived from the contents,
and those that return another Istring object (described in Table 26-15) whose contents are a
reinterpretation of the characters of the original string.

Istring provides a full set of functions that interpret the Istring contents as a numeric value
using one of the four conventions described in Table 26-15. It then converts that numeric
value to an Istring object, which reinterprets the value according to one of the other four

Watch Out for Overflow!
An Istring object can hold any sequence of digits. But the built-in C++ types can hold
only a finite range of values. As a result, converting to a numeric type using aslnt,
asunsigned, or asDouble may fail if the string's contents express a value that cannot be
contained in the requested built-in type. Ensure that the strings you convert using these
functions contain reasonable values.

672 Power GUI programming with visualAge for c++

Table 26-14. Conversion Functions Returning a Built-in C++ Type

ConversionFunction Description

operator char* The string is converted to a char* pointer to the contents. This happens implicitly. The
compiler accomplishes this with a user-defined conversion operator. Because many plain
C functions take as an argument char* pointers, you probably do not want to invoke an
explicit ascstringptr function each time. (After all, Istring is intended to serve as an
improved char* pointer.)

There are actually three separate char* types that an Istring object can be converted to:
char*, signed char*, and unsigned char*. The compiler selects the proper one based on
what you are doing with the generated pointer.

aslnt The string is converted to type long int. This makes sense only if the Istring object is a
representation of an integer value. This function is a little forgiving of non-integer data
in that it converts the leading digits of the string and skips any extra characters that are
not valid for an integer's representation. Note that aslnt uses the sprintf function to
convert the string so it handles scientific notation, too.

If you only need an int or a short int, convert to type long int using aslnt. The compiler
then applies normal integral conversions to convert the type to the one you need.

asunsigned The string is converted to type unsigned int. This returns an unsigned integral value
representing the Istring contents. The primary difference between this function and aslnt
is that it can return larger values in cases where the string represents a number larger than
what fits in a signed long int.

asDouble The string is converted to a floating-point value. Use this function if the Istring contains
a decimal point.

Table 26-15. Conversion Functions Returning Another Istring Object

Contents Description
characters All Istring contents can be considered plain characters.

decimal digits An Istring comprised solely of decimal digits can also be considered to represent the
numeric value of that string of digits. For example, the string "123" can be interpreted as
a representation of the number 123. An Istring object can be considered this way if it
passes the test applied by the Istring function isDigits.

binary digits An Istring comprised solely of binary digits can also be considered to represent the
numeric value of that string of digits. For example, the string "01010001" can be inter-
preted as a representation of the number Ox51. An Istring object can be considered this
way if it passes the test applied by the Istring function isBinaryDigits.

hexadecimal An Istring comprised solely of hexadecimal digits can also be considered to represent the
digits numeric value of that string of digits. For example, the string "af511" can be interpreted

as a representation of the number OxOAF511. An Istring object can be considered this
way if it passes the test applied by the Istring function isHexDigits. Note: The
hexadecimal digits "a-f" can be either uppercase or lowercase, or even mixed uppercase
and lowercase within the same string.

Chapter26 DataLTypes 613

conventions. The functions that do the conversion all have names like <input>2<output>,
where <input>, and <output>, indicates binary (b), character (c), decimal (d), or hexadecimal
(x). For example, Istring("cat") .c2x() converts the string "cat" to "636174." Use the
following program to see how these conversion functions work.

Istring Conversion Test Program - data\convert\convert.cpp
#include <istring.hpp>
#include <istream.hpp>
typedef Istring String;
typedef String& (String: : *pstringconversionMember) () ;
typedef String (*pstringconversionFunction) (const String &) ;
// Array of Istring conversion functions that operate on the
// calling string.
static pstringconversionMember

members[] = { String::b2c, String::b2d, String::b2x,
String: :c2b, String: :c2d, String: :c2x,
String: :d2b, String: :d2c, String: :d2x,
String: :x2b, String: :x2c, String: :x2d };

// Array of Istring static conversion functions that return a new string.
static pstringconversionFunction

functions[] = { Istring: :b2c, Istring: :b2d, Istring: :b2x,
Istring: :c2b, Istring: :c2d, Istring: :c2x,
Istring: :d2b, Istring: :d2c, Istring: :d2x,
Istring: :x2b, Istring: :x2c, Istring: :x2d };

// Array of command-line options.static String
options("b2c b2d b2x ""c2b c2d c2x "

"d2b d2c d2x "
''x2b x2c x2d ") ;

int main(int argc, char *argv[])
(
if (argc == 3)

(
// Get conversion function name.
String opt(argv[1]);

// Get string to be converted.
String arg(argv[2]);

// Get the index of the conversion function in the options array.
// Note that indexing begins at one and 0 is returned if no
// conversion function is matched.
unsigned int i = options.wordlndexofphrase(opt) ;
// Perform the conversions and print the results.
if (i)

(
String opt = options.word(i--) ; // Note the index must be

// decremented for
// the function call.

String input = arg;
Stringr result = functions[i] (arg) ; // Call the static function

// to return a new string.
// Print the results.
cout << opt << "(\"' << input << "\") \t=\t" << result << "\n";
cout << "(\"' << input << "\") ." << opt << "()\t=\t";

674 Power GUI programming with visualAge for c++

// Call the nonstatic function to operate on the string itself and
// print the results.
(input . *members [i]) () ;
cout << input << "\n";

// Reverse the given option (for example, from b2x to x2b) .
opt . reverse () ;
i = options.wordlndexofphrase(opt) -1;
result = functions[i] (input) ;
Gout << opt << "(\"' << input << "\") \t=\t" << result << "\n";
Gout << "(\`''' << input << "\") ." << opt << "()\t=\t";
(input . *members [i]) () ;
cout << input << "\n";

if (result != arg 11 result != input)
cout << "Something is wrong with this!\a\n";

else
cout << `'This seemed to work OK!\n";

)else
cout << "Invalid conversion function\nchoose one of : \n\t"

== options == '\n';
)

else
cout << ''Invalid input\nsyntax is: convert opt input\n";

return 0;
)

This program produces the following output when invoked with "c2x cat":
C>convert c2x cat
c2x ("cat")
(„cat") . c2x ()

x2c (" 63 6174 ")
("636174") .x2c ()
This seemed to work OK!

636174
636174

cat
cat

Debug Information Function
The function asDebuglnfo also renders the contents of an Istring object. This function
displays information about the internal representation of the string. Using the function in an
expression such as:

Istring(`'Hello, World!") .asDebuglnfo()

yields the following output:
Istring (@23 2 3 9 6 , pBuf fer->IBuf fer (@59 0 672 , ref s=1,1en=13 ,

data= [Hello, World!]))
This output reveals information about the IBuf fer object holding the contents of the string.
Comparing the output from a number of different Istring objects provides insight into how
the string contents are shared.

IBuffer Class
As mentioned before, Istring is really nothing more than a smart pointer to an object of class
IBuf fer. Whereas Istring itself is simply a data type, IBuf fer is not. Almost all of the
functions of IBuf fer are virtual because IBuf fer provides the portion of Istring that needs to
be overridden by derived classes. We discuss the reason for permitting this overriding of
IBuf fer behavior in the next section, which is about IDBCSBuf fer. In this section we discuss
the IBuf fer class in general and the relationship between the Istring and IBuf fer objects.

Chapter26 DataLTypes 675

As you saw previously, the char* data member of Istring objects is a pointer to a portion of
an IBuf fer object. Istring delegates to the IBuf fer object by doing some simple arithmetic
on that pointer. One important function delegated this way is the allocation of a new IBuf f er
when the string's contents change. Rather than allocate an IBuffer object explicitly, the
Istring object invokes the newBuf fer function against the IBuf fer object to which it is
currently pointing.

IBuffer: :newBuffer is a virtual function that can be implemented differently in classes
derived from IBuf fer. Its design is based on the fact that each derived IBuf fer class actually
re-implements that virtual function. It allocates an object of the derived class rather than a
generic IBuf fer. This is a subtle but crucial point of the Istring and IBuf fer design. It
enables the IBuf fer class to be replaced without requiring any change in the Istring class.
This is another example of the application of the design for extensibility that recurs
throughout Open Class Library.

The effect of this design is that once an Istring object connects to an object of some
specialized IBuf f er class, that specialized IBuf fer class is used despite changes to the
contents of the Istring. This means you can create an Istring object using some specialized
IBuf fer and pass that Istring to another function, which may know nothing of the IBuf fer-
derived class. Even if that function makes changes to the string, it is still connected to your
derived IBuf fer object.

For example, to share an Istring object between two different processes, place the Istring in
shared memory. Because the Istring object points to an IBuf fer object, it is in memory that
is accessible to both processes. IBuf fer does not, by default, appear in shared memory. Thus,
you need an extensible design such as the one Open Class Library's Istring and IBuffer
implementation provides.

To get Istring to use your IBuffer-derived class, call the IBuffer: :setDefaultBuffer
function and pass a null buffer object of your class. Istring generates all new string contents
from that null buffer through the use of its newBuf fer function. Your IBuf fer-derived class
must override the virtual function IBuf fer : : allocate so that it returns a properly sized object
of your class. Due to the assumptions that Open Class Library makes about the IBuf fer
contents for performance reasons, you cannot add data members to your IBuf f er-derived
class.

The following program illustrates how to install your own class derived from IBuf fer as a
replacement for the base IBuf fer that Open Class Library provides.

Replacing Istring's IBuffer - data\mybuffer\mybuffer.cpp
#include <iostream.h>
#include <istring.hpp>
#include <ibuffer.hpp>
class MyBuf fer : public IBuf fer {
public :

MyBuffer(unsigned len)
: IBuffer(len)
(
)

676 Power GUI programming with visualAge for c++

virtual IBuf fer*allocate (unsigned len) const
(
return new (len) MyBuffer(len) ;
)virtual const char*className () const
(
return (const char*) "MyBuffer" ;
)

);

void main ()
(Istring

withDefault(`'withDefault") ;
cout << withDefault.asDebuglnfo() << endl;

// Allocate null buffer.
MyBuffer

root (0) j
IBuffer: :setDefaultBuffer(&root) ;
Istring

withMyBuf fer (''withMyBuf fer") ;
cout << withMyBuffer.asDebuglnfo() << endl;
}

Sample output from this program follows:
Istring (@3 6040 8 , pBuf fer->IBuf fer (@152212 8 , refs=1,1en=11,

data= [withDefault]))
Istring (@3 603 84 , pBuf fer->MyBuf fer (@152217 6 , ref s=1,1en=12 ,

data= [withMyBuf fer]))

IDBCSBuffer
Open Class Library provides a single class derived from IBuf fer named IDBCSBuf fer. It
implements a polymorphic subset of Istring to provide support for mz!Jfz.byre cfeczrczcfer Sefs
(MBCS). When your programs execute on systems that support MBCS, Istring uses objects
of type IDBCSBuf fer to hold the string contents. All MBCS-sensitive Istring functions are
overridden in IDBCSBuf fer to ensure that it properly handles MBCS data.

The MBCS handling in Istring manages two separate issues. First, the string editing
functions protect against splitting the bytes that make up a multibyte character. For example,
consider the following code:

// `'Dx" means a MBCS character with first byte 'D' ,
// and second byte 'x' .
Istring mbcs("abDXDycd") ;

mbcs = mbcs.substring(4) ;
What should the value of mbcs be after this code executes? If Istring had no MBCS support,
the result would be xDycd. This is wrong, however, because there is no single-byte character x
in the original string.

IDBCSBuf fer ensures that the two bytes of an MBCS character are never split. The result of the
code shown above is " Dycd". The orphaned second byte of the MBCS character `Dx' is
converted to a blank. IDBCSBuf fer provides such protection in all of the string editing
functions that need it.

Chapter26 DataLT3rpes 611

The second MBCS issue relates to searcning the string for single-byte characters that match
the second byte of an MBCS character. For example, what should the expression
Istring(`'abDXDycd") .indexof ("x") return? In MBCS environments, the result is 0
because there is no string x in the string being searched. The byte with value x is the second
byte of an MBCS character, which is distinct from the single-byte character at that code point.

IDBCSBuf fer also overrides the various IBuf fer search functions to ensure the search results
accurately reflect the meaning of multibyte data.

Handles
Both the Windows and OS/2 operating systems developer's toolkits make programming less
complicated by adding a few abstractions. For example, you use handles for objects rather
than pointers to structures. Such handles give you one of the benefits of C++ object-oriented
programming.

The Windows Software Development Kit (SDK) defines its handle types as synonyms for the
IIANDLE type, which is a synonym for void*. The Developer's Toolkit for OS/2 defines its
handle types as synonyms for a common LIIANDLE type, which itself is a synonym for
unsigned long. This is all that can be done in C because it has no facility for defining new
types.

Because all of the handle typedef s are just synonyms for the same type, you can inadvertently
use one kind of handle where you need to use another. For example, you can pass an HBITMAP
to a function that requires an HICON, but the compiler does not warn you about the error.
Further, you cannot overload functions based on different handle types.

Open Class Library provides a set of handle classes that use C++ to solve these nagging
problems. The handle classes provide three main benefits:

• An abstract interface between presentation system objects and Open Class Library's
model of them as C++ objects. The C++ objects, such as Iwindows, have handle
attributes. Those handles, in turn, are convertible to the handle of the associated
presentation system objects. You can then use the handle to make presentation system
function calls.

• Additional type safety. Because each handle type is a unique C++ class, Open Class
Library specifies a specific type of handle, and you get an error if you pass a different
type of handle to a function.

• Overloaded functions based on handle type. Classes such as IGraphicpushButton and
IDMlmage accept bitmap or icon handles and can detect tbe difference. You do not have
to pass a handle type; consequently, you cannot specify the wrong type.

678 Power GUI programming with visualAge for c++

IHandle Base Class
The IHandle base class defines the basic handle type. It is roughly equivalent to the IIANDLE
type in the Windows SDK and the LIIANDLE type in the Developer's Toolkit for OS/2. It
provides support for holding the handle value and has a conversion operator with which any
IHandle can be converted to type IHandle: :Value. IHandle: :Value is a synonym for the
presentation system toolkit definition. IHandle uses this alias to provide portability between
platforms. You use the conversion operator, the constructor for IHandle, and all its derived
classes to bridge these objects to presentation system code as follows.

First, you replace any occurrences of a presentation system handle type with an object of the
equivalent Open Class Library handle class. For example, in the Windows operating system,
you might have the following existing code.- hrmd;

hwnd = CreatewindowEx(. . .) ;

Convert this code to use objects of class IwindowHandle by replacing HWND with that class
name.

IwindowHandle hwnd ;
hwnd = CreatewindowEx(. . .) ;

Conversely, you can extract the handle from an Open Class Library object and use this handle
as a presentation system handle. Do this to invoke a function that Open Class Library does not
support. The following is from the OS/2 operating system:

Winshutdownsystem (IThread: : current () . anchorBlock () ,
IThread: :current() .messageQueue()) ;

This example uses two different Open Class Library handles: the anchor block handle returned
by ICurrentThread::anchorBlock and the message queue handle returned by
ICurrentThread : : messageQueue.

When you write code that must use both Open Class Library functions and presentation system
functions, always declare your handle objects using Open Class Library handle classes. Your
objects will be C++ objects in your code, and they are converted to plain handles when you
call presentation system functions. Doing the opposite-storing presentation system handles
and converting those to Open Class Library handle objects-is possible, but you lose all the
benefits of additional type-safety and overloading.

IHandle-Derived Classes
You do not need to write code that works with IHandle objects. Open Class Library provides
classes derived from IHandle that represent specific presentation system handle types, and you
use these abstract types. Table 26-16 identifies each of the handle classes.

Chapter26 DataLrFypes 679

Table 26116. IHandle-Derived Classes, their Presentation System Types, and their Uses

Handle Class Windows Type OS/2 Type Where used
IAccelTblHandle HACCEL HACCEL IAccelerator, IAcceleratorTable

IAnchorBlockHandle N/A HAB IThread

IBitmapHandle HBITMAP HBITMAP IBitmapcontrolIGraphicpushButtonIDMlma8eIResourceLibrary

IEnumHandle N/A HENUM Iwindow

IMenuHandle HMENU N/A IMenuIMenultemIResourceLibraryISubmenu

IMessageQueueHandle N/A HMQ IThread

IModuleHandle HMODULE HMOD IDynamicLinkLibrary

IPointerHandle HBITMAP. HPOINTER IIconcontrol
HCURSOR. IGraphicpushButton
HICON, IFramewindowIDMlma8eIResourceLibrary

IpresspaceHandle HDC HPS IpaintEventIFontIwindow

Iprocessld N/A PID IApplication

IprofileHandle HKEY HINI Iprofile

IRegionHandle HRGN N/A IGraphiccontextIGRegion

IsemaphoreHandle HANDLE HMTX IResource

IstringHandle N/A HSTR IDMltem

IsystemBitmapHandle HBITMAP HBITMAP See IBitmapHandle

IsystempointerHandle HCURSOR HPOINTER S ee IPointerHandle

IThreadld/IThreadHandle HANDLE TID IThread

IwindowHandle HWND HWND Iwindow

680 Power GUI programming with visualAge for c++

Date and Time
Open Class Library provides the classes IDate and ITime that represent dates and times. IDate
objects represent any date between January 1, 4713 BC and October 17, 5874777. ITime
objects represent any point in time, to the nearest second, in the range 00:00:00 (midnight) to
23:59:59. Both IDate and ITime provide a full suite of member functions that enable you to
manipulate their data in a variety of useful ways.

IDate objects maintain their value using a Julian day number. These values start at 1, which
represents the date January 2, 4713 BC. The next day's Julian day number is 2, the next 3, and
so on. Julian day numbers for the present are quite large. For example, June 20,1961 is Julian
day number 2437471. The upper limit for IDate is determined by the Julian day number at
which its arithmetic overflows.

You can treat IDate objects as if they are comprised of separate attributes for month, day, and
year. IDate provides member functions to retrieve each of these components.

To provide type safety and reduce the need for argument checking, IDate defines an
enumeration for the month values. Months are handled as IDate: :Month objects. The
enumeration values are the full month names January through December. IDate: :January
has the value 1. This is important if you are creating dates from numeric input.

Some IDate functions handle days of the week as arguments or return values. The
enumeration type IDate: :Dayofweek defines the type of these objects. The enumeration
values are the full day names Monday through Sunday. IDate: :Monday has the value 0,
IDate : : Sunday has the value 6.

ITime objects maintain their value internally as the number of seconds past midnight. You can
vieiv ITime objects as if they consist of separate hour, minute, and second values. The class
provides member functions to return each of those elements.

Because dates and times are both small concrete values for which the default copy constructor
and assignment operators are sufficient, almost all IDate and ITime functions return new dates
and times by value. The only functions you use to change a date or a time are the operator-
assignment functions, such as operator+=.

IDate and ITime Constructors
You create a date or time object from just about any combination of values sufficient to
uniquely identify the particular date or time you want to represent. To create a date object,
you need a month, day, and year. Alternatively, you can specify a year and a day in that year.
One constructor accepts an unsigned long Julian day number. The IDate class uses this
constructor internally.

To create a time object, specify the hour, minute, and second. If you do not need full precision,
omit the number of seconds and they default to zero. Alternatively, you can specify just the
number of seconds. This constructor is also designed mostly for internal use by the ITime
class.

Cfeapfe7.26 DataTypes 681

The default constructors create date and time objects that represent the current date and
current time. Use the special static member functions IDate : : today and ITime : :now to obtain
the current date and time. We recommend these functions if you explicitly want the current
date and time because using the default constructors might mean you are going to assign a
specific value later.

Note the following aspects of date and time constructors:

• There are IDate constructors that accept month/day/year and day/month/year. The
former is the convention in the United States while the latter is the convention in
Europe. Use either one. Because the month argument is of type IDate: :Month, the
compiler calls the appropriate constructor.

• The constructor that accepts year/day works differently. Because both year and date are
ints, if you create an IDate using IDate(328,1984), the compiler processes it as
January 1, 4713 BC rather than November 23,1984, as you intended.

The ITime constructor that accepts a long argument treats a negative value as the corre-
sponding time, counting backwards from midnight. It works that way so that time
arithmetic works right. For example, ITime(0, 20) -60 yields ITime (-40) , which is
23:20:00 on the preceding day.

AccessingAttributes
IDate provides a full set of functions to access the month, day, and year components of a date.
It provides functions to obtain tbe month name and the name of the day of the week as a string.
Other functions return such results as the number of days in a given month in a given year.

With so many functions that return so many similar results, which function do you need to
call? Table 26-17 lists each function. The left column shows the range of the results, and the
right column shows the function or functions you call to obtain those results. If you want to
get the number of days in a given year, scan the table for "365 or 366" because this is the kind
of value you need. ITime does not have as many similar functions. It just has member
functions hours, minutes, and seconds that return the expected attribute.

Date Static Functions
Selecting the correct IDate function to obtain the data you need is complicated by static
member functions that overlap the nonstatic member functions (in some cases). For example,
you use the expression aDate . dayName () to get the name of the day of the week represented by
aDate. The expression, IDate : : dayName (IDate : : Saturday) obtains the string corresponding
to the IDate: :Dayofweek enumeration value passed as an argument. The function names are
the same, but the functions do fundamentally different things.

The IDate static functions that might cause confusion all require arguments, as they do not
have an object on which to operate. So, the general rules are: do not pass an argument to the
nonstatic member functions and do not pass an IDate object to a static member.

682 Power GUI programming with visualAge for c++

Table 26-17. Sample Return Values from IDate Functions

Desired Result Function
"Monday„ dayName

0-31 dayofMonth

28-31 dayslnMonth

IDate::Monday dayofweek

1-366 dayofYear

365 or 366 dayslnYear
"November" monthName

IDate::October monthofYear

To determine the number of days in the month in which a given date occurs, use this code.
(There is no dayslnMonth nonstatic member.)

IDate: :dayslnMonth(aDate.monthofYear())

Formatting
IDate and ITime provide powerful formatting capabilities. You can convert a date or time
object to a string result using the overloaded function asstring. The result is a string that
contains arbitrary text mixed with arbitrary attributes of the date or time object converted to
text.

The asstring function accepts as an argument a/ormczf sifrz.#g. This is a string of text in which
you place special conversion specifiers at the point where you want attributes of the date or
time object to appear. IDate and ITime use the strf time function of the C run-time library to
implement the asstring function; therefore, they support all of the conversion specifiers that
strftime supports.

An example of how you use IDate : : asstring to produce formatted dates follows.
IDate aDate = IDate(IDate::November, 24,1990);
cout << aDate.asstring(''A11ison was born on a %A") ;

This code produces the following output:
Allison was born on a Friday

Here is an example of using ITime : : asstring to get the time in 24-hour military time format:
ITime aTime = ITime(14, 30);

cout << aTime; // produces 02:30:00
cout << aTime.asstring("%H:%M:%S"); // produces 14:30:00

There are default versions of asstring for both IDate and ITime. The default format for IDate
is "mm-dd-yy" or "mm/dd/yy" based on the operating system setup. You can provide an
argument to asstring to request the year as four digits instead of two. The default format for
ITime is "hh:mm:ss."

Cfe¢pfe].26 DataTypes 683

Both classes support output to streams. By default you get the default asstring result. If you
want another format, call asstring yourself. The previous example, showing how to get an
ITime object formatted in the 24-hour format, illustrates this.

There are two restrictions for using asstring:
• Do not use the time-related conversion specifiers when formatting a date, and do not use

the date-related conversion specifiers when formatting a time. If you do, all those
specifiers are converted to undefined values. If you need to build a string with a
combined date and time, you must do it in two steps.

This function does not support the full range of dates supported by IDate. Because
IDate: :asstring uses strftime, it only works with dates that the latter function
handles, which are dates beginning January 1,1 AD. To format a date earlier than that,
you have to do it yourself using the individual IDate functions.

The formatting of dates and times reflects your application's current locale setting. For the
French locale, the day names are in French.

Dates and Times from Strings
Although IDate and ITime have functions for formatting dates and times as strings, inter-
preting a string as a date or time is more difficult. There is no C library function that does the
inverse of strftime. To convert string input to a date or time, you must write code to analyze
the string and figure out what date or time it represents.

The data\str2date program on the examples disk contains a dateFrom function that performs
the inverse of IDate : : asstring. You pass in both the format specifier and the formatted date,
and it figures out the IDate that produces that formatted string.

Arithmetic
You can perform the following arithmetic on date and time objects:

• Add or subtract an integral value N to or from an IDate to get a new IDate. The result
represents the date N days prior to or later than the original IDate. For example, to find
out the date 25 days after a billing date, use this code:

IDate billingDate;
IDate dueDate = billingDate + 25;

This calculates the proper dueDate regardless of the number of days in the month or
whether it is a leap year.

Subtract two IDate objects to yield the number of days between them. Because you
don't add two dates together, IDate does not provide operator+.

Add or subtract two ITime objects to produce the sum or difference of the times.
Because you can create an ITime from a number, an expression such as aTime + 180
yields a time 3 minutes later than aTime.

684 Power GUI programming with visualAge for c++

Because you can compare two dates or two times, IDate and ITime provide a full set of
comparison operators.

Where Were You on September 3, 1752?
Because the world has many different calendar systems, it is difficult to describe a date so that
everyone understands it. For this discussion a calendar system is "the system by which we
give names to dates." For example, some calendar systems count years starting at a different
point than the conventional one to which readers in the United States are accustomed. When
somebody using such a calendar says, "July 4, 1776," they may not be talking about the date
you think they are.

The IDate class calendar system is the standard calendar system that has been in use in the
United States. The Julian day-number scheme used to implement IDate is straightforward.
The day after day number N is day number N+1. However, be aware of two oddities in the
Julian calendar:

• There is no year 0. The year 1 BC was followed by the year 1. Equivalently,
IDate(-1, 365) + 1 == IDate(1,1) . If you create an IDate using year 0, you get an
invalid date. All invalid dates are displayed as January 1, 4713 BC. You can test if a
date is valid using any of the IDate : : isvalid functions.

• There are no dates for September 3, 1752 through September 13, 1752. The day after
September 2 was September 14.

The missing 11 days made up for the errors in the calendar system in use prior to that
date. Because our planet Earth does not take exactly 365 days to orbit.the sun, and one
leap-year every four years did not completely solve that problem, the calendar fell
behind.

At the time this flaw was detected in 1599, Pope Gregory IX revised the calendar to
eliminate leap years in years divisible by 100 but not divisible by 400. To correct for the
extra leap-year days, 11 days were skipped. That system is in use today and keeps the
calendar and the Earth' s orbit in sync.

However, because the Pope revised the calendar, the English Anglicans did not revise
their calendars for another 153 years, in September 1752. Thus, the expression
IDate(IDate: :September, 3, 1752) .isvalid() returns false.

Bit Masks
Almost all of the window and control classes of Open Class Library have a nested Style class,
which represents combinations of style attributes valid for windows of those classes. Most of
the attributes are represented by on or off settings. The combination of style attributes
comprise a bz.£ 77®czSk, an unsigned numeric value with some of its bits representing the settings
of particular attributes.

Chapter26 Da[taTypes 685

Representing these combinations of attributes with a class required solutions to the following
C++ problems:

• You must specify only valid combinations of attribute settings. This precludes using

plain integral expressions because that would permit users to specify any value.

You must be able to combine separate attributes values to compose valid combinations.

You must be able to extend the set of attributes for one window class by defining an
extended set in a derived window class. This permits the combination of the two kinds
of attributes in the derived class.

Open Class Library solves these problems by providing the IBitFlag class and a set of macros
to generate the declarations of derived classes. This section describes how to use the Style
classes built using IBitFlag and these macros and how to use these facilities to define your
own bit-mask classes.

Defining Base Bit-Mask Classes
IBitFlag is an abstract base class that holds two unsigned long data members that are used to
store the bits defined by derived classes.

Basic concrete bit-mask classes are derived from .IBitFlag using the following macro:
INESTEDBITFLAGCLASSDEFO (className, enclosingclass) ;

The className argument specifies the name to be given to the IBitFlag derived class that this
macro generates. The enclosingclass argument specifies the name of the class in which the
generated class is nested. Examples of the use of this macro in Open Class Library are as
follows:

• INESTEDBITFLAGCLASSDEFO (Style, Iwindow) ;

This invocation occurs within the declaration of the class Iwindow. It generates the
declaration of the class Iwindow: :Style. Objects of that class define a set of general
window style attributes.

• INESTEDBITFLAGCLASSDEFO (Style, IDMlmage) ;

This invocation occurs within the declaration of class IDMlmage. It generates the decla-
ration of the class IDMlmage: :Style, wnich is used to create objects that specify
combinations of direct manipulation image attributes.

Use the INESTEDBITFLAGCLASSDEF0 macro to create bczSe bit mask classes, which are distin-
guished by the fact that objects of these classes cannot be created from more primitive
bit-mask objects.

The following example shows how to use this macro and the IBitFlag class in general. It also
shows how this component of Open Class Library provides a more robust solution to this kind
of problem.

686 Power GUI programming with visualAge for c++

The standard c++ ios class declares the following nested enumeration type: '
enum open_mode { in=1, out=2, ate=4, app=010, trunc=020,

nocreate=040, noreplace=0100, bin=0200,
binary=bin /* OS2 specific */
);

These enumeration values, designed to be OR-ed, result in numeric values that are passed to
various ios functions, such as the if stream constructor. The enumeration values define a
typical set of bit-mask values, each of them specifying a unique bit. They are oR-ed to produce
a single numeric value representing arbitrary combinations of these bits. For example,
(ios : : in I ios : :nocreate I ios : :binary) specifies that the open mode for an input file is to
be read in binary mode and is not to be created if it does not already exist.

There are, however, subtle problems with this approach. The if stream constructor has a mode
argument of type int, which means it is possible to pass in any integer value, including
enumeration values from another attribute set as follows:

if stream infile(`'myfile'', 3921 ios::hardfail);
Although such usage does not make sense, it is difficult to prevent.

To solve these problems, use Open Class Library's IBitFlag class and its support macros.
Follow these steps:

1. Declare a class representing these mode settings, using the INESTEDBITFLAGCLASSDEF0
macro:

class ios {
// ...
INESTEDBITFLAGCLASSDEFO (Mode, ios) ;
// ...

in
This generates the declaration of the class ios : :Mode.

2. Change the declaration of the argument on the if stream constructor and wherever
ios : : Mode arguments are appropriate.

3. Change the declaration of the enumeration values to declarations of objects of type
ios : :Mode.

Creating Bit-Flag Objects
In the preceding section, we described how to use the INESTEDBITFLAGCLASSDEF0 macros to
generate the declaration of a nested IBitFlag-derived class. The constructor for the class that
this macro generates is protected. Thus you can only create objects from already existing
objects, using either assignment or the copy constructor.

Where do these source objects come from? Clearly, you do not want to create such objects
from arbitrary numeric values, which would permit creating bit masks with invalid combina-
tions. A key characteristic of IBitFlag and its generated derived classes is that the base set of
bit-mask objects are carefully regulated. Specifically, the macro-generated classes make the
enclosing class a friend of the bit-mask class. This enables members of the enclosing class to
use the protected constructor that accepts an arbitrary numeric argument. Thus, only the
enclosing class determines the valid bit combinations because these bit masks are attributes of
an aspect of that class.

Chapter26 DataLT5Tpes 687

Typically, the enclosing class defines the valid bit combinations, the base set of
enclosingclass : : classNalne objects, as a set of static data members. For example, in the case
of IDMlmage : : Style, you find these static data members:

A

class IDMlmage : public IVBase {
//. . .
INESTEDBITFLAGCLASSDEFO (Style, IDMlmage) ;
static const Style

ptr,
bmp,
polygon,stretch,
transparent ,
closed;

//. . .
);

This code declares six distinct IDMlmage::Style values named IDMlmage::ptr,
IDMlmage: :stretch, and so on. These style values are all static data members of class
IDMlmage. They are also const data members, which ensures that they cannot be altered. With
these declarations, you create your own variables of type IDMlmage : : Style as follows:

IDMlmage: :Style mystyle = IDMlmage: :polygon;
To continue the previous example of fixing the mode enumerations of class ios, you convert its
declarations of enumeration values to the following static data members:

®®,

static const Mode
in,
Out'
ate,
app,
trunc ,
nocreate,
noreplace,
binary,
bin;

®,®

Define these static data members in the implementation file for the enclosing class. For
example, in IWINDOW2 . CPP, you would find these definitions:

const Iwindow: : Style
Iwindow: :visible = WS_VISIBLE,
Iwindow: : synchpaint = WS_SYNCPAINT;

• For ios : :Mode, you would place the following definitions in the implementation file for class

ios:
const ios: :Mode

ios::in -1,
ios::out -2,
ios==ate = 4'
ios: :app = 010,
ios: :trunc = 020,
ios: :nocreate = 040,
ios: :noreplace = 0100,
ios: :binary = 0200,
ios:=bin -0200;

If you get unresolved external errors during linking, check to see if you defined these static
bit-mask values.

Extract the unsigned long representation of an IBitFlag or IBitFlag-derived object using the
member function asunsignedLong. Typically, you do this only when implementing the
enclosing class's member functions that accept arguments of the bit-mask type. If these bit

688 Power GUI programming with visualAge for c++

masks match the ones that the presentation system uses (which is often the case in Open Class
Library), then astyle.asunsignedLong () can be passed directly to the presentation system
functions that require such style attribute values. If they do not match, many Open Class
Library classes provide a convertTOGUIstyle function that you can call to obtain a style that
can be passed to system functions.

Extended Styles
Classes that have many styles may reach the limit with only one unsigned long value. So,
IBitFlag provides a second unsigned long that you can use to double the available bits. This
second value is called an exfe7®ded StyJe. To define an extended style, you pass a second
argument to the IBitFlag constructor. In the previous examples, this value was not passed and
thus defaulted to zero. Many Open Class Library classes use extended styles. For example,
the IFramewindow implementation file IFRAME . CPP contains the following extended styles:

const IFramewindow: : Style

IFramewindow:
IFramewindow:
IFramewindow:
IFramewindow:
I Fralnewindow :
IFramewindow:
IFramewindow:
IFramewindow:
IFralnewindow :

: titleBar
: systemMenu
:menuBar
: hideBut ton
: minimi z eBut ton
: maximi z eBut ton
: verticalscroll
: hori zontalscrol 1
: defercreation

FCF_TITLEBAR) ,
FCF_SYSMENU) ,
FCF_MENU) ,
IFS_HIDEBUTTON)
FCF_MINBUTTON)
FCF_MAXBUTTON)
FCF_VERTSCROLL
FCF_HORZSCROLL
IFS_DEFERCREATE

®®,

Access the actual unsigned long value for styles created this way by using the
asExtendedunsignedLong member function. When extended style values need to be passed to
presentation system functions, call convertTOGUIstyle and set the second argument to true to
indicate extended styles only.

In addition to increasing the available styles, you can use extended styles to keep two styles
from interfering with each other. For example, you may want to provide a wrapper for a set of
styles that has overlapping values, as in the ios : :Mode example. To make the bin and binary
members unique, even though they represent the same value, you change the definitions as
follows:

const ios: :Mode
ios::in = 1,
ios::out -2,
ios::ate = 4'
ios: :app = 010'
ios: :trunc = 020,
ios: :nocreate = 040,
ios: :noreplace = 0100,
ios: :binary = 0200,
ios::bin(0' 0200);

These changes result in ios : : binary and ios : : bin being set independently of each other.

Extended styles and regular styles behave and operate identically. All of the operators defined
for IBitFlag and discussed in the following sections apply to extended styles. You can use
them between regular and extended styles seamlessly.

Cfeapfe7.26 DataTypes 689

Combining Values
After declaring bit-mask classes, defining the set of valid bit combinations, and declaring
variables equal to one of the valid bit settings, you now combine multiple bits into a composite
bit-mask value. When working with integer bit values, use the standard C++ bitwise I operator
so that the IBitFlag class and its derivatives use the same operator. Then, the bit-mask classes
generated from the IBitFlag macros define an operatorl which you use to OR bit-mask
objects to create valid composite values.

For example, the following expression calls IDMlmage : : Style : : operator I, yielding an object
of type IDMlmage : : Style:

IDMlmage: :bmp I IDMlmage: :stretch

The resulting bit mask is then used like any of the base values defined as static members of
class IDMlmage.

Turning Off Bits
You may also want to turn off bits in an existing IBitFlag bit mask. For example, the
following code uses the current default Iwindow style to turn off the visible bit:

Iwindow: :setDefaultstyle (Iwindow: :defaultstyle () &
~Iwindow: :visible) ;

Using a style to turn off bits is like the way you manipulate integer bit-mask values in C++. As
it does with combining bits, Open Class Library defines the appropriate set of operators for the
bit-mask classes that it generates to make such usage result in the desired operations.

Negating bits is complicated by the fact that you designate the bit to be turned off by an
expression of the form ~bitvalue. Because bitvalue is an object of some IBitFlag class and
not a number, you cannot apply the unary negation operator without that operator explicitly
being defined for that type. If you do, the compiler returns an error.

Therefore, the IBitFlag macros generate class declarations that include the following
elements:

• A declaration for a nested class with name Negated concatenated with your style class
name. Using the Open Class Library convention, this is Negatedstyle. You can then
write the following code:

Iwindow: :Style: :Negatedstyle invisible = ~Iwindow: :visible;
• An operator~ that takes a bit-mask object and returns a corresponding negated bit-mask

Object.

• An operator& that you use to combine negated bit-mask values with other bit masks to
turn off the desired bits.

The utility of the IBitFlag class comes from these operators. This component of Open Class
Library shows how you can use C++ to implement powerful data types. Basically, if you can
state the requirements for the data type using the basic notation of C++ operators and more
primitive types, you can implement that type.

690 Power GUI programming with visualAge for c++

Bit-Mask Testing
Another common task is to test that a given bit is set by using this code:

if (astyle & Iwindow::visible)
®®,

The design goal is to match the way you write this code using plain C++ built-in types. The
IBitFlag class and its derivatives meet this goal by defining another overloaded operator&.
We previously discussed one operator& that you can use to turn off bits; it accepts as an
argument a negated bit-mask value. Another operator& accepts as an argument a particular
bit-mask value. This operator returns an unsigned long. You can then test the result using an
if or while statement.

Composite Bit-Mask Classes
The most complicated aspect of the IBitFlag class and the bit-mask types it helps define is
declaring bit-mask classes that are a superset of another set of valid bit masks. For example,
how do you declare an IControl: :Style class whose valid bit settings include those bits
defined by Iwindow: : Style plus some additional bits appropriate to class IControl?

This problem resembles inheritance in some respects. An Iwindow::Style is an
IControl : : Style. But inheritance works in the opposite direction from that of the enclosing
classes. So, you cannot use normal C++ inheritance. Instead, the derived style must explicitly
permit creating objects as objects of the base bit-mask type. For example, for the following
code:

IControl: :Style mystyle = Iwindow: :visible;
IControl: :setDefaultstyle(IControl: :defaultstyle() &

~Iwindow: : synchpaint) ;

the IControl : : Style class must support the following functionality:

• Creating an Icontrol: :Style object (the derived bit-mask class) from an object of type
Iwindow : : Style (the base bit-mask class)

• Operators that can combine IControl: :Style objects with Iwindow: :Style objects in
the same way as other IControl : : Style objects.

Open Class Library provides additional macros to implement such derived bit-mask classes.

Additional BitlFlag Macros
Open Class Library provides four macros in addition to the INESTEDBITFLAGCLASSDEF0 macro
that we previously described. These macros, INESTEDBITFLAGCLASSDEFl through
INESTEBITFLAGCLASSDEF4, work in much the same way but accept specifying from one to four
additional base bit-mask classes.

Specify the base classes using the name of the enclosing class. For example, the following
code generates the declaration of IControl : : Style:

INESTEDBITFLAGCLASSDEF1 (Style, IControl, Iwindow) ;

Cfea!pfe7.26 DataTypes 691

Tbis declares IControl : : Style so that Iwindow: : Style objects can be freely promoted to the
former type, as is required. These macros require that the base style class has the same name
as the nested class being generated. You cannot use these macros to generate a class
Derived: : Style compatible with Base : :Attribute. If you need to do that, generate your own
class declarations using the provided macros as a base.

In addition to the standard IBitFlag-derived class generated by INESTEDBITFLAGCLASSDEFO,
these macros generate additional public constructors that accept as an argument an object of
the base type. This conversion capability enables the various operators to accept objects of the
base bit-mask type on the right-hand side.

BitlFlag Operator Function Macro
The INESTEDBITFLAGCLASSDEFn macros generate code to enable you to AND and OR base
bit-mask values to compose derived bit-mask classes. However, such use is restricted to the
appearance of the base values on the right-hand side of bitwise operations.

To make operations commutative, additional operator functions are declared that are global
rather than simple member functions. Open Class Library provides one more macro to
generate these additional operators:

INESTEDBITFLAGCLASSFUNCS (classNalne, enclosingclass) ;

For example, at the bottom of the ICONTROL . HPP file, you find the following code:
INESTEDBITFLAGCLASSFUNCS (Style, IControl) ;

This generates nonmember operator functions. Because they are not member functions, the
left-hand argument of operations, if it is a base bit-mask type, is converted automatically so
that the operator can be invoked.

C olors `
Open Class Library window classes provide support for querying and setting the color of
various areas of the windows. As a result, there is a need to define C++ classes to represent
these colors. The IColor class and its derivatives, IDevicecolor and IGUIColor, are the
classes of objects you use when querying and setting the colors of Iwindow objects.

IColor defines the basic attributes of all col.or objects. A coJor is basically a mix of red, green,
and blue values. You can create an IColor object from any combination of red, green, and blue
values, and you can extract the red, green, or blue values for any color.

IColor also provides an enumeration of a set of standard color mixes. These define specific
red, green, and blue mixes. You can create an IColor object from one of these enumeration
values. In many cases, this form of constructor is preferred because you do not have to
determine the red, green, and blue values that comprise a standard color.

You can also construct an IColor object from a Systemcolor enumeration that defines presen-
tation system colors that your users can set. Systemcolor defines values for all of the system
color categories, such as the notebook page background color, the default button color, and the
active frame border color. These enumeration values correspond to the COLOR_* constants

692 Power GUI programming with visualAge for c++

defined in the Windows SDK, and the S¥SCLR_* constants defined in the Developer's Toolkit
for OS/2. An IColor object constructed from a Systemcolor value is linked to the presentation
system's settings so that the object changes if the user changes the settings. However, if you
use one of the setRed, setGreen, or setBlue functions on one of these objects, the link is
broken.

A common use of these classes and the values extracted from them is to provide arguments to
Open Class Library's 2-D Graphics classes. For example, you can pass an IColor object to
IGraphicBundle: :setpencolor to set the color used when lines are drawn that have a pen
width greater than one. The genhdrs\painthdr program on the examples disk shows how to do
this.

IColor provides functions to access various forms of the color. See Table 26-18.

Table 26-18. IColor Functions

Function Description tt

asRGBLong This function returns a single unsigned long value that indicates all three of the red,
green, and blue components of the color.

value This function returns the IColor: :Color standard color nearest to the color with this
object's red, green, and blue components.

index This function returns the logical color table index closest to this color.

Derived Classes
The derived class IGUIColor constructs color objects corresponding to the system colors that
the user defines, similar to IColor (Systemcolor) . The difference is that IGUIColor provides a
setcolor accessor whereby you can set the system color. Instead of just a one-way link from
the system color to the object, IGUIColor provides a two-way link that propagates changes in
both directions. Setting a system color using an IGUIColor affects all windows in the system.

The IDevicecolor class provides support for device-independent colors. It enables you to
create three special color objects that represent device-independent color indexes for the
device background, the device's neutral color, and the device's default color. These colors
take on the actual color index appropriate to the device with which you are working (for
example, a printer device or a screen device).

Referencelcounting
When you use data types, you usually work directly with objects rather than indirectly using
pointers. You allocate most of these objects in automatic storage, that is, they are allocated on
the stack when entering a function or block. Also, you might allocate them as data members of

Cfeapfe].26 DataTypes 693

an enclosing object. Usually, you do not allocate objects of these types on the heap using
operator new.

An advantage to using such objects is that you can manage the allocation and deallocation of
them easily. The automatic objects are created when they enter the block and deleted when
they exit. The data members are created when their enclosing object is created and are deleted
when the enclosing object is deleted.

Sometimes objects must be allocated dynamically. This is the case when the lifetime of such
objects must span the scope of a block, when the type of an object is not known until run time,
or when the size or number of objects is not known ahead of time. In such cases, problems
inevitably arise when deciding how to manage the lifetime of the dynamically created objects.

Using re/ere#ce-coz47®fz.Jog is a means of managing this problem. Reference-counting is based
on the idea that you can define a C++ class that serves as a $7„¢rf pot.7®£er. By using a class
object instead of a pointer, you can cause a destructor to be called when the pointer goes out of
scope or when the object of which the pointer is a data member is deleted. You can call
operator delete in this destructor, thereby causing the pointed-to object to be deleted.

Here is a class template for a smart pointer that can point to any type of object:
template < class T >
class Smartpointer {
public :

Smartpointer (T *p = 0)
: ptr(p)
(
)~Smartpointer ()
(delete ptr;
)

Smartpointer<T> &operator = (T *p)
(
T *temp - ptr;
ptr = 0;delete temp;
ptr = p;
)

operator T* () const
(return ptr;
)

T *operator -> () const
(return ptr;
)

private :
T *ptr;
);

You use objects of the template class Smartpointer<T> instead of plain T* pointers. Here is an
example:

struct Someclass { void foo(); };

void someFunction(unsigned long size) {
Smartpointer<Someclass>

array(new Someclass[size]);
for (int i = 1; i <= size; i++)

array[size -i] .foo() ;
);

694 Power GUI programming with visualAge for c++

In this example, the array is allocated dynamically because the dimension is passed as an
argument to the function. If you used Someclass*, you would need to add a delete at the end
of the function. The Smartpointer object does that in this example.

Next, consider the complications that arise when you try to use such smart pointers across
object interfaces. What happens if one smart pointer is assigned to another? The result is that
the pointed-to object is deleted twice. This leads us to reference-counting. You need to store a
count of the number of smart pointers that point to the object. Assigning or copying a smart
pointer increments the count. The smart-pointer destructor now only decrements this count.
When the count becomes 0, the pointed-to object is deleted.

Open Class Library's IRefcounted class implements the smart-pointer behavior. It has a data
member that maintains a use count and member functions that adds or removes references.
When the reference count becomes 0, the IRefcounted object deletes itself.

Open Class Library also provides the IReference class template. Use this template to generate
classes whose objects can be used as smart pointers to objects of some IRefcounted-derived
class.

Open Class Library itself uses the reference-counting classes. For example, IThreadMemberFn
derives from IRefcounted, and objects hidden inside the implementation of IThread serve as
IReference<IThreadMemberFn> objects. The direct-manipulation classes IDMOperation and
IDMltem are also IRefcounted objects.

Note the following points when you use IRefcounted and IReference:

• Remember that code of the form class X : public IRefcounted { . . . }; means that
objects of class X are allocated dynamically, accessed with smart pointers, and are
deleted when there are no more smart pointers pointing to them.

• Almost always allocate IRefcounted objects on the heap using operator new. Be
careful allocating such objects on the stack. If you do and accidentally bind such an
object to an IReference object, then you have a problem when the IReference object
deletes the IRefcounted object.

• Do not use IRefcounted objects as data members for much the same reason. Instead, use
an IReference object that refers to the actual data object.

• Avoid using true pointers or C++ references to IRefcounted objects. Using plain

pointers or references does not properly increment the use count of the IRefcounted
object, and the object may be deleted.

• Take care when initializing IReference objects. The IReference class template is
designed to support the following usage:

class X : public IRefcounted {
//. . .

);

IReference<X>
x = new X() ;

Chapter26 DataL'lypes 695

The IRefcounted constructor initializes its use count to 1, and the IReference
constructor does not increment it. As a consequence, the following code creates an
error:

void someFunction (X *pX)
(
IReference<X>

x = pX;
// ...
)

The reason is that the creation of the IReference does not properly increment the
IRefcounted object's reference count. Instead create the IReference object and
initialize it in separate steps, as follows:

void someFunction (X *pX)
(
IReference<X>

X;
x = pX;
// ...
)

The IReference assignment operator increments the use count. You avoid this problem
if you do not use plain pointers to IRefcounted objects as suggested previously.

Chapter 27

Error Handling and Reporting

Describes the C++ exception-handling model and the exception classes that Open
Class Library provides
Describes the IException, IAccessError, IAssertionFailure, IDeviceError,
IInvalidparameter, IInvalidRequest, IResourceExhausted, IOutofMemory,
IOutofsystemResource, IOutofwindowResource, IException: :TraceFn,
IExceptionLocation, IB aseErrorlnfo, IGUHrrorlnfo, IsystemErrorlnfo,
Iwindow: :ExceptionFn, and IMessageText classes

• Chapters 4, 23, and 28 coverrelated material.

This chapter describes how Open Class Library handles error conditions and the implications
this has for your application code. The chapter starts with a brief discussion of signals and
operating system exceptions and then discusses the error-handling mechanism as defined by
C++.

When you use exception handling, the structure of your application programs changes because
the model for reporting errors is changed. It is important for you to understand how exception
handling works and how Open Class Library uses exceptions so that you can write applications
that take advantage of this style of reporting and handling errors.

This chapter also describes several classes closely related to error handling. These include
classes for loading error messages from the operating system and displaying error information
to the user in a message box. Finally, the chapter describes how to obtain the exception
information that Open Class Library logs and how to provide your own trace function for
managing the output of this information.

Operating System Hxception Handling & C Signals
Operating system exceptions and C signals are similar in several ways. Both are mechanisms
for reporting abnormal conditions that occur during the execution of a program. Windows and
OS/2 exceptions are generated by the operating system, whereas C signals are generated by the
C++ run time. Both exceptions and C signals usually terminate the application by default, but
they allow the application to register handlers to process the errors and possibly avoid termi-
nation. Some of the causes of exceptions and C signals are synchronous, such as dividing by 0
and other math errors. Other causes of exceptions and C signals are asynchronous, such as
when the user presses Ctrl+Break.

697

698 Power GUI programming with visualAge for c++

C signals are described in the V!.Sz/clJAge /or C++ TooZS Progrczm7#z.73g Gz4z.de. VisualAge for
C++ provides an exception handler that maps most of the operating system exceptions to C
signals. This enables you to handle most of the errors that these two mechanisms report using
only C signals.

C++ exception handling is not intended or designed to handle the exceptions defined by
operating system exceptions and C signals. Operating system exceptions and C signals
transfer control directly to the handler registered for the particular exception or signal. This
means that catch blocks, which are the C++ exception handlers, cannot ccIfcfe these exceptions
or signals. Therefore C++ exception handling complements, but does not replace, Windows or
OS/2 exceptions and C signals. Open Class Library does not use Windows or OS/2 exceptions
or C signals, so we do not describe tbem further. However, you can use these facilities in your
applications to handle error conditions that Open Class Library does not report to you using
C++ exceptions.

Exception Handling in C++
Exception handling in C++ provides a way for a function to notify its caller when it encounters
an error condition from which it cannot recover. C++ provides three keywords to support
exception handling: try, catch, and throw. The notification process is called fferowz.72g ffee
excepfz.oJ®. An exception is an expression and, therefore, can be an object of any type. A caller
of a function has the option of catching any exception that the function throws using try and
catch blocks. You can enclose any section of code for which you want to catch exceptions in a
try block. A try block must be followed by one or more catch blocks, also referred to as
excepfz.o73-fe¢#dzers. The following code shows typical try and catch block usage:

try(
myobj ect . someFunction () ;

)
catch (IAccessError& exc) {

// Recovery is possib`1e because we have detailed information
// about the error.
app.recover(exc) ;

)
catch (IException& exc) {

// If the exception is recoverable, let the user decide whether
// to continue. Set the default response to cancel.
IMessageBox: :Response response = IMessageBox: :cancel;
if (exc.isRecoverable()) {

IMessageBox msgBox(&mainwindow. frame ()) ;
response = msgBox.show(exc) ;

)
if (response == IMessageBox::cancel) {

// Perform some cleanup and rethrow the exception.
app . cleanup () ;
throw;

)else // The user has chosen retry.
app.recover(exc) ;

)
catch (...) (

// We don't have enough information to continue;
// cleanup and rethrow the exception.
app . cleanup () ;
throw;

)

Cfeapfer27 ErrorHandling and Reporting 699

// If we catch the exception and don't rethrow it
// using throw, the program resumes here.

Notice that the catch blocks in the example are ordered with the most specific exception-
handler listed first. IAccessError is derived from IException, so we placed the catch block
for IAccessError first. When a matching catch block is found, control is given to the first
statement in the block. The exception is then considered to have been handled, and the C++
run time does not look for any additional catch blocks. Therefore, always specify catch
blocks that provide you with the most detailed information first. If an IAccessError exception
was thrown and the order of the first two catch blocks was changed, the IException& catch
block would catch the exception because an IAccessError is derived from an IException .

Specifying catch (. . .) , indicates that you want to catch all exceptions, regardless of type.
Because it is the most generic catch block possible and you have no way of getting any
information about the exception, list it last in a series of catch blocks.

When an exception is thrown, the C++ run time transfers control to the matching catch block
associated with the nearest active try block. A try block is active if one of the functions it
contains, or any function called directly or indirectly by the functions it contains, is currently
in control. A matching catch block is one whose specified exception type matches that of the
thrown object. When you catch an exception, you have the choice of continuing the program at
the point immediately following the last catch block in the group, or rethrowing the exception
if you cannot recover from the error condition. If the exception is rethrown, the C++ run time
again searches for the nearest matching catch block. If a catch block cannot be found, the
C++ run-time terminate function is called. By default, it calls the C++ run-time abort
function, which ends the application. See the "Replacing the Terminate Function" topic later
in this chapter for information on how to provide your own terminate function.

The exception mechanism just described is known as the fermz.J®clfz.o7® fflodez of error handling.
In this model of exception handling, control is never returned to the point where the exception
was thrown. The res##®p£!.oJ® 7#odeJ of error handling, which allows an exception handler to
handle an error and then resume at the point where the exception was thrown, is not supported
by C++.

When an exception is thrown and the C++ run time is looking for the closest active try block,
the call stack is said to be zt73woz4J®d. This means that functions on the call stack are terminated
as the C++ run time backs up looking for a try block. Destructors for all automatic objects
(those created on the stack) in those terminated functions are called as the stack is unwound.

Benefits of Using C++ Exceptions
C++ exception handling is intended to replace the use of return codes. Open Class Library
uses exceptions because of the many benefits they provide. One of the most important benefits
of using exceptions is that your error-handling code can be completely separated from your
application logic. The error-prone method of passing and checking return codes after each
function call is no longer necessary. This separation of normal processing from error handling
leads to cleaner code, which is easier to understand and maintain. This separation also enables

700 Power GUI programming with visualAge for c++

you to place exception handlers at strategic locations, places where it makes sense to try and
recover instead of at every function call.

Another important benefit of using exceptions is the fact that the stack is unwound when an
exception is thrown, and destructors of all local objects are called as the objects are removed
from the stack. This means that you can guarantee resources are cleaned up and freed, even
when an exception occurs, as long as you provide destructors that release all resources. If an
exception is thrown from a constructor, a destructor is called for any subobjects that are
already constructed.

You can use exception handling in conjunction with constructors and destructors to implement
an elegant technique for managing resources that Bjarne Stroustrup refers to as "... resource
acquisition is initialization."1 This is a technique in which resources are acquired during the
construction of objects and are subsequently cleaned up and released in destructors. One
example of this in Open Class Library is IprivateResourceclass, where the resource acquired
is a 7#ztfex s'e77eapfeore. If your code uses this class, you do not have to wrap code that uses a
mutex semaphore in a try block to ensure that the semaphore is closed and released if an
exception is thrown while it owns the semaphore. The destructor takes care of this cleanup for
you.

Another important benefit of using exceptions is that they are implemented in such a way that
an application cannot ignore them. If you ignore an exception, your application terminates.
This forces you to acknowledge the error and make a conscious decision to continue the
program. Under the return-code paradigm, a program could continue incorrectly because it
failed to check the return code from a function call.

Several other benefits are also worth mentioning. Because the throw statement throws an
expression, as opposed to an integer, it is possible to throw any of the built-in types as well as
any user-defined types. This allows detailed error information to be returned to any interested
exception handler, which increases the chances that the exception handler can recover from
the error.

Returning errors from constructors is also a problem in C++ if you do not use exception
handling. Constructors cannot return anything, so they cannot notify clients of an error
condition with return codes. At best, they can place an object in an invalid state and hope the
client notices and recovers. Exceptions safely solve this problem because destructors for
subobjects are called when an exception is thrown from a constructor.

Open Class Library's Error-Handling Strategy
Open Class Library's strategy of using exception handling for processing all errors, including
the design of the exception classes, was strongly influenced by the ideas of Bjarne Stroustrup.
We adopted his idea that exception handling is error handling. Throwing exceptions has

tBjarne Stroustrup. Tfee C+ + Progrczroroz.7®g L¢#g#¢ge. Reading, Massachusetts: Addison-Wesley Publishing

Company,1991.

Cfeapfe7.27 ErrorHandling and Reporting 701

completely replaced the use of return codes in Open Class Library. Open Class Library also
only ffe7iowf exceptions in true error situations.

All of the classes in the Open Class Library exception-handling component are self-contained.
This means that the exception classes do not depend on any classes in Open Class Library
outside of the exception component. This ensures that no exceptions are thrown while an
exception is already being processed. For example, the exception classes use character arrays
instead of an Istring object so that the Istring implementation is free to use exceptions
where needed. The exception classes also temporarily replace the 7®ew-fe¢#dJer when they
allocate dynamic storage so that they get control if an error occurs. This ensures that excep-
tions are not recursively thrown.

Open Class Library defines a small hierarchy of classes derived from IException that repre-
sents all exceptions that Open Class Library can throw. Figure 27-1 shows the User Interface
Library exception class hierarchy. Figure 27-2 shows the Collection Class Library exception
class hierarchy. Notice that both hierarchies are derived from a common base class,
IException. IException defines the interface and attributes of all exceptions that Open Class
Library throws. Therefore, a minimum level of information is always available for an
exception that Open Class Library throws. See the topic "The Root of All Exceptions" later in
this chapter for detailed information about IException.

Defining the exceptions as a hierarchy with a single root class guarantees that a program can
catch any exception thrown within an enclosing try block by Open Class Library using
catch (IException& exc) . If all exceptions did not derive from one base class, client code
would have to code a catch block for each exception type or use the catch (. . .) syntax to
catch all exceptions thrown by the libraries.

The exceptions that Open Class Library defines are based on the logical type of the error
condition, not on the class that throws the exception. In other words, there is not an
IDDElnvalidRequest or IContainerResourceExhausted exception type. This helps to
minimize the number of exception types needed to describe errors that Open Class Library
encounters. This, combined with the fact that all exception classes are derived from a common
base class, allows users to catch logical groups of exceptions at various places in the hierarchy.

The Root of All Hxceptions
IException is tbe base class for all of the other exception types that Open Class Library
defines and throws. IException defines the common interface for all exceptions and provides
the majority of the implementation for them. In general, throw an object of a class derived
from IException rather than IException so that the type of the exception conveys meaningful
information about the error.

Open Class Library functions create objects of classes derived from IException for all error
conditions the functions encounter. Each exception object contains the following:

• A stack of exception message text strings (descriptions)

• AnerrorlD

702 Power GUI programming with visualAge for c++

• Aseveritycode

• Anerrorcodegroup

• Information about where the exception was thrown

See the "Exception Information Logging" topic later in this chapter for detailed information
about logging out the information contained in an IException object. The classes derived
from IException all override name in order to return their own name instead of their parent' s.

Figure 27-1. The User Interface Library Exception Classes.

Cfeapfer27 ErrorHandling and Reporting 703

Figure 27-2. The Couection Class Library Exception classes.

Constructing an Open class Library Exception
The only required argument for constructing an IException object is an error text string.
Optionally, you can provide an error ID, which defaults to 0, and the severity of tne exception,

704 Power GUI programming with visualAge for c++

which must be one of the values of the IException: : Severity enumeration. The choices are
recoverable and unrecoverable (the default). You can modify all of these attributes after the
exception has been constructed. When you catch an exception, you use this information along
with the type of an exception to determine if you can recover from an error.

The ErrorcodeGroup enumeration categorizes an exception by the class library that throws it.
You cannot specify the value on the constructor, and it always defaults to baseLibrary. Use
setErrorGroup to change this value and errorcodeGroup to retrieve the current value. This
enumeration is provided so that you can uniquely identify an error in cases where more than
one library, toolkit, or operating system uses the same error code for different errors.

You can use the setseverity, and isRecoverable functions to set and determine the severity
of the error. To set and get the error ID of the error, use the setErrorld and errorld functions.
Open Class Library obtains the error ID from the operating system when operating system and
windowing errors are encountered. The name function is provided solely for logging the type
of the exception. Thus, do not use the name function to determine the type of the exception.
Instead, use multiple catch blocks if the type of the exception is pertinent to your program
logic. See the discussion about catching groups of exceptions and the ordering of catch blocks
in the "Open Class Library' s Error Handling Strategy" topic earlier in this chapter.

Exception Location Information
Perhaps the most important exception information, from a debugging perspective, is the array
of location information that every IException object keeps. Each IExceptionLocation object
contains a function name, the file name this function is contained in, and the line number in
this file where an IException object has been created or rethrown.

The IEXCEPTION_LOCATION macro is provided so that you can easily obtain this location
information. The macro creates an IExcepionLocation object using the VisualAge for C++
FUNCTION, _FILE_, and _LINE_ predefined macros.
Every time the addLocation function is called, it adds an IExceptionLocation object to the
end of an array. Only five IExceptionLocation objects are kept in the array. The
addLocation function always replaces the last object when the array is full. This ensures that
the original location of the error is preserved. Use the locationcount function to retrieve the
number of locations in the array. Use the locationAtlndex function if you want to retrieve an
IExceptionLocation object at a 0-based index to obtain location information.

Create Exceptions on the Stack
Always create exceptions on the stack to avoid the problem of determining how to delete
the exception object. When an exception is thrown, the compiler makes a copy of the
exception so that it can unwind the call stack. This is the object that the compiler passes to
any matching exception handler, not the object you created and threw.

The other reason for creating exceptions on the stack is that it avoids the problems that
would occur if operator new failed due to an out-of-memory condition.

Cfe¢pfe7.27 Error Handling and Reporting 705

Exception Text
IException keeps a stack of exception text strings that you can use to obtain or provide
information about the error condition. This stack has no size limit, and it has a 0-based index.
IException provides two functions for adding error text strings to the exception object. The
setText function adds an exception text string to the top of the stack. The appendText
function appends the exception text string to the exception string on the top of the stack. The
textcount function returns the number of exception strings in the stack. The text function
returns the text at the specified index, which by default is 0, meaning the top of the stack.

This stack is provided so that a range of information about an error can be stored in an
exception object. The exception strings at the bottom of the stack contain the most specific
information about the error. This is the information that is of most use when debugging or
diagnosing a problem. The exception strings at the top of the stack are more general because
they are usually added "farther" from the point of the error. This more general exception text
is likely to be the kind of information you want to present to a user in a message box.

The Open class Library Exception Classes
The following is a brief description of each of the classes derived from IException. The
examples are provided to show a typical error condition for which a particular exception type
is used. These examples use the macros that are typically used to throw exceptions in the Open
Class Library. These macros use the helper exception classes IsystemErrorlnfo and
IGUIErrorlnf o in some cases to obtain error information from the Windows and OS/2
operating systems.

IAccessError

Open Class Library throws an exception of this type for operating system errors when
none of the other exception classes are appropriate. In general, this is most of the
Windows and OS/2 errors (other than resource exhaustion problems, for which Open
Class Library provides several other exception classes). The majority of exceptions that
Open Class Library throws are of this type.

Use this exception type for any error returned by Windows and OS/2 functions, when
none of the other exception classes are a better fit. The following code is an example of
typical usage of this exception type:

unsigned long rc = DosKillThread(threadld) ;
if (rc !-0)

ITHROWSYSTEMERROR (rc ,"DosKillThread" ,
IBaseErrorlnfo : : accessError,
IException: :recoverable) ;

706 Power GUI programming with visualAge for c++

IAssertionFailure

Open Class Library throws an exception of this type when a condition asserted to be true
evaluates to false. Open Class Library typically uses this exception type when checking
the input parameters to a function, and it uses the IASSERT macro to throw this excep-
tion. IASSERT checks the assertion and throws an exception only if the macro
IC_DEVELOP is defined. Open Class Library developers typically define IC_DEVELOP only
during development and testing. Note that the macro sets the errorcodeGroup to other.

The following is an example of typical usage of IASSERT to throw this exception type:
Istring IDDElnfo_stringFromAtom (unsigned long atom)
(

IASSERT(atom != 0);
.®®

)

IDeviceError

Open Class Library does not currently throw any exceptions of this type. When a
member function makes a hardware-related request of the operating system or the
presentation system that the system cannot satisfy because of a hardware failure, the
member function creates and throws an object of the IDeviceError class. An example of
a failing hardware-related request is attempting to print to a disconnected printer.

IInvalidparameter

Open Class Library throws an exception of this type when an input parameter to a
function in production-level code is in error. Use this exception type whenever you need
to guarantee the correctness of an input parameter in your production-level code. The
following is an example of typical usage of this exception type in Open Class Library:

IDDETopicserver& IDDETopicserver : : beginconversation
(const IwindowHandle& clientHandle)

(
IASSERTPARM (clientHandle . isvalid ()) ;

®,®

)

The reason the example uses an IInvalidparameter exception instead of
IAssertionFailure is that a window handle can only be validated at run time, so this is
an error that even rigorous testing of an application cannot eliminate. Open Class
Library provides the IASSERTPARM macro for throwing this exception type because it
throws it extensively. IASSERTPARM always throws an exception if the assertion fails.
Note that the macro sets the errorcodeGroup to other.

IInvalidRequest

Open Class Library throws an exception of this type when the current state of an object
is not valid for the called function. Use this exception type when you need to verify that
the state of an object is valid for a function call. The following is an example of typical
usage of this exception type in Open Class Library:

Cfea!pfe].27 Error Handling and Reporting 707

IDDEclientconversation& IDDEclientconversation : : requestData
(const char* item,

const char* format)
(

IASSERTSTATE (inconversation ()) ;
®®,

)

Open Class Library provides the IASSERTSTATE macro for throwing this exception type
because it throws it extensively. Note that the macro sets the errorcodeGroup to other.

IOutofMemory

Open Class Library throws an exception of this type when a request for memory fails.
Open Class Library's new-handler throws an exception of this type when dynamic
storage is exhausted. We describe the new-handler later in this chapter in the "Open
Class Library' s New-Handler" topic.

Note: A stack-exhausted situation results in an operating system exception, which is
completely different than a C++ exception. See the "Operating System Exception
Handling & C Signals" topic.

Use this exception type when memory is exhausted if you override operator new. This
makes your new-handler consistent with the method Open Class Library uses to report
dynamic memory allocation failures.

IOutofsystemResource

Open Class Library throws an exception of this type when an operating system resource
is exhausted. Use this exception type when a call to an operating system function
returns a code indicating that a resource is exhausted. The following is an example of
typical usage of this exception type in Open Class Library:

unsigned long ulRc = DoscreateQueue (&ulcIQHandle,
(unsigned long) 0,
(PSZ) s trQueueName) ;

if (ulRc)
ITHROWSYSTEMERROR (ulRc , "DoscreateQueue " ,

IBaseErrorlnfo : : outofsystemResource ,
IException : : recoverable) ;

IOutofwindowResource

Open Class Library does not currently throw any exceptions of this type. Use this
exception type when a call to a presentation or window system function returns a code
indicating a resource is exhausted.

IResourceExhausted

Open Class Library does not currently throw any exceptions of this type. This exception
type is the base resource exhaustion class. Use one of the classes derived from
IResourceExhausted for resource exhaustion errors to provide specific information
about the resource that is exhausted.

708 Power GUI programming with visualAge for c++

Catching Hxceptions
Use try blocks judiciously in an application, because there is a small performance penalty
associated with trying to catch exceptions. Regardless of this, you generally do not need to
catch an exception unless you can partially recover from the error, can perform some cleanup,
or want to present the error information to the user.

One reason for catching an exception, even when none of the reasons listed in the previous
paragraph are valid, is to trace the flow of control leading up to the exception. You can do this
by using the Open Class Library IRETHROW macro to rethrow the exception. This macro records
the current function, source file, and line number. Because the C++ run time unwinds the call
stack when an exception is thrown, you can get a good idea of the program flow prior to the
exception using this technique.

Depending on the severity of the error, it may be better for the program to end rather than
continue with incorrect results. A good place to use try blocks is at component or subsystem
boundaries where the damage can be localized. In the topics that follow, we describe several
strategic places to catch exceptions.

Catching Exceptions Thrown from Handlers
Open Class Library contains a try block in the Iwindow: :dispatch function because a
majority of exceptions can be caught here in a typical application. The support that Open
Class Library provides for catching exceptions thrown from handlers and the functions they
call is described in the "Exception Support" topic of Chapter 4, ``Windows, Handlers, and
Events.„

See the sample at the end of this chapter for information about how to register an exception
handler with Iwindow. The name of the class derived from Iwindow: :ExceptionFn, in the
sample is Exceptionviewer. Its handleException function displays a message box to the user.

Note: Both of the static functions Iwindow::setExceptionFunction and
Iwindow::exceptionFunction return a pointer to the previously registered
Iwindow: : ExceptionFn class, if any. This makes it possible for you to temporarily replace the
exception-handling function and later restore it.

Catch Exceptions as References
Always catch exceptions as references so that a copy of the exception is not made. This is
important if you catch an exception with a handler for one of its base classes, such as
IException.

For example, here is what would happen if you caught an IInvalidparameter object using
catch (IException exc). In tbis case, the compiler uses the copy constructor for
IException to copy the caught exception. This results in lost or sliced information as the
original IInvalidparameter object has been replaced by an IException object.

Cfe¢pfe7.27 Error Handling and Reporting 709

Catching Exceptions in main
Wrap the contents of the main routine in a try block if you want to catch as many of the excep-
tions thrown in your program as possible. It is not possible to catch exceptions thrown from
constructors of static objects because they are constructed before main is entered. Wrapping
the contents of your main routine in a try block gives you one last opportunity to release any
resources and do any cleanup before your application ends. Usually, your application does not
try to recover at this point.

The following code is taken from the sample program at the end of the chapter and demon-
strates catching exceptions using a try block inside of main. The example assumes that no
errors occur in the construction of the IFramewindow, mainwindow, which precedes the try
block. This allows the IFramewindow object to be used in the construction of an IMessageBox
Object.

int main(int argc, char *argv[] , char *envp[])
(

Exceptionviewer mainwindow;
try(

IApplication : : current () . run () ;
)
catch (IException& exc) {

IMessageBox msgBox (&mainwindow. frame ()) ;
msgBox.setTitle (`'Exception caught in main routine'') ;
msgBox . show (exc . text () ,

IMessageBox : : okButton I
IMessageBox : : errorlcon I
IMessageBox: :moveable) ;

)
)

Why Can't I Catch That Exception?
If you think that your code is causing an exception to be thrown, and you are unable to catch
the exception, read on. The /Gx+ compiler option disables the generation of C++
exception-handling code. If the exception is thrown using one of the Open Class Library
macros that does error logging, you still get the error output. This can fool you into
thinking that the exception is being thrown, but that is not the case if the application was
compiled with the /Gx+ option. The error logging is done before the C++ run time
processes the throw statement and terminates the application. Not even a terminate
function registered by your application is called.

Replacing the C++ terminate Function
You can replace the C++ run-time terminate function by registering your own ferfflz.#czfz.o73
function using the C++ set_terminate function. As previously mentioned, the terminate
function is called if no exception handler (matching catch block) is found. It is also called for
two other reasons as well:

710 Power GUI programming with visualAge for c++

• The stackis found to be corrupted while an exceptionis being processed.

• A destructor called during stack unwinding, caused by an exception being ffe7iow#, tries
to throw an exception.

An error occurs when a user-supplied terminate function tries to return to its caller instead of
terminating and no arguments are passed to the registered function so that no error information
is available. As a result of these limitations, only register your own termination function in
addition to having a strategy for catching exceptions. Use your termination function only as a
final safety net and terminate it by calling abort. The following example shows a user-written
termination function and how to register it:

void customTerminate ()
(

cerr << `'My terminate function was called\n";
)

set_terminate (&customTerminate) ;

Errors AIlocating Dynamic Memory
Use operator new to allocate dynamic storage. If operator new cannot allocate the requested
storage, it returns 0. In order for Open Class Library and your code to detect errors allocating
dynamic memory, the return code from all calls to operator new needs to be checked. Open
Class Library avoids this by using exceptions for handling errors. Checking return codes tends
to clutter up the code, making it harder to read and maintain. To avoid this problem, Open
Class Library provides a 7®ew-fecz#dJer function, which integrates errors allocating dynamic
memory with exception handling.

The Open Class Library's New-Handler Function
C++ has provided the set_new_handler function to register a 73ew-fecI7®dzer function, which is
invoked when a dynamic storage allocation failure occurs. Open Class Library uses this
capability to eliminate the need to check return codes on every call to operator new. A static
structure in IBASE . CPP registers a new-handler function. This new-handler function throws an
IOutofMemory exception whenever it is called. This allows your code to handle dynamic
memory allocation failures using the same strategy you use for any other exception.

Open Class Library' s exception-handling implementation avoids causing any exceptions while
processing an exception. Recursive exceptions would cause terminate to be called. The Open
Class Library exception-handling `component sets the new-handler function to 0 any time it
needs to call operator new so that it gets back a 0 return code if operator new fails. The
previously registered new-handler function is reregistered after the return code is checked.

Registering Your Own New-Handler Function
You can temporarily or permanently replace the new-handler function that Open Class Library
provides with your own new-handler function. The following code is an example that replaces
the current new-handler function with cus tomNewHandler.

Cfeapfer27 Error Handling and Reporting 711

void customNewHandler() {
// Handle new failures your way here.
cerr << "Dynamic memory allocation failure. \n";

)

fooBar() {
void (*poldNewHandler) () = set_new_handler (customNewHandler) ;
pBuffer = new char[100] ;
set_new_handler (poldNewHandler) ;

)

The set_new_handler function returns the address of the current new-handler function, which
the sample saves in poldNewHandler. At the end of the fooBar function, it restores the
previous new-handler function.

Throwing Exceptions
This section explains how to use the classes and macros that Open Class Library provides to
throw exceptions when you detect errors in your code. Open Class Library provides a number
of macros and exception helper classes to simplify the throwing of exceptions.

I

Using Macros to Throw Exceptions
The IBaseErrorlnfo class is an abstract base class that defines the interface for its derived
classes: ICLibErrorlnfo, IGUIErrorlnfo, IMRErrorlnfo, and IsystemErrorlnfo. These
classes retrieve error information and text that you can subsequently use to create an exception
Object.

In prior releases of Open Class Library, the base class was named IErrorlnfo, but the
Windows operating system also uses the IErrorlnfo class name. If you are not ready to
migrate your code to the new class name, add mlusE_IERRORINFO to your compiler
options. This adds a typedef to your code so that IErrorlnfo is defined as a synonym for
IBaseErrorlnfo. Note that you cannot use this solution when your code also includes the
Windows IErrorlnfo class.

IEXCEPT.HPP contains macros that create an exception object, log the error information
contained in the exception object, and throw the exception. Some of the macros create objects
of the IsystemErrorlnfo or IGUIErrorlnfo helper classes. Logging the error information is
described in detail in the "Exception Information Logging" section later in this chapter. We
cover IsystemErrorlnfo and IGUIErrorlnfo in the "Obtaining Operating System Error
Information" and "Obtaining Presentation System Error Information" topics later in this
chapter.

Open Class Library provides other macros for throwing exceptions, but they are less flexible
or less efficient than the macros we describe. These macros are more efficient because they
call static functions to create the exception object, call functions to add location information
and log the error information out, create the helper objects when necessary, and throw the
exception. This topic also describes the macros Open Class Library primarily uses to throw
exceptions.

712 Power GUI programming with visualAge for c++

For a complete list of the macros that Open Class Library uses to throw exceptions, refer to the
Open Class library Reference Guide.

ASSERT

This macro provides assertion support in Open Class Library, which is almost identical
to assertion support provided in the C library ASSERT.H. The big improvement over C
assertions is that this macro integrates assertion support with exception handling. When
the IC_DEVELOP macro constant is defined, the expression passed to IASSERT is evalu-
ated. If the expression evaluates to 0, the macro calls the IException static function,
assertparalneter, which throws an IAssertionFailure exception. If IC_DEVELOP is not
defined, the test is compiled out. In other words, the macro does not generate any code
in this case.

Use this macro for any expressions you want to assert in your application. Also, define
IC_DEVELOP only during the development and testing of your code. When your code is
ready to be delivered, do not define the IC_DEVELOP macro constant so that the assertions
are compiled out. IASSERT is defined in IEXCBASE . HPP.

The following code is an example of typical usage of the IASSERT macro in Open Class
Library. Tbis example generates this exception text: "The following expression must be
true, but evaluated to false: atom != 0".

Istring IDDElnfo_stringFromAtom (unsigned long atom)
(

IASSERT(atom != 0);
// remainder of function.

)

IASSERTPARM

This macro is identical to the IASSERT macro except it does not depend on the
IC_DEVELOP macro constant and, therefore, always evaluates the input expression. (It
cannot be compiled out.) If the expression evaluates to 0, the macro calls the
IExcept_assertparameter static function, which throws an IInvalidparameter
exception. The error group other is added to the object. Open Class Library typically
uses this macro to check for null pointers, but you can use this macro to check the
Validity of any parameter. For example, use this macro to check the validity of input
parameters to functions in your classes and applications. The following code is an
example of typical usage of the IASSERTPARM macro in Open Class Library. This
example generates the following exception text: "UIL0001: The following expression
must be true, but evaluated to false: clientHandle.isvalid()".

IDDETopicserver& IDDETopicserver : : beginconversation
(const IwindowHandle& clientHandle)

(
IASSERTPARM (clientHandle . isvalid ()) ;
// remainder of function.

)

Cfe¢pfer27 ErrorHandling and Reporting 713

IASSERTSTATE

This macro is similar to the IASSERT and IASSERTPARM macros in that it also asserts an
expression, typically a member function call. The difference is that the expression is not
usually related to any of the input parameters. If the expression evaluates to 0, the
macro calls the IExcept_assertstate static function, which throws an
IInvalidRequest exception. The error group other is added to the object. Open Class
Library uses this macro to ensure that the state of an object is valid for the called
function.

Use this macro to verify that the state of an object is valid for a function call in any of
your classes. IASSERTSTATE is defined in IEXCEPT.HPP.

The following code is an example of typical usage of the IASSERTSTATE macro in Open
Class Library. This example automatically generates this exception text: "UIL0001:
The following expression must be true, but evaluated to false: inconversation()".

IDDEclientconversation& IDDEclientconversation : : requestData
(const char* item,

const char* format)
(

IASSERTSTATE (inconversation ()) ;
// remainder of function.

)

ITHROWERROR

Open Class Library uses this macro to throw exceptions containing error text loaded
from a message file. See the "Custom Error Messages" topic later in this chapter for
information on creating message files and loading message text from a message file.

The macro takes three arguments: the ID of the message to be loaded from the current
message file, one of the values of the IBaseErrorlnfo: :ExceptionType enumeration,
and one of the values of the IException: : Severity enumeration. The exception type is
used to determine what type of exception object to create, and the severity is used to
determine if the exception is recoverable.

The valid values for the IBaseErrorlnfo : : ExceptionType, and IException: : Severity,
enumerations are listed in the description of the ITHROWGUIERROR2 macro. The macro
calls the IExcept_throwLibraryError static function.

You can use this macro to load custom error text from a message file. ITHROWERROR is
defined in IEXCEPT.HPP. See an example of the ITHROWEREOR macro in the "Custom
Error Messages" section later in this chapter.

The ITHROWERRORl macro is identical to the ITHROWERROR macro except it has a fourth
argument, which is text to be substituted into the retrieved message. See the "Custom
Error Messages" topic for detailed information on the mechanism that message files
provide for handling substitution text.
This macro replaces ITHROWLIBRARYERROR and no longer requires you to use the Open
Class message file. You can specify the message file of your choice for your own custom
messages.

714 Power GUI programming with visualAge for c++

ITHROWERRORI

This macro can throw any of the Open Class Library-defined exceptions. It is identical
to the ITHROWERROR macro except it has another parameter for the substitution text for
the retrieved message.

ITHROWGUIERROR2

Open Class Library uses this macro when a call to an operating system function fails and
the documentation indicates that information about the error is available via
WinGetLastError. This macro takes three arguments: the name of the operating system
function that returned the error code, one of the values of the
IBaseErrorlnfo: :ExceptionType enumeration, and one of the values of the
IException: : Severity enumeration. The failing operating system function name is
prepended to the exception text. The exception type is used to determine what exception
object type should be created, and the severity is used to determine if the exception is
recoverable.

The valid values of the IBaseErrorlnfo: :ExceptionType enumeration are:
accessError, deviceError, invalidparameter, invalidRequest,
outofsystemResource, outofwindowResource, outofMemory, and resourceExhausted.
The valid values of the IException: :Severity enumeration are recoverable and
unrecoverable.

The macro uses the IGUIErrorlnfo class to retrieve detailed information about the error.
This information is used to set the error code and error text of the exception object. See
detailed information about the IGUIErrorlnfo class in the "Obtaining Operating System
Error Information" topic later in this chapter. The macro calls the
IGUIErrorlnfo : : throwGUIError static function.

Use this macro whenever a call to the operating system fails and the documentation
indicates additional information about the error can be obtained by calling
WinGetLastError. The following code is an example of typical usage of the
ITHROWGUIERROR2 macro :

unsigned long ulAtom;
ulAtom = WinAddAtom (WinQuerysystemAtomTable () ,

(PSZ) atom) ;
if (!ulAtom)

ITHROWGUIERROR2 ("WinAddAtom" , IBaseErrorlnfo : : invalidparameter ,
IException : : recoverable) ;

ITHROWSYSTEMERROR

Open Class Library uses this macro when a call to an operating system API results in an
error. The macro takes four arguments: the return code from the operating system
function, the name of the function, one of the values of the
IBaseErrorlnfo: :ExceptionType enumeration, and one of the values of the
IException: : Severity enumeration. The name of the failing function is prepended to
the exception text. The exception type is used to determine what type of exception
object to create, and the severity is used to determine if the exception is recoverable.

Cfea!pfe7.27 Error Handling and Reporting 715

The valid values for both the IBaseErrorlnfo::ExceptionType and
IException: :Severity enumerations are listed in the previous description of the
ITHROWGUIERROR2 macro.

The ITHROWSYSTEMERROR macro uses the return code in conjunction with tbe
IsystemErrorlnfo class to retrieve detailed information about the error from the OS/2
operating system. This information is used to set the error text of the exception object.
See detailed information about the IsystemErrorlnfo class in the "Obtaining Operating
System Error Information" topic later in this chapter. The macro calls the
IsystemErrorlnfo: :throwsystemError static function. Note that the
ITHROWSYSTEMERROR macro sets the ErrorcodeGroup to operatingsys tern.

Use this macro whenever a call to an OS/2 function fails. The following code is an
example of typical usage of the ITHROWSYSTEMERROR macro in Open Class Library:

unsigned long rc = DosKillThread(threadld) ;
if (rc != 0)

ITHROWSYSTEMERROR (rc ,"DosKillThread" ,
IBaseErrorlnfo : : accessError,
IException: :recoverable) ;

IRETHROW

Use this macro to rethrow an exception that you have caught but cannot recover from.
The macro has no arguments, and it does not work unless you are inside a catch block.
This is because IRETHROW does not specify anything on the throw statement, which is the
correct way to rethrow an exception. Outside the context of a catch block, a throw
statement by itself is meaningless.

The main benefit of using the IRETHROW macro is that it logs out all of the exception
• information, including the current location information, before rethrowing the excep-

tion. Using IRETHROW provides some detailed information on the program flow leading
up to the exception. See the discussion about using IRETHROW to trace program flow in
the earlier section "Catching Exceptions."

Throwing Hxceptions without Using Macros
In this topic, we briefly discuss throwing an object of one of the exception classes without
using the previously described macros, and some of the helper classes you can use to obtain
information about errors. You might want to use the native Open Class Library exception
classes directly if you do not want to log out the error information before throwing or
rethrowing an exception. Also, if you throw an exception type not defined by Open Class
Library, do not use the macros.

If you want to have location information added to an IException object that you create and
have the error information in that IException object logged, use the ITHROW macro to throw
the exception, as follows:

IInvalidRequest invReq("setup() must be called first.") ;
ITHROW (invReq) ;

716 Power GUI programming with visualAge for c++

If you throw the exception using the throw statement, you can still add location information or
log the error information as illustrated in the following example:

IInvalidRequest invReq("setup() must be called first.") ;
invReq . addLocation (IEXCEPTION_LOCATION ()) ;
invReq .1ogExceptionData () ;
throw invReq;

{

Obtaining Presentation System Error Information
Use the IGUIErrorlnfo class to retrieve error information from the presentation system or
window system. Use this class if you get a bad return code from a call to the presentation
system for which tbe documentation indicates further error information is available.
Normally, you use the ITHROWGUIERROR2 macro for this situation. You can use this class
directly if you unsure if the presentation system has error information available.

If you provide the optional GUIFunctionName argument when constructing an IGUIErrorlnfo
object, it is used as a prefix to the error text that the presentation system provides. The
isAvailable function returns true if the error information was successfully retrieved. Use
throwError to create and throw an exception using the information contained in an
IGUIErrorlnfo object. The following code is an example of how you would throw an
IAccessError exception:

IGUIErrorlnfo errlnfo;
if (errlnfo.isAvailable())

errlnf o . throwError (IEXCEPTION_LOCATION ()) ;

Obtaining Operating System Error Information
Use the IsystemErrorlnfo class to retrieve information from the operating system. Use this
class anytime you get a bad return code from the Windows or OS/2 operating system. The one
required argument is the return code. As it does for the IGUIErrorlnfo class,
IsystemErrorlnfo prefixes the error text with the name of the failing function if you provide
the optional second argument. Normally, you use the ITHROWSYSTEMERROR macro to throw an
exception for an operating system error. One reason you might want to use this class directly
is if you need to do some special processing with the error information before you throw an
exception.

The isAvailable function returns true if the error information was successfully retrieved
from the operating system. Use throwError to create and throw an exception using the infor-
mation contained in an IsystemErrorlnfo object. The following code is an example of how
you would throw an IAccessError exception:

IsystemErrorlnfo errlnfo;
if (errlnfo.isAvailable())

errlnfo . throwError (errlnfo . errorld () , IEXCEPTION_LOCATION ()) ;
+

Deriving a New Exception class
You can easily to derive a new class from IException or any of its derived classes. The
following example shows everything you need to provide for a complete IException-derived
class:

Cfeapfer27 ErrorHandling and Reporting 717

CustomException Interface - exceptns\newexcp\custexcp.hpp
#include <iexcbase.hpp>
class CustomException : public IException
(
public:

CustomException (const char* errorText,
unsigned long errorld = 0,
Severity sev = unrecoverable) ;

virtual
~CustomException () ;

CustomException (const CustomException& excp) ;

virtual const char
*name () const;

private :
operator = (const CustomException&) ;
);

CustomException Implementation - exceptns\newexcp\newexcp.cpp
#include `'newexcp. hpp"

CustomException: : CustomException (const char* errorText,
unsigned long errorld,
Severity sev)

: IException(errorText, errorld, sev)
()

CustomException: : ~CustomException ()
()

CustomException: :CustomException (const CustomException& excp)
: IException(excp)

(
// Copy your instance data here.

)

const char* CustomException: :name () const
(

return `'CustomException" ;
)

In this example, we do not attempt to inline the constructor or any of the virtual functions
because the compiler currently does not inline them. See Chapter 29, "Packaging and
Performance Tuning," for the reasons. If you try to inline any of these functions, a static
version is generated in each compilation unit that needs them. The copy constructor is
required so that the compiler can make a copy of the exception object when it is thrown. You
must also supply a name function, as shown in the example, if you want the logExceptionData
function to log the type of the exception correctly.

There is an easier way for you to provide a new derived exception class if you do not add any
new functions or instance data. Use the IEXCLASSDECLARE macro to declare your new class and
use the IEXCLASSIMPLERENT macro to provide the implementation for it. These macros are
provided in IEXCBASE.HPP. The following code is equivalent to the previous example for
deriving a new class:

718 Power GUI programming with visualAge for c++

IEXCLASSDECLARE (CustomException, IException) ;
IEXCLASSIMPLEMENT (CustomException, IException) ;

Custom Hrror Messages
Open Class Library uses message files for loading custom error messages. These messages are
used in error situations when the presentation system or operating system provides no appro-
priate error message or when Open Class Library provides more detailed error information.
Message files are useful because they allow your application to load messages in different
languages without recompilation.

Creating a Message File
You can create a message file to allow your application to provide custom error messages. For
the OS/2 operating system, use the MKMSGF utility, which is part of the Developer's Toolkit for
OS/2, to create these message files. This utility is described in detail in the online Dei;eJaper's'
TooJkz.£/or 0£/2 TooJS Re/ere7ece. Each message in a message file has a unique ID and the
associated message text.

For the Windows operating system, the mechanics of building and delivering message files are
different; they are handled as resources.

Use the message compiler, MC.EXE, to convert message text files into binary resource files
which can then be input to the resource compiler, IRC .EXE. The output from irc is a resource
(.res) file, which you can bind to your application or DLL using the linker.

Use IMessageText to retrieve the messages on both the OS/2 and Windows operating systems.

Loading the Messages
We provide the IMessageText class for loading message text from an OS/2 or Windows
message file. IMessageText is defined in IMSGTEXT.HPP. The IMessageText constructor
requires two arguments: the message ID and the name of the message file from which to
retrieve the message. Include the file extension, typically MSG, in the message file's name
parameter. The following example loads the text for Message 3 from SAMPLE .MSG:

IMessageText sampleMessage (3 , ''SAMPLE .MSG") ;

You can also pass up to nine optional text strings on the IMessageText constructor. These are
substitution strings used to replace occurrences of %1, %2 ... in the specified message. If the
number of substitution strings does not match the number of %n occurrences in the message,
no substitution occurs. This substitution capability allows you to reuse your error messages
when they are similar.

The OS/2 operating system first tries to load the message from any message segment bound to
your application. (Refer to the description of the MSGBIND utility in the online Dei;eJaper'S
rooJkz.£ /or OS/2 TooJS Re/ere7®ce for information on how to bind your message file to your

Cfoa!pfer27 ErrorHandling and Reporting 719

executable.) If the message is not found, the OS/2 operating system searches for the specified
message file. The search for this file proceeds as follows:

1. In the systemroot directory

2. In the current working directory

3. Using the DPATH environment variable

4. Using the APPEND environment variable

You can retrieve the name of the current message file using the IBase: :messageFile static
function. Open Class Library finds this file name using the following algorithm:

1. If the IBase: : setMessageFile static function is called, the name of the message file that
it specified is returned.

2. The value of the IcLUI_MSGFILE environment variable is returned if you have set it.

3. The default open class Library message file is returned.

The easiest way to load your own custom messages is by using the ITHROWERROR and
ITHROWERRORl macros, which also throw the exception for you. See the "Using Macros to
Throw Exceptions" topic earlier in the chapter for detailed information on these macros.

Using a Message Box to Display an Exception
If you want to present exception information to the user, you can use a message box. See the
sample program at the end of the chapter for several examples of using IMessageBox to display
exception information.

Constructing a Message Box
The only constructor for IMessageBox accepts an Iwindow* parameter. This value identifies
the window that you want to be the owner window of the message box. If you decide to
provide help for the message box, Open Class Library uses its owner window to find the
associated help window for displaying the help panel. See Chapter 23, "Using Help," for more
information.

Use the IMessageBox: : setTitle function to set the title bar text of the message box. If you do
not set the title text, the text from the title bar of the owner Iwindow is used.

Showing a Message Box
Open Class Library provides six overloaded versions of the show function. All of the versions
have a required argument for providing the message text and an optional help ID argument for
providing help. The style of the IMessageBox is determined by an IMessageBox: :Style or
IMessageBox: : Severity, depending on which version of show you use to display the message

720 Power GUI programming with visualAge for c++

box. Refer to Ope# CJ¢SS I,I.br¢ry Re/ereJ3ce for a description of which styles Open Class
Library sets for each severity.

The IMessageBox class provides many styles for customizing the message box, such as the
following customizations :

• The type of icon andbuttons to be displayed

• Themodality ofthemessagebox

• Whetherthe message box is movable

These styles are also well documented in the Ope7® CJ¢SS I,I.brczry Re/e7ie7®ce.

Figure 27-3 shows a message box.

f-F*T?y;!¥`'!`ffi*E#;T*h¥r:¥th-'E§*:++'<:'r¢+:£iE*l#i!¥~¥gL`?!&[fe#ck#i5E|jg£L;uckE'#`6fL¥g:#;tg;x¥iE*¥£`rftEftF#j:

r -, tr

± €HI[.]I[Hll[.IiEITFTEEllII|.1lLlllI=

® :%::i:j#r i::fhdte:?dcte:±tt:r:awftnci#,
1S¥

Figure 27-3. Exception Logging Outyut.

Checking the User's Response
All of the IMessageBox: :show functions return an IMessageBox: :Response, which is an
enumeration of all of the types of buttons allowed on message boxes. The valid values of this
enumeration are enter, ok, cancel, abort, retry, ignore, yes, no, and unknown. Check this

Cfeapfer27 Error Handling and Reporting 721

return value to determine what push button the user selected. The following code is from the
example at the end of the chapter, which demonstrates how to check the user' s response.

IMessageBox: :Response response =
msgBox . show (exc . text () ,

IMessageBox: : retrycancelButton I
IMessageBox: : errorlcon I
IMessageBox: :moveable) ;

if (response == IMessageBox: :retry)
// Do something.

Using Exception Classes with Message Boxes
One of the versions of IMessageBox: :show requires only an IException& argument. The
function retrieves the message text from the IException object. This version of show displays
the er7.or icon, which is a circle with a diagonal line through it. 1±
IException: : isRecoverable returns true, the message box displays the Retry and Cancel
push buttons. Otherwise, the message box contains only the OK push button. (This version of
IMessageBox: : show is not used in the example at the end of the chapter because we needed to
be able to move the message box to capture the screen image for Figure 27-3.)

Open Class Library provides another version of show that requires an IBaseErrorlnfo&
argument. Thus, you can use objects of its derived classes, IGUIErrorlnfo and
IsystemErrorlnfo, to display a message box. The show function retrieves the message text
from the IBaseErrorlnfo object. The message box contains an error icon and the OK push
button.

As you can see, tbese two versions of show are easy to use. If you need to customize your
message box using styles that these versions of show do not support, just retrieve the exception
text and use one of the other versions of show.

Providing Help with Message Boxes
You can provide help fgr any IMessageBox object by providing the help ID of the help window
as the last argument to the show function. See Chapter 23, "Using Help," for more information
on the help component of Open Class Library. You must create an IHelpwindow object and use
the IHelpwindow: :associatewindow function to associate the help object with the owner
window of the IMessageBox object. This is the owner window that you provide on the
IMessageBox constructor. The message box includes a Help push button when you pass a help
panel identifier to the show function.

Exception Information Logging
The logExceptionData function of IException logs all available information about an excep-
tion. It is called by all of the exception-throwing macros described earlier in this chapter in
the "Using Macros to Throw Exceptions" section. The exception information is extremely
useful for debugging because it contains information that identifies the exact location of the
throw or rethrow. Figure 27-3 shows the exception information that the example program logs

722 Power GUI programming with visualAge for c++

at the end of the chapter. Notice that the error has been logged twice, once when it was thrown
and once when it was caught and rethrown.

Applications That Just End
If you have an application that suddenly ends with no warning, there is a good chance that
an exception is being thrown. The easiest way to see if this is what has happened is to look
at your exception output.

Open Class Library uses ITrace to log exception output by default. See Chapter 28,
"Problem Determination," for more information on this subject.

Location of Logged Output
The IException: : 1ogExceptionData function calls operator new to allocate a buffer for
storing the exception information. If operator new fails, the function writes the exception
information to the standard error device, stderr. Otherwise, it passes the buffer of exception
information to the registered exception trace function.

IBASE . CPP registers a default trace function, which writes the buffer using ITrace.

You can use the setTraceFunction to register your own trace function that overrides the
default. Open Class Library uses this function in IBASE.CPP to register an exception trace
function that writes the buffer of data to wherever ITrace output is being written. See
Chapter 28, "Problem Determination," for a description on how to set the environment
variables , ICLUI_TRACE, ICLUI_TRACETO, and ICLUI_TRACEFILE. These variables control trace
activation and the location of ITrace output.

Registering an Exception Thace Function
Objects of the class IException and its derived classes use IException: :TraceFn to log
exception object data.

IBASE.CPP registers a default TraceFn-derived object. It uses ITrace to write the buffers of
data so that the buffers are written to wherever the ICLUI TRACETO environment variable directs
the output from ITrace.

If you want to modify some aspect of tracing, derive your own class from
IException : : TraceFn and register it with IException using IException : : setTraceFunction.
IException: :1ogExceptionData calls IException: :TraceFn: :1ogData, passing it the
exception object. By default,1ogData calls IException: :TraceFn: :write, passing it a buffer
of data.

You can completely take over exception logging by overriding the logData function. The
IException object is passed so that you can completely customize the logging of exception
data. If you only want to change how the buffers of exception data are logged, override the
write function.

Cfo¢pfe7.27 Error Handling and Reporting 723

We provide the exceptionLogged function so that you can determine when the default logData
function has passed the last buffer of exception data to the write function. Thus, you can
gather all of the exception data by overriding the write and exceptionLogged functions for
situations where you must write all of the exception data with one call.

Follow these steps to register a function for logging exception information:

1. Derive a class from IException: :TraceFn.

2. In the derived class, override the write pure virtual function or the logData function.

3. Create an object of the class you derived from IException: :TraceFn.

4. Register this object with the Open Class Library exception-handling routines using the
IException : : setTraceFunction static function.

The sample program in the next topic shows how to register an exception-trace function. The
name of the class derived from IException: :TraceFn in the example is Exceptionviewer. Its
trace function writes the buffer of information to an IMultiLineEdit object.

ExceptionlHandling Sample
The following exception-handling sample demonstrates many of the techniques and subjects
we covered in this chapter as follows:

• Throwing and catching exceptions

• Usingatryblockinmain

• Registering an exception function with Iwindow

• Using IMessageBox

• Registering an exception-tracing function

Exceptionviewer Interface - exceptns\exviewer\exviewer.hpp
#include <iframe.hpp>
#include <imle.hpp>
#include <icmdhdr.hpp>
class Exceptionviewer;
class MenuHandler : public ICommandllandler
(
public:
MenuHandler (Exceptionviewer &excviewer)

: viewer(excviewer) {}

protected:virtual Boolean
command (ICommandEvent& event) ;

private :Exceptionviewer
&viewer;

);

724 Power GUI programming with vlsualAge for c++

class Exceptionviewer
(
public :

Exceptionviewer ();
IFranewindow

&frame ()
IMultiLineEdit

&mle ()

// Callback functionsvirtual void

: public IException: :TraceFn,
public |Window: : ExceptionFn

{ return framewindow; }

{ return mlewindow; }
from IException and Iwindow: : ExceptionFn.

write (const char* buf fer) ;
virtual Boolean

handleException (IException& exception, IEvent& event) ;

private :
IFranewindow

franewindow;
IMultiLineEdit

mlewindow;
MenuHandler

menuHandl er ;
);

Exceptionviewer Implementation - exceptns\exviewer\exviewer.cpp
#include <iapp.hpp>
#include <imsgbox.hpp>
#include "exceptns.hpp"
#include ''exceptns.h"
Exceptionviewer: :Exceptionviewer ()

: framewindow(IFramewindow: :defaultstyle () I
IFramewindow : : menuBar ,
vue_MAIN) ,

mlewindow (Ox5002 , &fralnewindow, &fralnewindow) ,
menuHandler (* thi s)

(
IException : : setTraceFunction (*this) ;
Iwindow : : setExceptionFunction (this) ;
mle () . disableDataupdate () ;
frame () . setclient (&mle ()) ;
menuHandler . handleEventsFor (&frame ()) ;
f rame () . show () ;

);

Boolean MenuHandler : : command (ICommandEvent& event)
(

switch (event.commandld()) {
case THROW_EXCEPTION :

IException exc (`'\nException thrown from menu selection.
\n„,
0, IException: :recoverable) ;

ITHROW (exc) ;
return true;

);return false;
)

void Exceptionviewer: :write (const char* buffer)
(

mle () . addASLast ((char*) buffer) ;
)

Cfoapfer27 ErrorHandling and Repolfting 725

Boolean Exceptionviewer: :handleException (IException& exc, IEvent& event)
(

IMessageBox msgBox (&frame ()) ;
msgBox.setTitle (''Exception caught in dispatch routine") ;
IMessageBox: :Response response =

msgBox . show (exc . text () ,
IMessageBox: : retrycancelButton I
IMessageBox: : errorlcon I
IMessageBox: :moveable) ;

if (response == IMessageBox: :retry) {
mle() .addASLast(`'Exception caught in dispatch.

User decided to retry.\n",
0, IMultiLineEdit: :noTran) ;

return true;
)
else (

exc. setText (`'Exception caught and rethrown in dispatch.
User decided to cancel. ") ;

IRETHROW (exc) ;
)

)

int main(int argc, char *argv[], char *envp[])
(

Exceptionviewer mainwindow;
try(

IApplication : : current () . run () ;
)
catch (IException& exc) {

IMessageBox msgBox (&mainwindow. frame ()) ;
msgBox. setTitle ("Exception caught in Main routine") ;
msgBox . show (exc . text () ,

IMessageBox : : okButton I
IMessageBox: : errorlcon I
IMessageBox: :moveable) ;

)
)

Chapter 28

Problem Determination

• Describes techniques for preventing programming errors, and tips for isolating and
fixing them when they occur

• Describes the ITrace class
• Chapters 27 and 29 cover related material.

Because we are all human beings, making and correcting programming errors are normal parts
of the iterative cycle of application development. An important goal is to move the identifi-
cation of these errors as early in the development cycle as possible.

The best case is that you are typing the code in error and the code parser running as a
background task points out the mistake and corrects it. The worst case is that you have
completed testing your application, sent it to your customers, and then they find a subtle
behavior in a limited circumstance that causes your application to fail.

Between these two bounds, you identify problems using exhaustive unit and system testing,
Beta testing, functional trace analysis, memory diagnostics, and code inspections. Because
these techniques are expensive in terms of people's time, this chapter starts by addressing
some ways to avoid common programming errors. Then, we move on to tools, tips, and
techniques for finding and fixing errors once they occur.

An Ounce of Prevention . . .
Before we discuss how to find errors once they occur, we would like to spend a little time
discussing some techniques to keep these errors from occurring in the first place.

Use Type Safety
One of the primary mechanisms C++ provides for identifying errors early in the development
cycle is its ability to provide a type-safe functional interface. With type safety, you can design
a function and limit the conditions under which that function gets called. It also provides the
earliest possible warning when an error occurs using an interface. As you design the error-
reporting strategy for a class and its functions, ask the question, "Can I describe the limitations
of this class directly in the interface?" Doing so can save your users countless hours of
debugging.

727

728 Power GUI programming with visualAge for c++

Use References Instead of Pointers
If you have done much C programming, more than likely you have spent a good deal of time
using pointers. In C, you use pointers not only as a way to allocate storage on the heap, but
also as a way to reduce the amount of data passed between functions. The primary problem
with the latter usage is that it requires the called function to handle the pointer having a 0
value. If the function cannot operate successfully with a 0 value, it must report an error to the
caller.

A better way of requiring a function to be called with only valid objects is to use re/ere#ceS
instead of pointers. References document the requirement instead of waiting until run time to
notify the caller with an exception.

Carefully Manage the Lifetime of Objects
Failure to manage the lifetime of objects allocated on the heap can cause several problems.
The system may abort the application when you attempt to use a deleted object, or you might
hang the entire system from a storage leak because you allocate objects but never delete them.
Limiting the use of heap-allocated objects can reduce these kinds of problems. Where
possible, allocate< objects on the stack or as part of the instance data of another object.

If you must use the heap to allocate an object, be clear about how it is deleted. If possible,
allocate objects in a constructor and free them in a destructor. If this is not possible, consider
using a reference-counting scheme so you delete an object when its last reference is removed.
You can also describe what frees the storage through a naming convention on functions.

Don't forget to provide copy constructors and assignment operators when storing pointers in
instance data. Try to avoid using multiple methods for deleting an object because the object is
easily misplaced. It is best if what creates an object deletes it. In the "Memory Allocation
Tracing" topic later in this chapter, you find diagnostic tools that you can use to track down
memory allocation errors when they occur.

The Cost of Instance Data
We have just recommend limiting the use of heap-allocated objects in favor of storing the
object as an instance of another object. However, there are at least two problems with this
recommendation. First, this can increase compilation time because the compiler must have
the size of all objects in the instance data. A pointer can be identified to the compiler using
a forward class reference, which does not require the complete class declaration. The other
problem is that the amount of debugging information will increase because the compiler
has access to the class definition of the instance data class and includes the necessary
information to describe it.

Cfe¢pfer28 Problem Determination 729

Limit the Use of Multiple Inheritance
Adding multiple inheritance to your application increases its complexity in ways that might
not be evident from the start. As with anything that increases the complexity of an application,
use multiple inheritance only when you really need it. Typically, construction from compo-
nents using a HAS-A relationship provides the necessary level of function without the added
problems of multiple inheritance.

If you do use multiple inheritance, do not cast the "this" pointer. Depending on the actual
class hierarchy, and the compiler implementation, the "this" pointer might not point to the
actual memory for any of the base objects in your multiple-inheritance instance.

VisualAge for C++ Diagnostics Aids
Besides the diagnostic messages of the compiler and linker, VisualAge for C++ provides
several useful facilities for finding programming errors.

The Program Debugger
The VisualAge for C++ debugger (the Windows version is called idebug, the OS/2 version
icsdebug) offers an extensive set of features that can help you isolate problems in your
program. Using the debugger is beyond the scope of this book, but later on in this chapter you
learn how to use a few of the features as they relate to solving some common problems. If you
haven't already done so, take the time to work your way through the Vz.Sz{¢JAge/or C+ + USer'S
G%z.de and How Do J... sections for this tool. You are sure to find useful features.

The Performance Analyzer
The VisualAge for C++ Performance Analyzer tool (the Windows version is iperf, the OS/2
version icsperf) is useful for understanding the run-time characteristics of your application.
The Performance Analyzer records trace information about your application while the appli-
cation is running. You can then use its set of analysis tools to study the behavior of your
program. The Performance Analyzer can show you timing information in several different
formats as well as display tbe order of execution of the functions. The output can be in the
form of a table or a graph. You can also define your own trace events and view them with the
normal Performance Analyzer trace events. There are several ways to control the amount of
trace data recorded, including by level of nesting, by function, and by statements you insert
into your program. It is worth your time experimenting with these output-limiting tools
because a large program can create a tremendous amount of trace data. Figure 28-1 shows the
call nesting diagram, and in Chapter 29, "Packaging and Performance Tuning," you see an
example of how to use the Performance Analyzer tool.

You can also get performance data about your application's usage of some of the system Apls
that it is calling. To do this, link your application with special versions of the system libraries
provided with VisualAge for C++ for this purpose. Refer to the Vz.s#¢IAge /or C++ Users
Gz4z.de for details on how to use the special system libraries.

730 Power GUI programming with visualAge for c++

Figure 28-1. Performance Analyzer Call Nesting Diagran.

RunlTime Tracing
VisualAge for C++ can track various aspects of your program while it is running. You can
cause trace information for functions and data to be written to the standard error stream, the
standard output stream, a file, or a system queue. The product can also monitor memory
allocation and deallocation for storage overlays and leaks.

Function and Data Thacing Using IThace
The class ITrace provides a simple means of writing trace statements during the execution of
your program. Macros exist for writing trace statements. You can remove them from the final
product by changing the definition of a macro constant at compile time. Table 28-1 summa-
rizes the use of these macro constants and their effect on the trace macros.

ITrace supports writing buffered data to the standard output stream and nonbuffered data to
the standard error stream or a system queue. VisualAge for C++ for Windows also supports
tracing to a named file, which, unlike the other output streams, you can use when tracing a
Windows 3.1 application. You control tracing by calling static functions in the class ITrace,
or by setting environment variables prior to starting the program. By default, ITrace does not

Cfea!pfe7.28 Problem Determination 731

Table 28-1. Trace Macro Usage
¢Macro constant defined + A ,ttL 4 a- "

Mab„ro definitfonsenamed vy p , #t
i f i>#€ife! > x`nq `. dx* rfu>¥ ut. Y d*

none , IFUNCTRACE RUNTIME
IMODTRACE_RUNTIME
ITRACE RUNTIME

IC_TRACE_DEVELOP IFUNCTRACE_RUNTIME
IMODTRACE_RUNTIME
ITRACE RUNTIME

IFUNCTRACE_DEVELOP
IMODTRACE_DEVELOP
ITRACE DEVELOP

IC_TRACE_ALL IFUNCTRACE_RUNTIME
IMODTRACE RUNTIME
ITRACE RUNTIME

IFUNCTRACE_DEVELOP
IMODTRACE DEVELOP
ITRACE DEVELOP

IFUNCTRACE_ALL
IMODTRACE ALL
ITRACE ALL

write trace statements. You can start tracing in an application built to write trace data by using
any of the following commands prior to starting the application:

SET ICLUI_TRACE=ON
SET ICLUI_TRACETO=QUEUE
SET ICLUI_TRACETO=STDERR
SET ICLUI_TRACETO=ERR
SET ICLUI_TRACETO=STDOUT
SET ICLUI_TRACETO=OUT
SET ICLUI_TRACETO=FILE

The first of these commands causes ITrace to write trace data to the current output location.
The default output location is a system queue. In the 32-bit Windows operating systems this
queue is a mailslot, \\.\mailslot\PRINTF32. In the OS/2 environment it is
\QUEUES\PRINTF32. The second statement explicitly directs the output to the queue. The next
two statements cause ITrace to write trace data to the standard error stream; the fourth and
fifth statements direct the trace data to the standard output stream. The last statement directs
the trace data to a file. When you direct output to a file, you identify the file name using this
command:

SET ICLUI_TRACEFILE=c : \trace. out

It causes the trace data to be written to the file c : \trace . out. You can disable tracing once it
is enabled by undefining the appropriate environment variable with one of the following
commands:

732 Power GUI programming with visualAge for c++

SET ICLUI_TRACE=
SET ICLUI_TRACETO=

By default, ITrace attaches a prefix string containing the output line number and the identifier
of the process and thread to each line of trace data. You can disable the writing of prefix
information by using the following command prior to starting the application. This command
turns tracing on as a side effect:

SET ICLUI_TRACE=NOPREFIX

In the OS/2 environment, any time an application writes data to the trace, ITrace approximates
the remaining bytes of stack space and adds this information to the trace prefix. To write the
stack information, use the following command prior to starting the application:

SET ICLUI_CHECKSTACK=TRUE

Open Class Library also recognizes the environment variables described previously with a
space substituted for the underscore in the variable names.

The function-tracing macros IFUNCTRACE_RUNTIME, IFENCTRACE_DEVELOP, and IFUNCTRACE_ALL
create an ITrace object on the stack, with the name and line number of the current function.
When the ITrace constructor receives a name as input, it processes the call by tracing the entry
and exit of a function. Therefore, it stores a reference to the name and writes this name and the
line number in the trace data. When the function is completed and the ITrace object goes out
of scope, the ITrace destructor is called. The destructor again writes the name of the function
in the trace data.

To use this technique effectively, code the function trace macro as the first line of code in the
function. This way, all code in the function occurs between the entry and exit tracing. In the
following example, the function foo traces its name on entry, writes the value of its input
parameter in hex, and traces its name on exit.

Storing References
An ITrace object stores a reference to the function name so that it can write the function
name from its destructor. Callers of ITrace must ensure that the function name string
exists for the life of the ITrace object. For general class design this is not a good solution,
because the string passed in at construction might be the result of a temporary object of a
class such as Istring. For performance reasons, ITrace does not support temporary
objects. But, it also does not reject them. Avoid code such as the following, which causes
problems when using ITrace:

foo ()
(

IMODTRACE_DEVELOP (Istring (" foo")) ;
)

Cfeapfe7.28 Problem Determination 733

Simple Trace Example - debug\trace\trace.cpp
#include <itrace.hpp>
#include <istring.hpp>
int foo(unsigned long count) ;
void main ()
(

IMODTRACE_DEVELOP ("main ") ;
foo (10) ;

)

int foo(unsigned long count)
(

IFUNCTRACE_DEVELOP () ;
ITRACE_DEVELOP (Istring("The count is ") +Istring (count) .d2x()) ;
return 0;

)

When you compile this file with the macro IC_DEVELOP defined, the following results appear in
the trace data:

00000000 000058:01 +main(14)
00000001000058:01 +foo(unsigned long) (20)
00000002 000058:01 >The count is OA
00000003 000058:01 -foo(unsigned long)
00000004 000058:01 -main

Notice that the process identifier is 58, the thread ID is 1, and the function foo was called on
line 14 of the source module with a value of OxOA. The indenting of the trace text indicates the
nesting of trace objects on the stack. The + indicates where an ITrace object was created and
the -indicates where an ITrace object was deleted. This example shows a common usage of
the IFUNCTRACE_ and IMODTRACE_ macro sets. Placing one of these macros at the beginning of
a scoping block causes traces to be written that correspond to entry and exit from the block,
respectively.

The Trace Browser Application
The following code is a simple example of reading information from the system queue used by
ITrace. The application contains two main parts: a primary thread and a secondary thread. A
browser application in the primary thread includes a basic frame window with a container for
the trace data in the client area. A separate thread reads the queue, creates an
IContainerobject with each line of data, and posts it to the main thread for addition to the
container. Figure 28-2 displays sample output in the Trace Browser window.

You will find a more sophisticated version of this example in the debug\tracebox program on
the examples disk. This debugging utility adds filtering the trace input and display,
suspending the trace recording, and copying the trace data to the clipboard.

If you actually build and run prtque, make sure you run prtque in an environment with tracing
turned off (SET ICLUI_TRACE=OFF) or you risk setting up an infinite loop. Run your application
to be traced with tracing to the system queue enabled (SET ICLUI_TRACETO=queue).

734 Power GUI programming with visualAge for c++

Figure 28-2. The Trace Browser Window.

ThaceBrowser Interface - debug\prtque\trbrowse.hpp
#include <iframe.hpp>
#include <icnrctl.hpp>
#include <ithread.hpp>
#include <ihandler.hpp>
#include "querdr.hpp"
class TraceBrowser;

// Handler processes Queue requests.
class TraceBrowserHandler : public IHandler{
public :

TraceBrowserHandler (TraceBrowser& browser)
: browserwindow(browser) {}

protected:virtual Boolean
dispatchHandlerEvent (IEvent &event) ;

private :
TraceBrowser

&browserwindow;
TraceBrowserHandler (const TraceBrowserHandler&) ;
TraceBrowserHandler operator= (const TraceBrowserHandler&) ;
);

// Main window
class TraceBrowser : public IFramewindow {
public :

TraceBrowser (const Istring& queueName) ;

IContainercontrol
&container

QueueReader
&queueReader

IThread
&readerThread

() { return cnrwin;}

() { return reader;}
() { return thread;}

Cfo¢pfer28 Problem Determination 735

private :
TraceBrowserHandler

queueHandler;
IContainercontrol

cnrwin;
QueueReaderreader;
IThread

thread;
TraceBrowser (const TraceBrowser&) ;
TraceBrowser& operator= (const TraceBrowser&) ;
);

TraceBrowser Usage - debug\prtque\prtque.cpp
#include <istring.hpp>
#include <ithread. hpp>
#include `'trbrowse.hpp"
consL unsigned PMQUEUE_SIZE = 2000;
Istring QUEUE_NAIffi ("PRINTF32 ") ; // base name of queue

int main()
(

// Note that we increase the size of the PM
// message queue to try to avoid filling
I / Lt Tap.
IThread: : current () . initializeGUI (PMQUEUE_SIZE) ;

// Create the trace browser window.
TraceBrowser tracewindow (QUEUE_NAlffi) ;

// Give the window the focus and show it.
tracewindow

. setFocus ()

. show () ;

IThread: : current () .processMsgs () ;
IThread: : current () . terminateGUI () ;
return Oj

)

ThaceBrowser Implementation - debug\prtque\trbrowse.cpp
#include <ifont.hpp>
#include "trbrowse.hpp"
#include "trbrowse.h"
TraceBrowser: :TraceBrowser (const Istring& queueName)

: IFralnewindow(''Trace Browser") ,
queueHandler (*this) ,
cnrwin (IC_FRAIffi_CLIENT_ID, this, this, IRectangle ()

IContainercontrol : :defaultstyle () I
IContainercontrol : :nosharedobjects) ,

reader (queueName, this->handle ()) ,
thread ()

(
// Attach handler to our frame.
queueHandler . handleEventsFor (this) ;

736 Power GUI programming with visualAge for c++

// Change the font & show text view with extended selection.
IFont font(`'Courier", 8) ;
container ()

. showTextview ()

. setExtendedselection ()

. setFont (font) ;

// Make the container the client and start the queue.
(* thi s)

. setclient (&container ())

. pos tEvent (START_QUEUE) ;
)

IBase: :Boolean TraceBrowserHandler: :dispatchHandlerEvent (IEvent& event
)

(
switch (event.eventld())
(

case ADD_OBaECT :
(

browserwindow . container ()
. addobj eat ((IContainerobj ect*) (void*) event . para]neterl ()) ;

return true;
)
case START_QUEUE :
(

// Start Reader in a separate Thread.
browserwindow . readerThread ()

. start (new IThreadMemberFn<QueueReader>
(browserwindow. queueReader () ,
QueueReader : : run)) ;return true;

)default:
break;

} // endswitchreturn false;
)

QueueReader Interface - debug\prtque\querdr.hpp
#include <ihandle.hpp>
#include <istring.hpp>
// Retrieves messages from queue, creates objects from them,
// and sends them to main window.
class QueueReader {
public :
QueueReader
~QueueReader

void
run

unsigned long
queueHandle

IwindowHandle
targetHandle

(const char* queueName,
const IwindowHandle& receiver) ;

();

();

() const { return qHandle;}

() const { return target;}

Cfeapfer28 Problem Determination 737

private :
IwindowHandle

target;
unsigned long

qHandle;char*queueData;
Istring

f queueNane ;

QueueReader
QueueReader

&operator=
);

(const QueueReader&) ;

(const QueueReader&) ;

QueueReader Implementation - debug\prtque\querdr.cpp
#include <ibase.hpp>
#ifdef IC_PM

#def ine INCL_DOSQUEUES
#def ine INCL_DOSPROCESS
#include <os2.h>

#else
#include <windows.h>

#endif
#include <iexcept.hpp>
#include <icnrobj .hpp>
#include <ihandle.hpp>
#include <ithread.hpp>
#include "querdr.hpp"
#include "trbrowse.h"
#if (IC_MAJOR_VERSION < 320)

#def ine IBaseErrorlnfo IErrorlnfo
#endif
#define BUFFERSIZE 9 9 9

#ifdef IC_PM
const char QUEUE_PATH[] = "\\QUEUES\\";
#else
const char QUEUE_PATH[] = "\\\\. \\mailslot\\";
#endif
// Set up the queue for reading.
QueueReader : : QueueReader (const char* queueName,

const IwindowHandle& targetwindow)
: target (targetwindow) ,

qHandle (0),
queueData(0)

(
fqueueName = Istring (QUEUE_PATH) + Istring (queueName) ;

#ifdef IC_PM
unsigned long rc = DoscreateQueue(

&qHandle,
QUE_FIFO I QUE_CONVERT_ADDRESS ,
fqueueNane) ;

if (rc!=0)
ITHROWSYSTEMERROR (rc , "DoscreateQueue" ,

IBaseErrorlnfo : : accessError ,
IException: :recoverable) ;

738 PowerGUI programming with visualAge for c++

#else
qHandle = (unsigned long)

CreateMailslot (
f queueName ,
BUFFERS I ZE ,
MAILSLOT_WAIT_FOREVER,
(LPSECURITY_ATTRIBUTES) NULL) ;

if (qHandle == (unsigned long) INVALID_IIANDLE_VALUE)
ITHROWGUIERROR2 (`'CreateMailslot" ,

IBaseErrorlnfo : : accessError,
IException: :recoverable) ;

queueData = (char *)GlobalAlloc(GPTR, BUFFERSIZE+1) ;
#endif
)

// Delete the queue.
QueueReader: :~QueueReader ()
(
#ifdef IC_PM

::S?=::8:::.:)(queueHandle ()) ;
DosFreeMem (queueData) ;

#else
CloseHandle ((IIANDLE)queueHandle()) ;
if (queueData)

GlobalFree ((HGLOBAL) queueData) ;
#endif
)

// Our Thread function reads the queue.
void QueueReader: :run ()
(

IContainerobject* pobj ;
unsigned long dataLength;

#ifdef IC_PM
unsigned long rc;
REQUESTDATA requ.e s t ;
BYTE priority = 0;

request.pid = IThread: :current() .id() ;
#endif

whi 1 e (1)
(
dataLength = 0;

#ifdef IC_PM
rc = DosReadQueue (queueHandle() ,

&request,
&dataLength,
(void* *) &queueData ,
0'
0'
&priority,
0);

if (rc ! =0)
ITHROWSYSTEMERROR (rc , "DosReadQueue'' ,

IBaseErrorlnfo : : accessError,
IException: :recoverable) ;

#else
ReadFile ((IIANDLE) queueHandle () ,

queueData,
BUFFERS I ZE ,
&dataLength,
(LPOVERLAPPED) NULL) ;

queueData[dataLength] = '\0' ;#endif

Cfea!pfe7. 28 Problem Determination 739

// Create an object and post. a request to the main
// thread to add it to the container.
pobj = new IContainerobject (queueData) ;

#ifdef IC_PM
DosFreeMem (queueData) ;
queueData = 0;#endif
Boolean loop = true;
whi 1 e (loop)

(try
(
loop = false;
targetHandle () .postEvent (ADD_OBJECT, pobj) ;
)

catch (IException&)
{
// If we can'b post (message queue full?) ,
// wait and try again.
loop = true;

#ifdef IC_PM
Dossleep (100) ;

#endif
)

} // while posting
) // while

)

ThaceBrowser Constants - debug\prtque\trbrowse.h
// Note: Oxl000 is in WM_USER range
#define ADD_OBJECT 0xl000 + 100
#define START_QUEUE 0xl000 + 101

Open Class Library Debug DLLs
You can increase the coverage of the tracing to include Open Class Library code by using the
debug versions of the DLLs provided on the VisualAge for C++ for Windows CD-ROM. (The
trial version of the product on the CD-ROM accompanying this book does not include these
DLLs, however.) These DLLs produce extensive trace data using ITrace, which is interleaved
with any trace information produced by your application. If you are using VisualAge for C++
for OS/2, you can build the debug DLLs using the'IBM VisualAge C++ for OS/2 Open Class
Library Source product (a separate option).

The debug DLLs are in the iocsrc\dll subdirectory on the VisualAge for C++ for Windows
CD-ROM. They have the same names as the retail versions but are considerably larger. Many
of the VisualAge for C++ tools, including the debugger and editor, use Open Class Library.
When you use the debug DLLs with your application, rename the debug DLLs and your appli-
cation's references to them. You do this by using the dllrname tool. Chapter 29, "Packaging
and Performance Tuning," describes in detail how to do this.

Once you have setup the debug DLLs, run your application in the usual way to capture the
combined trace. You can examine the trace by using the previous trace browsing tools or a text
editor if you have directed it to a file. To keep the trace volume to a manageable level, Open
Class Library's debug DLLs do not generate traces for all function calls. They do, however,
trace many significant operations. The debug DLLs are built with the IC_TRACE_DEVELOP
macro set, so any IMODTRACE_ALL or ITRACE_ALL macros you see in the source are not
expanded.

740 Power GUI programming with visualAge for c++

You can also use the debugger to trace into the Open Class Library code when you are using
the debug DLLs. If you do this, add the directories iocsrc\cppwob3, iocsrc\cppwod3,
iocsrc\cppwof3, iocsrc\cppwom3, and iocsrc\cppwou3 on the CD-ROM to your CAT_PATH
environment variable before starting idebug. The debugger can then locate Open Class
Library source files.

If you want to use the debug DLLs for VisualAge for C++ for OS/2, build the DLLs using the
Open Class Library Source product. In the iocsrc subdirectory that the source product install
creates, there is a command file debugbld.cnd to build the DLLs. Running this program
results in the debug DLLs being created in the iocsrc\dll subdirectory. You can use these
DLLs in much the same way as described for the Windows version. If you want to use the
debugger to trace into the VisualAge for C++ for OS/2 debug DLLs, add the directories
iocsrc\cppoob3, iocsrc\cppood3, iocsrc\cppoom3, iocsrc\cppoou3 and iocsrc\include to
your PMD_PATH environment variable before starting the debugger. Prefix each of the direc-
tories listed with the name of the base directory in which you installed the Open Class Library
Source product.

Memory Allocation Tracing
VisualAge for C++ provides a useful debug memory management component that checks for
attempts to access previously released storage and storage overlays. It also writes the contents
of all allocated storage. Enable memory debugging by adding /Tin+ to the compiler options
you use to compile your source files. Memory debugging adds additional arguments to all
operator new and operator delete functions.

To use these diagnostic tools, you must change your code if you have added class members for
operator new and operator delete, or if you have replaced the global operator new or
operator delete functions. You must add optional versions of these calls that include param-
eters for the file name and line number of the call. You declare these functions similarly to the
following example:

class Myobject
(
public :
#ifdef _DEBUG_ALLOC_
void*operator new (size_t

const char*
size_t

operator delete (void*,
const char*
size_t

#else
void*operator new (size_t size) ,

operator delete (void*);
#endif
);

size,
fi1eNane,
1ineNuthoer) ,

fileNane,
1ineNumber) ;

Cfe¢pfc7. 28 Problem Determination 741

Open Class Library uses this technique in several places. Examine the declarations of
operator new and operator delete in ICNROBJ.HPP and IBUFFER.HPP and the corresponding
definition of these functions in ICNROBJN.INL, ICNROBJD.CPP, IBUFFEEN.INL, and
IBUFFERD . CPP.

After you have rebuilt your application with the memory debug component, determine if your
application leaks memory by failing to free storage allocated with operator new. In the past,
you could add code to the end of your main routine to call a "heap-walk" type function that
listed storage left allocated. The VisualAge for C++ function _dump_allocated examines the
storage you've allocated via the C++ run time. It then writes diagnostic messages to the
standard error stream for any storage that remains. However, the best place to put the call to
_dump_allocated is not in your main routine, because storage allocated by static objects will
not have been freed yet. Put the call to _dump_allocated into the destructor of the highest
priority static object, so that it is called after static objects are freed. You can do this, or create
a source file with the following code in it. Use #pragma priority in this source file to ensure
that the memory dump static object gets destructed last. If you do not use static objects, put
the following code into the . CPP file that contains main:

// Dump Memory statistics.
#ifdef _DEBUG_ALLOC_
class MemoryDulnp
(
public:

~MemoryDump ()
{

_dump_allocated (2 0) ;
)

);

// Create a MemoryDump object.
static MemoryDump dumpAllStorage;

#endif

Some Common Problems
We do not spend much time discussing the errors reported using the compiler and linker. The
messages displayed by the VisualAge for C++ compiler describe errors and identify their
location in the source code. We spend most of our time discussing the problems that occur
once your application is up and running.

Why Are References Unresolved When Linking?

Missing Virtual Function Table
The compiler generates the virtual function table, which it uses to resolve addresses to virtual
functions in your classes. VisualAge for C++ puts the table in the compilation unit containing
the first non-inlined virtual function. Eventually, when linking your application, the linker
reports something similar to the following message:

742 Power GUI programming with visualAge for c++

no_vft.obj (no_vft.cpp) : error LNK2029:'NoVFT: :virtual-fn-table-ptr' : unresolved external

The error occurred during the compiling and linking of the following code:

class NoVIT
(

public:virtual aMissingvirtualFunction () ;
);

main(int argc, char *argv[], char *envp[])
(

NoVFT novFT;
)

The error occurs because we did not provide the implementation of the virtual function that
VisualAge for C++ uses to pick a compilation unit for the virtual function table. As a result,
the compiler did not generate the virtual function table. To resolve this problem, add the
option /Wvft+ to your compiler options to find out which function the compiler has targeted
for the virtual function table. Adding this option when compiling our short sample yields the
following message:

no_vft.cpp(1:7) : informational EDC3281:
The virtual function table for ''NoVFT" will be defined
where "NoVFT: :aMissingvirtualFunction() " is defined.

Now, add an implementation for aMissingvirtualFunction. This error often results from
declaring but not implementing a virtual destructor.

Missing Libraries
Open Class Library header files contain pragma library statements. These statements cause
the compiler to automatically generate references to the link libraries needed for the imple-
mentation of the classes. Thus, in general you do not have to specify Open Class Library or
compiler run-time libraries to the linker. However, you disable this automatic process if you
use the linker switch /NOD. So, do not use this switch unless you absolutely have to.

If you are using system calls in your program, you may have to explicitly list the appropriate
libraries on the linker command line. VisualAge for C++ libraries automatically link the
system libraries they need, but if you use a function from a different library, you have to
explicitly specify the library.

Why Did My Application Suddenly Quit Running?
You start your program, the disk light flashes, perhaps you see your frame window on the
display, and then suddenly your program ends. You don't see a trap panel, an error message, or
anything else to suggest what problem occurred. More than likely, an object in the program
threw a C++ exception. The C++ run time then ended the application because it could not find
a catch block to handle the exception. To verify this, turn tracing on in Open Class Library and
examine the trace output.

Cfoapfe7. 28 Problem Determination 743

It is simple to add code to your application to display these exceptions in a message box.
Unfortunately, you cannot use this approach to display all exceptions, because a message box
requires the presentation system to be successfully initialized. The following code displays
most exceptions. The code encloses the entire contents of the main routine in a try block and
then displays the exception text in a message box when the code throws an exception.

Displaying Exceptions - debug\excdisp\excdisp.cpp
#include <iframe.hpp>
#include <istattxt.hpp>
#include <istring.hpp>
#include <iexcbase.hpp>
#include <imsgbox.hpp>

void main()
(try(

IFramewindow frame (100) ;
IstaticText txt(101, 0, 0) ; // Causes an assertion exception.
frame . setFocus () . show () ;
IApplication : : current () . run () ;

)
catch(IException& exc) {

IMessageBox abortlt (Iwindow: : desktopwindow ()) ;
abortlt . setTitle ("Exception Caught") ;
abortlt . show (exc . text () , IMessageBox: : okButton) ;

)
)

Figure 28-3 shows the output of the program. To correct the error that caused the exception,
change the parent and owner passed to the IstaticText constructor to the address of the
IFranewindowobject.

The fallBftyiHE g#pTg¥¥iati muE[fee true, but it E**alu@Eed tB fal£E: pargfit j= H`

+ ERE +;

Figure 28-3. Displaying an Exception in a Message Box.

744 Power GUI programming with visualAge for c++

How Do I Find an Application Error?
In different operating systems they call this type of error an application error, system error, or
illegal operation; they mean the same thing. A program has accessed an invalid memory
location or one for which it does not have access permission. Figure 28-4 shows the message
you can get when an illegal operation occurs. The VisualAge for C++ debugger makes finding
the cause of these application errors easy. This error occurred because we used a pointer with
a value of 0 to call a function on an object, as shown in this example:

Application Error - debug\zeroptr\zeroptr.cpp
#include <iframe.hpp>
void main()
(

IFramewindow* pframe = 0;
pframe->show () ;

)

Figure 28-4. Application Error Panel.

To find the cause of this error, start the debugger with the name of the program and press the
run icon on the tool bar. The debugger executes the program to the error and then displays its
application error panel. Press Examine/Retry on this panel to display the source window with
the line of code where the error occurred highlighted. If that does not identify the problem,
you can use other tools in the debugger to analyze the problem further. For example, you
might try the following three tools:

• Open a Local variables window at the
point of the error in your program to
examine your data. In Figure 28-5, you
can see that the pframe variable of our
example has a value of 0, indicating
that we did not initialize our pointer
field.

Figure 28-5. Program Monitor.

Cfeapfe7. 28 Problem Determination 745

• Open a Mixed-source view containing the c++ source code, the assembler instructions,
and a Registers view to examine the exact cause of the error. Figure 28-6 displays these
views. In the Mixed-source view, the current line of the program uses the EAX register
to load a storage address. The Register view displays the value of the EAX register. As
you can see, the value of the EAX register is 0. Therefore, we tried to access storage
based on an address of 0.

EE Eese a{eatgivfe lterilQfs Err frhons grthde§ Edy

7
8
9

0x00410060
0x00410061
0x00410063

10
11

0x00410066
12

0x0041006D
0x00410072
0x00410075

#include < iframe. hp|]>

vt]id main()
PUSH EBP

EBP,ESP
ESP.0000000CH

i
IFraneuindcmE pframe = 0;

I(OV I)WORD_[-4H+EBP] , 00000000H

pfrane->show(} ;
EI)X,00000001H
EAI[, [-4H+EBP]

[000000ECH+ECX]

ESP,00000008H

ff8 Egivinus ELinfros #8b

EBX 00BF00uo

ECX 000noooo

EDX 00000001

EBP 007FFE14

ESP 007FFEO8

ESI 815EBF58

EDI 815EC3gc

EFIAGS 00010212

CF0

PF0

AFT

ZF0

SF0

T`F0

lFI

DF0

0F0

10F]L 0

NT0

Figure 28-6. Debugger Mixed-Source and Registers View.

• Open a Call Stack view to see the callers of the function in erfior, and then open Source
views on each caller to examine the request causing the error. This is particularly
helpful when the application error occurred, where you don't have the source code. Use
the call stack to back up to the point in your program that you do have the source. Often,
you can see what is wrong.

Another problem, which can show similar symptoms, is incorrectly ordering window member
data in a class declaration. This can cause the constructor for a child control to be called
before its parent has been created. Avoid this problem by remembering that the order of
member construction is determined by the order of the members in the class declaration rather
than the order of calls specified in the constructor initializer list.

How Do I Use Debug on Demand?
In the Windows NT environment, there is an alternative to starting the program under idebug
to examine an application error. The Windows NT system offers a feature called deb#g o7®
de77ccz7cd, which allows a failing program to be loaded into a debugger at the point of failure,

746 Power GUI programming with visualAge for c++

even if it was not started under the debugger. To have debug on demand load idebug as the
debugger, enter this command:

clod e : \ibmcppw\bin
e:\ibmcppw\bin is the directory where idebug is installed. After you install
VisualAge for C++, you only have to enter this command once. If you want to remove idebug
(as the debug on demand debugger), use this command:

clod /u

To activate debug on demand at the point of a failure, select Cancel from the application error
message box. The debugger is loaded and the error panel is displayed just as if you had started
the program with idebug. You can then examine the error.

Why Is My Application Trapping before main()?
With static objects, you can now write an application that completely executes prior to the
C/C++ run time calling your main () routine. By default, the debugger does not stop at a break
point prior to this code being executed. To debug static objects, request the debugger to debug
initialization code by adding the parameter /i to the invocation of the debugger.

IDEBUG /i myapp myparms

You also can start the debugger from its VisualAge for C++ desktop icon or at a command
prompt (with no parameters) and then click the box "Debug program initialization" in the
Program Startup window.

Why Is My Handler Callback Never Called?
As you have already seen, the event-handling framework uses a series of callback functions in
IHandler objects. To receive a particular notification, you derive a class from a handler and
provide your own implementation for a callback virtual function. If you do not define your
virtual function exactly as it exists in the base class, the handler dispatcher does not call the
function at run time. In particular, it is easy to overlook the const on the function or
parameter declaration, or the reference symbol (&) on a parameter. After checking that you
have correctly defined the function, verify that you have created the handler correctly and
activated it by calling handleEventsFor on the correct window. Also, make sure that your
handler object has not been deleted either explicitly or because it has gone out of scope.

If your function is still not being called, it is possible that another handler is processing the
event. If a handler returns true from its dispatchHandlerEvent function, Open Class Library
does not call any more handlers for that event. It dispatches events to a window's handlers in
the reverse order that the handlers called handleEventsFor. For example, if you attach a
keyboard handler to a window and then attach a mouse handler to the window, the mouse
handler is called before the keyboard handler. If there is a problem in the mouse handler that
causes it to return true for keyboard events, none of the keyboard handler' s callback functions
are called for the window.

Cfe¢pfe7. 28 Problem Determination 747

You can create a trace of all of the events that come to a handler by overriding the
dispatchHandlerEvent function. In your derived class, the dispatchHandlerEvent function
logs the incoming event and then calls the dispatchHandlerEvent in the base class. For the
keyboard-handler class MyKeyboardHandler, the code would look like the following example:

IBase : :Boolean MyKeyboardHandler: : dispatchHandlerEvent (IEvent& event)
(

ITRACE_ALL (Istring ("HWND=") +
Istring (event . handle () . asunsigned ()) . d2x () +
Istring(„, Ms9=„) +
Istring (event . eventld ()) . d2x () +
Istring(„, P1=„) +
Istring ((unsigned long) event .parameterl ()) . d2x () +
Istring(,,, P2=„) +
Istring ((unsigned long) event .parameter2 ()) . d2x ()) ;

return IKeyboardHandler : : dispatchHandlerEvent (event) ;
)

When compiled with the IC_TRACE_ALL macro defined, this code writes all of the messages that
the handler detects to the trace.

To see which messages are coming to the window, use a tool that can monitor these messages.
There are a number of such tools available, including spy in the Microsoft Win32 SDK and the
Message Queue Monitor in the OS/2 version of the VisualAge for C++ debugger.

To use the VisualAge for C++ for OS/2 debugger to monitor messages, start icsdebug and open
the Message Queue Monitor. Figure 28-7 displays an example of this monitor. We open this
view to learn why the keyboard handler attached to our frame window did not call our override
of the characterKeypress virtual function. We initialized the monitor to capture WM_CREATE
messages so that we could verify the handle of our frame window and WM_CIIAR messages to see
if the OS/2 operating system dispatched them to our frame window. Figure 28-7 shows that our
window does receive the WM_CIIAR messages. Therefore, the problem must be somewhere else.

Figure 28-7. VisualAge C++ Debugger Message Queue Monitor.

748 Power GUI programming with visualAge for c++

Why Can't I See My Window?
The following sample creates a static text field on a frame window:

Invisible Window - debug\invisibl\invisibl.cpp
#include <iframe.hpp>
#include <iapp.hpp>
#include <istattxt.hpp>
void main()
(

IFramewindow fralne (100) ;
IstaticText text(101, &frame, &frame,

IRectangle (50 , 50 , 50 , 50)) ;

text
. setText (" Initial Text ") ;

frame
. setFocus ()
. Show () ;

IApplication : : current () . run () ;
)

Although this seems simple enough, when you run the application, the static text is not seen.
You double check the constructor for the static text field just to make sure you've done it right.
Did you give it a size? Yes, you've coded it as a 50-by-50 pixel rectangle. Does the style of
the static text field contain Iwindow: :visible? You read the documentation for
IstaticText : : defaultstyle, and it lists Iwindow: :visible as a default style. What next?

You need a tool to inspect the actual window characteristics as the system shows the window.
Using spy utilities, including the VisualAge for C++ for OS/2 debugger, you can view the basic
properties of a window as it is being displayed. In addition, if you review the
advframe\winview sample in Chapter 19, "Advanced Frame Window Topics," you will find
another tool that provides information about the window that you need to determine what is
happening with the current example' s static text field.

Use the VisualAge for C++ for OS/2 debugger's Window Analysis feature to track down why
you cannot see the text field. Start icsdebug with the program, set a break point on the line
containing IApplication: :current() .run(), and run the application to the break point.
Select Monitorsl>Window analysis from the menu of the Source view to open the Window
Characteristics view. Click the mouse on the right arrow in the bottom corner of the notebook
to turn to page two of the notebook. Select Monitors->Window characteristics from the
Window Analysis view menu to open the Window Characteristics view.

Cfo¢pfe7. 28 Problem Determination 749

Your window characteristics look similar to Figure 28-8. Select Options->Display style... to
add columns to the display if needed. Close examination reveals that we have created the
static text field identified by the OS/2 window class WC_STATIC with no width or height. The
IRectangle constructor that accepts four values uses those values to represent two opposite
corners of a rectangle. In our sample, we are creating a static text field with one corner at 50,
50 and the other corner in the same place. Therefore, our rectangle has no size.

Other problems can occur that result in an invisible window. One of the more common of these
is that the window is hidden by another one. This can occur if two windows share the same
parent and their rectangles overlap. Only one of the windows shows up in the overlapping
area. Inspecting window characteristics as we did with the 0 size window can help you
identify this situation.

Figure 28-8. VisualAge C++ Debugger Window Characteristics.

How Do I Find a Storage Overlay?
The memory debug diagnostics described earlier in this chapter identify the exact block of
corrupted storage, but they might not do so until sometime after the corruption occurs. To
request that the memory debug diagnostics check memory more often, add calls to the function
_heap_check throughout your code. This function writes a diagnostic message and terminates
your application when it detects a corruption of storage.

Another means of finding a storage corruption is to use the debug memory management
functions in combination with the debugger. Use the debug functions to identify where the
program allocated the corrupted storage. When the compiler detects the overwrite, it will
abort the application. Although you cannot set a break point to catch the abort, you can easily
write a signal handler to catch it. In the following example, we register a signal handler, which
causes a trap on a SIGABRT, to give the debugger control during the abort. When the debugger
displays the application error panel, open the Call Stack monitor and find your last function.

750 Power GUI programming with visualAge for c++

Termination Signal Handler - debug\sigterm\sigterm.cpp
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <new.h>

void TraponTerm(int signal)
(

// Cause a trap
char* psz=0;
strcpy(psz, `'junk") ;

)

void main()
(

signal (SIGABRT, (_SigFunc) TraponTerm) ;

// Now cause a memory overlay for a termination.
char* pszBuffer = new char[10] ;
strcpy(pszBuffer, `'Memory overlay Memory overlay") ;

#ifdef _DEBUG_ALLOC_
// And run the heap check to detect it with /'Im+.
_heap_check () ;

#endif
)

Chapter 29

Packaging and Performance Th.ming

• Describes how to optimize and package your final application for delivery
• Chapters 24 and 28 coverrelated material.

Congratulations! Because you have completed the code for another winning product, it is now
time to wrap things up and deliver your product to the manufacturer. Depending on your
application and customers, this might involve little additional work, or it might require
detailed performance analysis and tuning. This chapter helps you understand what you need to
do to distribute your product. We discuss the packaging of the Open Class Library components
and the steps you might take to repackage these components with your application. We also
describe a detailed tuning process you can use to ensure that the final product is small and that
it loads and executes as quickly as possible.

Building the Final Application
You have undoubtedly used the dynamic-link libraries in VisualAge for C++ during the devel-
opment phase because it shortens the time to link an application. Now, you must decide
whether to deliver your application using the dynamic-link libraries or to link your application
statically with the VisualAge for C++ run-time code. Both choices have advantages and
disadvantages-there is no right answer. Your final choice depends on your particular appli-
cation and customers.

Statically linking your application with the VisualAge for C++ run-time code means your final
executable file (the EXE) will contain all of the code necessary to run your application.
Dynamically linking your application means that the VisualAge for C++ run-time code will be
provided in separate dynamic-link libraries (DLLs) that you will deliver as part of your appli-
cation. Only your code will be directly linked into the executable file. You also might choose
to separate some of your code into individual DLLs.

DLLs provide a means for several applications to share the same code both on the hard disk
and in memory. If your application contains several executable files that have the VisualAge
for C++ DLLs as a common code base, seriously consider using dynamic linking, and then
deliver the VisualAge for C++ DLLs with your product. Because there are license restrictions
involved, the next topic, "Dynamic Linking and Using DLLRNAME," describes how to do
this.

751

752 Power GUI programming with visualAge for c++

DLLs allow you to share code on the hard disk because of a system setting that makes a single
copy of the code and the data in a DLL available to all applications. The Windows operating
system uses the PATH environment variable to locate DLLs, and the OS/2 operating system uses
the LIBPATH setting to identify the path to search for DLLs. If you use DLLs, you must make
sure that the names of the DLLs shipped with your product do not conflict with any existing or
future DLLs in your user's system. If there is a conflict, your users will usually be unable to
run either your application or another application on their systems. Consequently, if you build
your application as a single executable file, consider statically linking your application to
keep this problem from occurring.

Tables 29-1 and 29-2 describe the libraries you use for both static linking and dynamic linking
of an Open Class Library application. The VisualAge for C++ 1inker automatically searches
the link libraries for C/C++ run-time code and Open Class Library functions that your appli-
cation uses. You can select dynamic linking by compiling your entire application with the
/Gd+ compiler switch, or you can select static linking with the /Gd- switch. When you link
your application, ensure that the /Gd setting is the same for all of your object modules so that
you do not get a mixture of static and dynamic linking. If you mix statically linked and
dynamically linked component.s, your application, at best, will be larger than necessary due to
duplicate copies of the VisualAge for C++ components, and, at worst, you will encounter
linker or run-time errors due to the duplicate copies of the VisualAge for C++ run-time data.

Table 29-1. Libraries Used in Building an Open Class Library Application for the
Windows Operating System

Import Dynamic Static LibrariesI. Purpose
Libraries Libraries
CPPW0831.LIB CPPW0831.DLL CPPWOC3.LIB Base and data classes, collections

CPPWOU31.LIB CPPWOU31.DLL CPPWOC3.LIB UI application, controls, drag drop

CPPWOD31.LIB CPPWOD31.DLL CPPWOC3.LIB DDE

CPPWOM31.LIB CPPWOM31.DLL CPPWOC3.LIB Multimedia

CPPWOF31.LIB CPPWOF31.DLL CPPWOC3.LIB Compound Document Framework

CPPWM351.LIB CPPWM351.DLL CPPWM35.LIB C/C++ run time

Cfoapfer 29 Packaging and performance Tuning 753

Table 29-2. Libraries Used in Building an Open Class Library Application for the OS/2
Operating System

Import Dynamic Static Libraries purpose i,
Libraries Libraries
CPPOOC31.LIB CPP0083.DLL CPPOOC3.LIB Base and data classes, collections

CPPOOC31.LIB CPPOOU3.DLL CPPOOC3.LIB UI application, controls, drag drop

CPPOOC31.LIB CPPOOD3.DLL CPP00C3.LIB DDE

CPPOOC31.LIB CPPOOM3.DLL CPPOOC3.LIB Multimedia

CPPOM301.LIB CPPOM30.DLL CPPOM30.LIB C/C++ run time

Dynamic Linking and Using DLLRNAME
Dynamic linking with the VisualAge for C++ run-time libraries means you will be delivering
VisualAge for C++ DLLs as part of your application. The license agreement for VisualAge for
C++ requires you to rename any VisualAge for C++ dynamic-link libraries you ship with your
product. This reduces the chances of DLL name space collisions, which can occur if two
VisualAge for C++ applications reside on the same system with different levels of VisualAge
for C++ code.

VisualAge for C++ provides the dllrname utility to help you rename DLLs. Be aware that you
cannot use the system rename command to rename DLLs because the linker records the name
of the DLL inside the DLL. The loader requires that the name inside the DLL must match the
external name of the DLL. The dllrname utility changes both the external and internal names
of the DLL, the references to that name inside other DLLs, and the executable files that use the
DLL. However, dllrname does not change the use of dynamically loaded DLLs. DLLs could
be dynamically loaded using either the class IDynamicLinkLibrary in the Open Class Library
or the system LoadLibrary or DosLoadModule functions. See the Vz.Sz4¢IAge /or C++ User'S
Gz4}.de for more information on the use of dllrname.

In the VisualAge for C++ for Windows, Version 3.5 product, there are two DLLs shipped with
the product that are loaded dynamically and may be required by yourJ application. These DLLs
are dynamically loaded even if you statically link your application. One of the DLLs is
CPPWOT3 . DLL, which is needed when you use a control with the pmcompatible style, when you
use IContainercontrol, or when you use any of the three IFramewindow constructors that
attempt to load a dialog template. See Chapter 5, "Frame Window Basics," for a detailed
discussion of these constructors. The other dynamically.loaded DLL is LIBIPF32 .DLL, which
is required if you use the ipfcompatible style on one or more IHelpwindow objects. As noted
in the product README.TXT file for this version, you cannot use dllrname on these DLLs. If
your application requires them, you must reship them using the original names.

The following example shows you how to use dllrname to rename the VisualAge for C++
DLLs used in the Open Class Library sample application Hello6. You can find the Hello6
sample in the ibmcppw\samples\ioc\hello6 directory on the product CD-ROM. If you

754 Power GUI programming with visualAge for c++

installed the samples, it is installed in the same subdirectory on your hard drive. You can. use
the dllrname utility to discover which DLLs the program is linked to. To do this with Hello6,
change to the directory containing hello6.exe and enter:

dllrname hello6. exe
You get output similar to the following:

Licensed Materials - Property of IBM
IBM C/C++ Tools Version 2.0 -DLL Rename Utility
(C) Copyright IBM Corp.,1993,1995. All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

Processing file hello6.exe.
File hello6.exe has not been changed.
4 names found in file hello6.exe.
Imported DLL name CPPW083I has been left unchanged.
Imported DLL name CPPWOU3I has been left unchanged.
Imported DLL name KERNEL32 has been left unchanged.
Imported DLL name cppwm35i has been left unchanged.

Complete. 0 error(s) detected.

Because CPPWOU31.DLL, CPPWOU31.DLL, and CPPWM351.DLL are being used, we must rename
these three DLLs. Many of the VisualAge for C++ DLLs reference other DLLs, so repeat this
process for each of the DLLs found for the executable. In this case, however, we have already
found all of the DLLs that need to be renamed. You can verify this in the dllrname output
after you actually rename them.

To start the renaming process, create a new directory and copy your executable files and the
DLLs they use into it. For example, the followingcode shows this step:

MD \RENAIE
CD \RENAIE
COPY \IBMCPPW\BIN\CPPWOU31. DLL
COPY \IBMCPPW\BIN\CPPW0831. DLL
COPY \IBMCPPW\BIN\CPPWM351.DLL
COPY \IBMCPPW\SAMPLES\IOC\HELL06\HELL06. EXE

Now, use the dllrname command to rename all of these DLLs and the references to them in
HELL06 .EXE. The dllrname utility requires that the old and new names of the DLLs must be
the same length. In this example, we chose to replace the CPP prefix of the standard DLL
names with the characters PGP.

DLLRNAME HELL06.EXE CPPWOU31.DLL CPPW0831.DLL CPPWM351.DLL
CPPWOU3I=PGPWOU3I CPPW083I=PGPW083I CPPWM35I=PGPWM35I

The output from dllrname follows:
IBM C/C++ Tools Version 2.0 -DLL Rename Utility
(C) Copyright IBM Corp.,1993,1995. All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

Processing file hello6.exe.
1 external names in file hello6.exe have been left unchanged.
4 names found in file hello6.exe.
Imported DLL name CPPW083I has been changed to PGPW0831.
Imported DLL name CPPWOU3I has been changed to PGPWOU31.
Imported DLL name KERNEL32 has been left unchanged.
Imported DLL name cppwm35i has been changed to PGPWM351.

Cfeapfe7. 29 Packaging and performance 'I\ining 755

Processing file cppwou3i.dll.
8 external names in file cppwou3i.dll have been left unchanged.
11 names found in file cppwou3i.dll.
Executable name CPPWOU3I has been changed to PGPWOU31.
Imported DLL name
Imported DLL name
Imported DLL nalne
Imported DLL name
Imported DLL name
Imported DLL name
Imported DLL name
Imported DLL name
Imported DLL name
Imported DLL name
File cppwou3i.dll
name .

ADVAP132 has been left unchanged.
COMCTL32 has been left unchanged.
CPPW083I has been changed to PGPW0831.
GD132 has been left unchanged.
KERNEL32 has been left unchanged.
SHELL32 has been left unchanged.
USER32 has been left unchanged.
comdlg32 has been left unchanged.
cppwm35i has been changed to PGPWM351.
ole32 has been left unchanged.
has been renamed to PGPWOU31.DLL to match internal DLL

Processing file cppwob3i.dll.
2 external names in file cppwob3i.dll have been left unchanged.
4 names found in file cppwob3i.dll.
Executable name CPPW083I has been changed to PGPW0831.
Imported DLL name KERNEL32 has been left unchanged.
Imported DLL name USER32 has been left unchanged.
Imported DLL nalne cppwm35i has, been changed to PGPWM351.
File cppwob3i.dll has been renamed to PGPW0831.DLL to match internal DLL
name .

Processing file cppwm35i.dll.
1 external names in file cppwm35i.dll have been left unchanged.
2 names found in file cppwm35i.dll.
Executable name cppwm35i has been changed to PGPWM351.
Imported DLL name KERNEL32 has been left unchanged.
File cppVln35i.dll has been renamed to PGPWM351.DLL to match internal DLL
name .

Complete. 0 error(s) detected.
Finally, move your executable file and the renamed DLLs to another system, and make sure
everything works as before. In our example, we encounter a problem when we do this. The
application terminates when you select Settings->Open in the main menu. The reason is that
we need CPPWOT3 . DLL because the ANotebookwindow constructor in ANOTEBW6 . CPP is using the
constructor:

IFramewindow (const IResourceld& resld,
Iwindow* owner = 0,
Framesource source = tryDialogResource) ;

which is attempting to load the DLL. To solve this problem, we copy CPPWOT3 .DLL to our
distribution directory. Because Hello6 uses Windows Help help files by default, we do not
need LIBIPF32 . DLL.

You may also find that your application requires the Open Class Library resource DLL. Some
of the features, such as the tool bar, direct manipulation, and the document framework, load
resources from the resource DLL at run time. If the resources are not available, an exception is
thrown when the resource load fails. The U.S. English language version of the resource DLL is
named CPPWOR3U.DLL in the Windows version and CPPOOR3U.DLL in the OS/2 version, and the
license agreement allows you to reship these with your application. For more information on
handling Open Class Library resources in your application, see Chapter 24, "Using
Resources."

756 Power GUI programming with visualAge for c++

Th.ming Your Application
Tuning an application refers to reducing the code size both on disk and in memory and to
reducing the time needed to load and run the application. Because the size of the code directly
affects both the load time and run-time characteristics of your application, it is best to do size
tuning before performance tuning.

Reducing the Code Size of the Executable
Reducing the code to its smallest possible size decreases the cost of shipping your application
and enhances the load and run-time performance of your application. By following these
guidelines, you can reduce the size of your application on disk. Some of these guidelines may
become outdated as the features of the compiler change in future releases.

• Compile the application with full optimization using the compiler switch /O+. Optimi-
zation dramatically affects the size of the resulting code.

• Eliminate all compiler-generated functions.

The C++ language defines situations in which a compiler must generate functions where
they are needed. The compiler can generate constructors, assignment operators, and
destructors where it needs them. Although this feature of the language can speed up the
development cycle, it usually results in the code being larger then it needs to be. This
occurs because the compiler generates these functions in every compilation unit that
needs them. Although these functions are small, if there are many compilation units, the
amount of duplication can become quite high. You can solve this by providing these
functions in a single compilation unit, even if the function implementation is empty.

Minimize the use of inline functions.

Inline functions, another useful feature of the C++ language, can also cause problems. If
you instruct the compiler to inline a function that cannot be inlined, the result is a static
version of the function in every compilation unit that uses it. Adding exception handling
to the language has reduced the number of functions that can be inlined because of the
need to clean up objects constructed on the stack when an exception occurs. The
simplest guideline is to restrict inline code to the setting and querying of the funda-
mental data types. If you decide to inline functions that do more than that, follow these
guidelines:

If a class inherits from another class that has a destructor, the compiler will no
longer inline any of the class's constructors or its destructor. To be safe, provide
outline versions of all constructors and destructors, even if they are empty.

- Do notinline virtual functions.

Do not inline functions with automatic instances or compiler temporary instances
that require destruction.

Do not inline functions that call operator new in a class with a user-provided
constructor.

Cfe¢pfe7. 29 Packaging and performance 'Ilining 757

Do not inline functions that you reference by address. The compiler will generate
a static version to obtain an address.

Use the /Winl compiler switch so the compiler warns you about cases where it
cannot inline what you instructed it to inline. This causes the EDC3542 message
to be issued for each offending function.

• If you are using the collection classes, compile the final version of your code with the
macro INO_CHECKS defined. Without INO_CHECKS, the collection classes add inline calls
to verify that a cursor is valid prior to using it. This checking should be unnecessary
once you have completed testing your application.

• Link without debugging information.

If you follow the preceding guidelines, you can get your linked application close to its smallest
size.

To find the compiler-generated static functions, compile the module, and request an assembler
listing using the /Fa+ compiler option. Then, examine the listing for nonpublic functions.
Later in this chapter, we describe a utility that helps you do this without poring over several
thousand lines of assembler code.

Reducing Application Load Time
At least initially, your users will typically gauge the performance of your application by the
length of time they have to wait before they can interact with a window on the display (the
load time). This, of course, has little to do with the actual performance of your application. If
your application loads slowly, your users may mutter comments like "WfecIf cz pz.g ffeclf prod#cf
I.S, I.Z fczkes ffez.ray Seco7cdsj#sf fo Joczd. " Although the load time is somewhat dependent on the
application code and your code can increase that time, it is not the primary factor. The primary
factor in increasing load time is usually more closely related to the amount of code and data
that the operating system must load, not the amount of code it must execute. (This conclusion
is based on the assumption that another application has not already loaded the code and data.)

The 32-bit Windows operating systems and the OS/2 operating system all load code and data
into storage in 4K chunks called pages. When you call a function that is not in memory, a page
fault is generated that causes the system to load the needed page into memory. Although a
function may only be a hundred bytes, the system loads the full 4K page containing the
function. In addition, it loads any data pages needed by the function. The worst-case scenario
for loading an application is that the start-up functions are spread evenly throughout the pages
in the executable file. When this happens, the operating system can load almost the entire
executable file before the application can complete its initialization.

An object-oriented style usually results in more functions with less code per function and with
functions arranged into compilation units by classes. Further, the typical application initially
constructs many objects and makes only a few function calls on each object. Unfortunately,
this style of programming approaches the worst-case scenario for loading pages because many
unused functions are sprinkled throughout the functions used during application start up.

758 Power GUI programming with visualAge for c++

Due to this problem, the Open Class Library developers took specific steps to reorganize the
code and data in the DLLs to minimize the actual number of pages that get loaded. The size of
your application may require you take some of these same steps. If so, the following sections
describe changes you can make to enhance the load-time performance of your application.

To tune your application's load-time, first run trace scenarios to learn the order in which
functions execute during initialization. Then, add alloc_text pragmas on code and data_seg
pragmas on data in the source code to group the functions and data in the DLL. This ensures
that the operating system loads the smallest number of pages into storage prior to showing the
application to users.

If your OS/2 application contains DLLs, you can also reduce load time of the DLLs by
exporting the functions by ordinal values rather than by name. Refer to the VI.s'z4¢JAge/or C+ +
USer'si Gz4!.de for details on using the cppfilt utility to generate the ordinal values for your
module definition file.

Generating Thace Data
You can use the Performance Analyzer tool to identify those functions that get called when the
application starts up. To use the Performance Analyzer, build a special version of your code
that uses the compiler options /Gh+ to generate hook code and /Ti+ to include debugging
information. Also, compile with optimization turned on (/0+) so that inlining occurs wherever
possible. Then, link the application with the /Ti+ or /8" /DE" linker options and with the
Performance Analyzer object file (CPPWPA3.OBJ for the Windows operating system,
CPPOPA3.OBJ for the OS/2 operating system). The Performance Analyzer can execute an
application built in this manner and display a variety of views of the trace data to help you
determine which functions were called.

Figure 29-1 displays a portion of a Statistics diagram containing some of the functions used in
the Hellol sample program. We have modified the Hellol sample by adding a call to the
function Perfstop. This function causes the Performance Analyzer to stop tracing after
executing most of the functions needed to display a window. Therefore, the Performance
Analyzer displays those functions that Hellol calls during initialization.

Hellol Changes for Start-Up 'I\ining - shipapp\hellol\hellol.cpp
#include <istattxt.hpp>
#include <iframe.hpp>
#include <icoordsy.hpp>
#include <istring.hpp>
#ifdef IC_PM
#include <icsperf .h> // Include prototype for Perfstop()
#else
#include <iperf .h> // Include prototype for Perfstop()
#endif
// Define a static object.
Istring appName(''Hello World -Version 1") ;

Cfo¢pfe7. 29 Packaging and performance Thining 759

int main()
(

ICoordinatesystem: : setApplicationorientation (
ICoordinatesystem: : originLowerLeft) ;

IFramewindow mainwindow (appNalne) ;
IstaticText hello (IC_FRAME_CLIENT_ID, &mainwindow, &mainwindow) ;
hello . setText (`'Hello World") ;
hello . setAlignment (IstaticText : : centercenter) ;
mainwindow . setclient (&hello) ;
mainwindow . sizeTo (Isize (40 0 , 3 00)) ;
mainwindow. setFocus () ;
mainwindow . show () ;

// We shut down tracing now.
Perfstop () j
IApplication : : current () . run () ;
return 0;

} /* end main() */

|raBefiie ¥ew Eptr'gts Hal,p

Summary

Number of executable5 generating events: 1 of 17

% C}f Execution % On Stack Number of Calls Execution

sinitB0000000(int)

IRe5ourceld::IRe5ourceld{un5igred

Isize::Isize{lon&long}

IRectangle::IRectangle{}

Ipair::Ipair{lon&long}

IPoint::IPoint(lon&lon8)

Istring::operator char*{} con5t

Figure 29-1. Performance Analyzer Statistics Diagram

760 Power GUI programming with visualAge for c++

Ordering the Code into Segments
Use the information in the Statistics diagram to construct alloc_text pragmas for those
functions shown in the diagram. For example, you could put the Open Class Library
Iwindow : : show function into the segment ICLTop with the following pragma:

#pragma alloc_text(ICLTop, Iwindow: :show())
You can use the alloc_text pragmas in this manner to achieve a fine degree of control over
the grouping of functions in the DLL. It is sometimes sufficient to place all functions executed
during the start-up phase into the same named segment and then place this segment at the top
of the DLL. If the application is large, you may wish to further refine the ordering by using
more than one named segment and to place code into the segments based on frequency of use
across several test scenarios. You can order the functions within segments and the data in data
segments by ordering the modules in the linker response file. In the VisualAge for C++ for
Windows CD-ROM, you will find an example of pragmas used for page-tuning the start-up
functions in the file IOCSRC\CPPW083\IPAGETUN.H. Later in this chapter, you will see an
example of using the alloc_text pragma.

Using Static Objects
At first glance, static objects may seem like a useful feature of the C++ language. The C++
run-time library constructs them when it starts your application, so you can write code with the
assurance that these objects are available when needed. Unfortunately, because there are
several problems with using static objects, the Open Class Library designers worked to
minimize their use. We recommend that you do the same. Static objects are a concern because
they affect the loading of your application. The compiler generates code to construct all static
objects when your application loads, whether the application needs them or not. For a DLL, all
static objects in the DLL are constructed whenever the DLL is loaded. Another problem with
static objects is that the language definition leaves the order of initialization and destruction
up to the compiler implementation. This can become a problem if you have a static object that
depends on another static object in a different compilation unit.

Using static functions that return a reference to an object is a better approach to ensure that
you have created objects when you need them. These functions construct the object when
called if it is not already constructed. Therefore, the object is not constructed until it is used.
If you do not create containers, for example, then the application does not create the container
static objects.

You still must delete these objects when you no longer need them or when the application
closes. You can delete them when the application ends by adding the static object pointers to a
class with only a destructor to delete the objects. You then declare a static object of this class
so that the C++ run-time library calls the destructor when the application closes.

The following example demonstrates the use of this technique and creates an object of the
class IDynamicLinkLibrary for a user DLL, named MYENG.DLL. APPSTAT.HPP defines the
interface to a class called Appstatics. This class contains a static accessor function
Appstatics : : englishDLL for a static IDynamicLinkLibrary object and a static pointer to this
object. APPSTAT.CPP declares the static object, initializes the pointer to the

Cfe¢pfe7.29 Packaging and performance 'I\ining 761

IDynamicLinkLibrary object, and implements the destructor to delete the
IDynamicLinkLibrary object when the C++ run-time library deletes the static Appstatics
object. After that, a short example demonstrates the use of the static function to load a text
string from resources contained in the DLL.

Appstatics Interface - shipapp\appstat\appstat.hpp
#include <ireslib.hpp>
class Appstatics
(
public =
// Destructor for cleanup.-Appstatics () ;

// DLL Accessor function.
static IDynamicLinkLibrary

&englishDLL () ;

private :static IDynamicLinkLibrary
*engDLL;

);

Appstatics Implementation - shipapp\appstat\appstat.cpp
#include <ireslib.hpp>
#include `'appstat.hpp"
// Define static instance of Appstatics.
Appstatics appstatics;
// Initialize Appstatics object pointer
IDynamicLinkLibrary* Appstatics : :engDLL = 0;

// Destructor to close the DLL.
Appstatics: :~Appstatics ()
(

if (engDLL != 0)
delete engDLL;

)

// Static accessor for the DLL.
IDynamicLinkLibrary& Appstatics : : englishDLL()
(

i f (! engDLL)
engDLL = new IDynamicLinkLibrary ("myeng") ;

return *engDLL;
)

Appstatics Usage - shipapp\appstat\main.cpp
#include
#include
#include
#include
void main
(Istring

cout <<
)

<iostrean.h>
= i s tring . hpp=„ apps tat . hpp "
„ mytext . h „

()

str = Appstatics : : englishDLL () .1oadstring (MY_TEXT) ;
•'The resource text is [" << str << "] " << endl;

762 Power GUI programming with visualAge for c++

The preceding example only partially addresses the problem of controlling the order of static
object construction and destruction. We ensured that the Appstatics object is initialized wben
needed, so any references to it by another static object constructor will work correctly. We did
not, however, ensure that the object is destructed after all other users of it are destructed. The
VisualAge for C++ compiler provides pragma priority for controlling static-object
construction order. This is an implementation-specific feature, so the method for ordering
static object construction and destruction may be different for other compilers.

Finding Staticl0bj ect Initialization Functions
To construct static objects, the compiler generates static functions that it calls during program
initialization to call the constructors on the objects. The compiler creates these functions in
the compilation unit where you define the static objects. This can result in page faults in many
different parts of the DLL (or EXE) at load time. If you compile a module containing static
objects and request the assembler output, you will find these functions. You may have noticed
that the preceding Hellol sample has a static Istring object, appName, for the application
name. This static object causes the compiler to generate initialization code similar to the
following:

Static Initialization Function
_sinit80000000_Fv proc

call _ProfileHook32
pu s h ebp
mov ebp , esp
push of f
push
mov

et FLAT: _Exception_CPP

Oh] ' esp
push Of f f f f feoh
sub esp, 014h
push ebx
push edi
push esi
j mp @BLBL5
align 04h

@BLBL6 :

; 15 Istring appName("Hello World -Version 1") ;
mov edx, offset FLAT: @CBE2
mov eax, offset FLAT : appName
sub esp, 08h
cal 1 _ct_7 IstringFPCc
add esp, 08h
mov dword ptr [ebp-020h] , 01h;
pop esi
pop edi
p Op ebx
add esp, 018h
pop fs: [Oh]leaveret

@BLBL5 :
mov dword ptr [ebp-020h] , Oh; _es
mov dword ptr [ebp-018h] ,offset FLAT:@a2a_fsm_tab; _es
j mp @BLBL6
align 04h

s ini t 8 0 0 0 0 0 0 0___Fv endp

Cfaapfer 29 Packaging and performance Tuning 763

The names of static initialization functions begin with "_sinit," followed by a number based
on the initialization priority of the data. You can adjust the initialization priority of static data
by using the pragma priority.

The compiler generates similar functions to call the destructors of static objects when the
application closes. These termination functions begin with "_sterm."

To reduce the number of pages executed during initialization, you can use alloc_text
pragmas to logically place these static initialization functions at the top of the DLL and the
static termination functions at the bottom of the DLL. It is not obvious how to do this because
the compiler makes up the function names as it compiles. Fortunately, it is not too difficult to
write a simple program that compiles a series of files and determines the names of these
functions. You see an example of this program shortly.

Finding Static Exception Handling Functions
The current VisualAge for C++ implementation of exception handling generates static
functions to call destructors during the processing of an exception. A design goal of Open
Class Library was to limit the use of exceptions to error conditions that should not occur once
you debug your application. Consequently, moving these functions to a segment that does not
get loaded until an actual error occurs reduces the amount of memory required for a normally
running application. The compiler helps in this regard because it automatically places the
generated exception code in a segment called EH_CODE, and it places the data structures
associated with exception handling in a segment called EH_DATA. You can see the generated
functions and data by compiling a module that uses exception handling and requesting the
assembler output. Search for the string "_df tdt" in the assembler file. You will see
something similar to the following example from our modified Hellol :

_df tdt_7 I s tringFv proc
call _Prof ileHook32
pu sh ebp
mov ebp, esp
sub esp, 08h
mov [ebp+08h] ,eax; this
mov edx, 02h
mov eax, [ebp+08h] ; thiscall _dt_7 IstringFv
add esp, 08h
leaveret

_df tdt_7 Is tringFv endp

You will also find references to these generated functions in a series of tables with labels
containing the string "_f sin_tab." The compiler uses these tables to ensure that destructors
are called when an exception occurs within a block.

Generating the Pragmas for Static Functions
In the previous topics, we identified several functions that the compiler might create as static
functions due to static-object construction, static-object destruction, or attempts to inline
functions that it cannot inline. The following VisualAge for C++ editor macro demonstrates

764 Power GUI programming w.ith visualAge for c++

the generation of alloc_text pragmas for the static functions in a group of modules. The
macro takes a file specification as input and writes pragmas to the initprag . h file as follows:

• Static initialization functions are placed in the segment Initsegment.
• Static termination functions are placed in the segment Termsegment.
• Static functions for exception handling are left alone because they are already in a

separate segment.
• All remaining static functions are placed in the segment staticsegment.

Generate Pragmas for Static Functions - shipapp\genprags\genprags.Ix
/*---

genprags.1x -The primary purpose of this macro is to
generate the alloc_text pragmas for initialization,termination, and static functions. If you have a command line
REXX interpreter available, you can copy this file to genprags.cmd
and run it from the command line. If this option is available it
is recomlnended since this prograln can take a while and will lock
up the edit session while it is running as a macro.
The macro functions by generating and parsing the
assembler code (-Fa) for all specified files. Static
functions are identif led because they have a PROC
staterient with no cooresponding PUBLIC statement.
The static functions identified in this manner are
searched for various tokens to determine the segment
they should be placed in and the appropriate
alloc_text pragmas generated.

Requires as inout:
wildcardFileName -files to process of the form '*.cpp'

Generates as output:
initprag.h

--- * /
call RXFuncAdd 'SysLoadFuncs' , `Rexxutil' , 'SysLoadFuncs'
call SysLoadFuncs

/* set up to run as either a macro or a command file */
parse upper source osnalne . me
me = strip(me)
lastDot = 1astpos('.', me)
if substr(me,1astDot) = `'.LX" then do

isMacro = 1
end•else do

isMacro =. 0
end
if isMacro = 1 then do

/* insure that message and messageline are on */' extract messageLine into messageLinesetting'
` extract messages into messagessetting'
'set messages on'
'set messageLine on'

end

/*
Read and parse argulnents

*/
PARSE UPPER ARC wildcardFileName ` (' optionsupper

I

Cfeapfcr 29 Packaging and performance Thining 765

kDebug = 0 /* set to 1 for debug info */
if pos(''DEBUG", optionsupper) > 0 then kDebug = 1

wildcardFileName = strip (wildcardFileName)
if wildcardFileName = ```' then

wildcardFileName = ''*.CPP"

/*
Initialize constants*/

publicstring = "public"
procstring = `'proc"extrnstring = "extrn"
kstaticword = `'static"

rootDirectory = directory ()
asselholerFile = rootDirectory" \genprags. asm"
objectFile = rootDirectory" \genprags. obj "
OutFile = rootDirectory" \genprags. out"
pragmaFile = rootDirectory" \genprags.h"filteredpragmaFile = rootDirectory"\initprag.h"
Initsegment = ``Initsegment"
Termsegment = `'Termsegment"
Staticsegment = `'Staticsegment"

/*check for f ile already in ring*/
if isMacro = 1 then do

' EXTRACT DOCLIST'
if doclist \= '' then

'EXTRACT DOCNUM INTO SAVEDOCNUM'
else

savedocnum = 0
do while doclist \= ' '

parse var doclist docnum doclist'GODOC DOCNUM 'docnum
if rc <= 1 then do`EXTRACT NAME into currentDocName'

if translate (currentDocName) = translate (filteredpragmaFile) then
qqui t ,

end
end
if savedocnum \= 0 then

'GODOC DOCNUM ' savedocnum
end
if stream(pragmaFile, 'C' , 'QUERY EXIST')<>' ' then

call oscmd `@DEL 'pragmaFile

/*
Write a prolog to the output file*/

rc = 1ineout(pragmaFile, "// Generated by "me)
rc = 1ineout(pragmaFile, `'// Arguments were "wildcardFileName)
rc = 1ineout(pragmaFile, " ")

/*
Collect a list of the files to process*/

cppFiles. = 0
if kDebug = 1 then

call sayErr 'wildcardFileName= 'wildcardFileName
rc=SysFileTree (wildcardFileName, ' cppFiles ' , ' FO ' , ' ***** ')

766 Power GUI programming with visualAge for c++

/*
Process each CPP file*/

do fileNumber=1 TO cppFiles.0
call refreshDisplay
call sayErr ''Processing file `'fileNumber" of `'cppFiles.0"

("cppFiles . fileNumber") "
/* Erase the assembler file and create the next one */
if stream(assemblerFile, 'C' , 'QUERY EXIST')<>' ' then

call oscmd '@DEL 'assemblerFile
iccoptions = "-c -Ft- -0+ -W2 -Q+ -Gin+ -Gd+"
if 0 \= oscmd('@ICC' iccoptions '-Fa'assemblerFile '-Fo'objectFile

cppFiles.fileNulnber' > 'outFile) then do
call sayErr "ICC failed"
if isMacro = 1 then'lx 'outFile
else

call oscmd 'type `outFile
exit 1

end
/*

Build a table of public syhools from the assembler file.*/
filepublics. = 0
call SysFilesearch publicstring, assemblerFile, 'filepublics' , 'C'
if kDebug = 1 then do

call sayErr `'Filepublics.0 = "filepublics.0
call refreshDisplay

end
publicList. = 0
do j=1 to filepublics.0

filepublics.j = translate(filepublics.j `, `09'x) /* remove
tabs */

parse var filepublics.j publicKeyword function
if kDebug = 1 then

call sayErr ''PUBLIC: " publicKeyword function
/* We want the statements of the form
/* public _functionName
/* but not segment declarations and such.
if strip(publicKeyword) = publicstring then do

publicList.0 = publicList.0 + 1
currentpublic = publicList. 0
publicList. currentpublic = strip (function)

eINfl /* Li */
eENii /* alo */

/*
Build a table of procedures ("proc", both public & static) .*/

fileprocs. = 0
call SysFilesearch procstring, assemblerFile, 'fileprocs' , 'C'
procList. = 0
do j=1 to fileprocs.0

fileprocs.j = translate(fileprocs.j, ' ', '09'x)
parse value fileprocs.j with fileprocs.j `';" comment
/* The following logic attempts to eliminate lines that get

included that are not "proc" statements (e.g. lines with
words like "process") .*/

if words(fileprocs.j) = 2 & word(fileprocs.].,2) = procstring then do
procList.0 = procList.0 + 1currentproc = procList.0
procList . currentproc = strip (word (fileprocs . j ,1))
if kDebug = 1 then

call sayErr ''PROC: "fileprocs.j
€INfl /* Li */

erJfl /* alo * /

-
Cfeapfe7. 29 Packaging and performance Tuning 767

/*
Flag the functions in the procList as being PUBLIC or
STATIC (STATICS are in the procList but not the publicList) .*/

staticsFound = 0
do j=1 to procList.0

f ound = 0
do k=1 to publicList.0 while found = 0

if procList.j = publicList.k then do
f ound = 1
procList.j .scope = publicstring

end
erJjl /* alo */
/* Not found in public list so must be a static */
if found = 0 then do

procList.j .scope = kstaticword
staticsFound = 1

eIvd /* Li * /
ekyfl /* dJo * /

/*
Determine the alloc_text pragmas for functions meeting
one of the criteria.*/

if staticsFound = 1 then do
/* Determine the File Name and write an #ifdef for it */
cppoffset = pos (' . ' , cppFiles.fileNumber)
1astslash = lastpos('\' , cppFiles.fileNutnber)
cppNameLength = cppof fset - 1astslash -1
cppFileName = substr (cppFiles. fileNutnber, 1astslash+1, cppNameLength)
rc = 1ineout(pragmaFile, "#ifdef _" 11 translate(cppFileName) 11 "_CPP_")

/* Now dump out the segment definitions for Statics */
do procNumber=1 to procList.0

if procList.procNumber.scope = kstaticword then do
writepragma = 1
outBuffer = "#pragma alloc_text ("
/* Do not write out Exception Functions because */
/* they are in EH_CODE already. */
if pos(`'_dftdt", procList.procNumber) > 0 I ,

pos(`'_dftbdt", procList.procNumber) > 0 then
writepragma = 0

if pos(''_dftct", procList.procNumber) > 0 then
outBuffer = outbuffer I I staticsegment

/* Write out Initialization functions */
else if pos("_sinit", procList.procNumber) > 0 then

outBuffer = outbufferl I Initsegment
/* Write out termination functions */
else if pos(''_sterm", procList.procNumber) > 0 then

outBuffer = outbuffer I I Termsegment
else

outBuffer = outbuffer I I staticsegment
outBuffer = outBufferl I ", " procList.procNumberl I ") "
if writepragma = 1 then

rc = lineout(pragmaFile, outBuffer)
end

end /* do procNumber */

rc = 1ineout(pragmaFile, "#endif")
rc = 1ineout(pragmaFile, "')

end /* do staticsExist */
end /* do fileNumber */
rc = stream(pragmaFile, 'C', 'close')

768 Power GUI programming with visualAge for c++

/*
Use CPPFILT on the pragma file*/

call oscmd '@CPPFILT /q' prag.maFile ' > ' filteredpragmaFile

/* cleanup temporary files */
if kDebug = 0 then do

if stream(assemblerFile, 'C' , 'QUERY EXIST')<>' ' then
call oscmd `@DEL 'assemblerFile

if stream(objectFile, 'C' , 'QUERY EXIST')<>' ' then
call oscmd '@DEL 'ob].ectFile

if stream(outFile, 'C' , 'QUERY EXIST')<>' ' then
call oscmd '@DEL 'OutFile

if stream(pragmaFile, 'C' , 'QUERY EXIST')<>' ' then
call oscmd '@DEL 'pragmaFile

end

/* restore previous settings and view the results if a macro */
if isMacro = 1 then do' set messageLine 'messageLinesetting

' set messages 'messagessetting
' 1x ' filteredpragmaFile

end
exit 0
/* Utility function to call a system function */
oscmd:

parse arg thecmd
if pos('@', thecmd) \= 1 I kDebug \= 0 then

call sayErr thecmd
if pos('@', thecmd) = 1 then

Address 'CMD' substr(thecmd, 2)
else

Address `CMD' thecmd
return rc

/* Utility function to write error message */
sayErr :
procedure expose isMacro
parse arg thestring
if isMacro = 1 then'msg 'thestring
else

say thestring
call refreshDisplay
return
/* Utility function to update the display */
refreshDisplay:
procedure expose isMacro
if isMacro = 1 then

s show ,
return

The macro works by compiling each of the files specified on input to generate an assembler
listing. It examines the assembler code to find the compiler-generated static functions. If it
finds any generated static functions other than exception-handling functions, it outputs
pragmas to place each function in the desired segment. It then uses the VisualAge for C++ tool
cppfilt to unmangle the function names and produce the final output file initprag . h.

For example, to generate an include file with alloc_text pragmas for the Hello6 sample
program, execute the following command:

GENPRAGS ibmcppw\samples\ioc\hello6*. cpp

Cfe¢pfer 29 Packaging and performance Tuning 769

Then, include the file initprag .h in the Hello6 implementation files. For example, add to the
top of ADIALOG6 . CPP the lines:

#def ine _ADIALOG6_CPP_
#include "initprag.h"

The actual output of this program run against the implementation files in Hello6 follows:
// Generated by D: \USR\MACROS\GENPRAGS.LX
// Arguments were *.CPP
#ifdef _ADIALOG6_CPP_
#pragma alloc_text (Staticsegment,
ADialogcommandHandler : : ~ADialogcommandHandler ())
#endif
#i fdef _AEARTHW6_CPP_
#pragma alloc_text (Staticsegment,
ATwinkleTimeHandler : : ~ATwinkleTimeHandler ())
#pragma alloc_text (Staticsegment,
ATwinkleTimeHandler : : ATwinkleTimeHandler (AEarthwindow*))
#pragma alloc_text (Staticsegment, IGraphicBundle : :_dftct ())
#pragma alloc_text (Staticsegment, IPoint: :_dftct ())
#pragma alloc_text (Staticsegment, IRectangle: :_dftct ())
#endif
#ifdef _AHELLOW6_CPP_
#pragma alloc_text (Staticsegment,
#pragma alloc_text (Staticseglnent,
#pragma alloc_text (Staticsegment,
#pragma alloc_text (Staticsegment,
#pragma alloc_text (Staticsegment,
#pragma alloc_text (Staticsegment,
#pragma alloc_text (Staticsegment,
#pragma alloc_text (Staticsegment ,
#pragma alloc_text (Staticsegment,
long))
#endif

Timeupdate : : ~Timeupdate ())
ACommandHandler : : ~ACommandHandler ())
AselectHandler : : ~AselectHandler ())
AHelpHandler : : ~AHelpHandler ())
APopUpHandler : : ~APopUpHandler ())
Timeupdate : : Timeupdate (AIIellowindow*))
APopUpHandler : : APopUpHandler ())
AHelpHandler : :AHelpHandler ())
IResourceld: : IResourceld (unsigned

#ifdef _ANOTEBW6_CPP_
#pragma alloc_text (Staticsegment,
ANotebookcommandHandler : : ~ANotebookcommandHandler ())
#endif

An examination of this output reveals several interesting things. First, because there are no
functions of the form "_sinit" or "_sterm," Hello6 must not use any static objects. This is
a good start. However, if you examine the entries for Staticsegment segment, you see several
constructors and destructors with pragmas defined. Instead of leaving these functions with
pragmas (which place them in the static segment), create outlined versions of these functions
in a compilation unit.

Ordering the Segments
The order in which the linker encounters segment names when it scans the input files is
generally the order in which the linker places them in the executable (subject to operating-
system-dependent requirements). To ensure that your tuning work is most effective, force a
specific segment-ordering with respect to the segments you define. You can do this with
directives to the linker that cause it to encounter your segments in the order that you want them
placed in the output file. The specific syntax of the directives varies by environment.

770 Power GUI programming with visualAge for c++

The Windows version of ilink accepts a /SECTION directive on the command line. It allows
you to name and set certain attributes of each segment. For example, we would set up the
segment ordering in our Hello6 example by adding the following directives to the link
commands in the makefile:

/a" /SECTION: Initseglnent, ER /SECTION:CODE32 , ER /SECTION: Staticsegment, ER
/SECTION:Termsegment, ER "

This places Initsegment before the default CODE32 segment, and then it places the rest of our
segments at the end. The ER attributes mean Execute Read-only, and they are the defaults for
code.

With the OS/2 version of ilink, you can do the same thing using directives within a module
definition file. We would create a module definition file for Hello6 that looks like the
following example and add the name of the file to the link command line in the makefile:

NZRE HELL06
DESCRIPTION 'Hello6 '

SEGMENTS
Initsegment
CODE32
Staticsegment
Termsegrment

; Remaining CODE32

Windows Linker Segment Ordering
You have seen how to get your segments ordered by listing them in /SECTION directives
on the linker command line in the order you want them in. This is how it is supposed to
work. However, the Version 3.51inker does not work this way. Windows system conven-
tions call for segments whose names contain "S" characters to be sorted in the load module
by the part of the name after the S. Unfortunately, the linker sorts all of the segments by
name. Until the linker is changed, you need to select the names of your segments so that
they collate in the order you want them to. In our Hello6 example, we would change
Initsegment to Alnit so that it appears before CODE32.

Finishing Up the Th.ming
The final steps in the tuning process are to remove functions from Staticsegment and
Termsegment that appear in the Performance Analyzer trace runs and to order the object files in
the linker response file for the linker. The primary result of both of these final steps is to
reduce the storage requirements for your application after it is started up and is running.

The Staticsegment and Termsegment segments are for seldom-used functions or for functions
used at termination time. But, functions that appear in the trace don't meet these criteria.
Therefore, you need to move the referenced functions out of Staticsegment and Termsegment
so that these segments are not loaded because of them.

Similarly, the order that the object files are presented to the linker determines the placement of
functions and data within segments. Because we do not group all of the functions in the DLL,

Index

A
Accelerator table, 107, 127
Actions, defining, 27-28
Active windows, 595
alloc_text, 758, 760, 763, 763-769
Anchor block, 500
Animated buttons, 376
Application

errors, finding, 744-746
final, building, 751-753
name, 621, 623, 626-627
thatjust ends, 722, 742-743

Application commands, 380
Application framework, objects, 52-54
Application-modal, 94
Arguments, data type objects as, 634-635
Associated windows, 594-595
Augmentation keys, 541, 544
Automatic variables, data type objects as, 635

8
Backtab,160
Binding, dynamic, 618-619
Bit-flag objects, creating, 686-688
Bitmap,172-175, 353-354, 617-618
Bit masks, 684-691
Buttons, 187-198, 203, 220, 275, 359, 308-309,

374-376

C
Calendar systems, 684
Callback, 73,189, 746-747
Call Stack view, 745
Canonical search function, 653
Canvas, 299-350

class, 299-300, 306-307, 344-345
Isetcanvas, 311-317
ISplitcanvas, 332-335

usage,167-171
Fee c!JSo Dialog box; IMulticellcanvas;

Isetcanvas; Iviewport
Canvas pages, 283
Cascade menu,115,122-123
Chaining functions, 36
Character box, 413-414
Character strings, 644-6777

conversions, 671-674 L*
debug information function, 674
editing, 659-661
IBuf fer, 674-676
IstringTest, 656-659
overloaded string operators, 651-653

parsing, 662-671
string constructors, 650-651
string searches, 653-656'

word functions, 66'1-662
Check boxes, 197-198
Child frame window, 428-429, 435
Child window, 311-312, 318, 321-328, 466

combination boxes, 329-331
creating white space, 318
expandable rows and columns, 322-327

group boxes, 331-332
independent sizing, 327-328
laying out in decks, 359-361
minimum size, 313, 321
removing, 328
special case, 329-332, 335

Circular slider, ?12, 222-225
Client area, 32, 102-105
Client window, 3-4, 32, 103-105
Clipboard operations,181
C++ member functions, running on a thread,

490-492
C++ object,lifetime management, 7`9-80
Code, 760 `

reducing size, 756-757

771

772 Power GUI programming with visualAge for c++

Collapse icon, 241
Collection classes, using, 30
Collection Class Library Exception Classes, 701,

703
Collection cursor, 205, 283
Colors,157-160, 691-692

displaying, 166-167
notebook, changing, 287-288

Column, expandable, 322-327
Column cursor, 251
Column objects, 244-245
Combination box, 202-205, 329-331
Command events, routing, 381
Command execution, supp"9rting, 584
Command handler, 378-387, 476

avoiding potential pitfalls, 382-387
creating,10-11
disabling commands, 384-387

generating your own command events, 382-384
IFontDialog, 419-420
querying command information, 378-379
system commands, 380-381

Command identifier, 378 ,i
Comparison functions, 636
Composite control,155, 219, 369
Conditional cascade menu, 115
Constructors, 75-76, 89, 148-157, 539, 568-569,

•594, 636, 640-641, 650-651, 680-681

operating system window creation, 149-154
representing existing windows, 154-157

Container, 21
constructing, 228-237
help, 602-603
pop-up menu, 262-263
sorting objects in, 252-253

Container columns, 261, 269-270
Container control, 227-270

custom drawing, 264-265
customized edit controls, 261-262
details view, 242-247
icon view, 238-240
object cursor, 249-250
tree view, 241-242
using help, 259-261

Container exceptions, 269

Container model, 228
Container objects, 16, 255-259

applying behavior to, 247-248, 251-252
attributes, 248, 256-259
building large numbers of, 263-264
creating, 235
dynamic creation, 269-270
help, 260

Container text, editing, 253-255
Container workspace, 239
Contents panel, 601
Context menu,116
Control,19

basic, 42-44
classes, 145
colors and fonts, 157-160

preventing keyboard access to,161
Scc ¢JSo specific types of controls

Control handlers, 70
Conversions, character strings, 671-674
Coordinate system, 78, 238-240
Coordinate values, accessing, 636
Copying, container objects, 247
Copy-on-write, 649
Critical sections, 506-507
C signals, 697-698
Ctrl key, 544
Ctrl+Shift, 544
Cursor

column, 251
movement,160-161, 307-308
object, 249-250
text, 250

Custom buttons, 374-376

D
Data, 570-571, 630

format, parsing and, 668-669
reading and writing, 627-630

Data members, data type objects as, 634
Data objects, 16
Data types, 633-695

bit masks, 684-691
class hierarchy, 28-29
colors, 691-692

-

Index 113

data and time, 680-684
handles, 677-679
objects, 633-635
ordered pairs, 635-639
reference-counting, 692-695
reference-semantics, 650
value-semantics, 650
Sce c!JSo Character strings

Dates, details view, 246
Debugger, 729, 744-749
Debugging, on demand, 745-746
Debug information function, 674
Decks, number and direction, 312-313
Default application name, 626
Default behavior, modifying, Windows, 69
Default handlers, replacing, 553
Default push button,189-190, 308
Deleting, 247-248, 630
Delta value, 263
Desktop, 15-16, 23-24
Desktop window, 64, 428
Destroy-on-close, 102
Details view, 242-247, 270
Detents, adding to linear slider, 221-222
Device objects, 17
Diagnostic aids, 729-741

performance analyzer, 729-230
program debugger, 729
run-time tracing, 730-741

Dialog, 45-46, 97
Dialog box, 31, 300-306
Dialog page windows, help, 603-604
Dialog template, 88-92, 443-450
Direct manipulation, 47-49, 519, 523-531

contents, 526
drag image, 527-528
file name and path, 527
framework objects, 549-550
handlers and events, 549, 551-553
operations, 550, 553-555
renderers, 524-526, 551, 555-557
supported operations, 527
target emphasis, 544-548

dispatchHandlerEvent, 68-69, 72, 746-747
. DLL file, 54, 614

Dllmame, 753-755
Drag and drop, 24, 48-50, 520-522, 533-535,

537-538, 544
help' 607
item providers, 532-534, 538-539

providing source items, 534-535
Drag image, 527-528
Drawing, custom, 264-265
Draw-item handlers, 70
Drop

deciding whether to, 540-541
Sec ¢JSo Drag and drop

Drop-down button, 203
Drop-down menu,115
Dynamic binding, 618-619
Dynamic data exchange, 54, 559-585

class hierarchy, 564
clients, 567-578
conversation, 560-561
data formats, 561-562
framework design, 562-564
generic event classes, 564-567

Dynamic data exchange servers, 578-585
accepting conversations, 580-581
constructing, 579-580 .
handling conversation terminations, 584-585

providing hot link data, 583-584
Dynamic link library, 751-755

building resources, 610-612
debug versions, 739-740
reference counting, 620
specifying names, 614

E
Edit change request, handling, 255
Edit classes,179-180
Edit controls,179-181
Editing, 254-255, 659-661
Error handling, 699-701

fee ¢JSo Exceptions
Error icon, 721
Errors, 710-711, 718-719, 744-746
Event handlers, 377-378

command handler, 378-387
frame handler, 441443

774 Power GUI programming with visualAge for c++

keyboard handler, 3 88-396
list box, 201-202
mouse handler, 397-402
notebook, 284-285

presentation system message, 66-69
separation from windows, 65-66
spin button, 207
window paint handler, 402-406
window resize handler, 406

Event handling, 5-12, 49-52, 65-69, 203-204
Event objects, 73
Event parameters, 74
Event-processing loop, 93
Events

direct-manipulation items, 549, 551-553
sending and posting, 80-82

Event semaphores, 507-508
Exception-handlers, 698-699
Exception handling, 83-84, 697-700, 723-725, 763
Exception information logging, 721-723
Exception model, 54
Exception object, 701-702
Exceptions

benefits of using, 699-700
catching, 708-710
classes, 705-707
container, 269
creating on stack, 704
displaying with message box, 719-721, 743
location, information, 704
Iwindow, 83-84
throwing, 711-718
unable to catch, 709

Exception text, 705
executecommands, 584
. EXE file, 54
Expand icon, 241
Explorer, 428-429
Extended style, 688
Extensions,107-112

F
File dialog, 45-46, 420, 606
File Manager, 428-429

File selection, 420424
Filtering, container objects, 253
Fl key, 589, 602, 607
Floating tool bars, 358-359
Fly-over help, 22-23, 45, 47, 364-374

based upon window identifiers, 369
composite controls, 369
disabling, 368
specifying text, 369-371
timer delay, 367
tool bar, 372-374
unique window identifiers, 370-371
using resource identifiers, 369-370

Fly-over help handler, 365-368
Fly-over help text, 366-367, 370
Font dialog, 45, 417-418, 606
Font objects, 408-410, 410-412
Fonts, 157-160, 407-410

dialog box, 303-305

geometry accessors, 413
selection, 417-420

Format string, 682
Frame components, 451
Frame extensions, 357, 438-440
Frame handler, 441-443
Frame window, 3-4, 63, 85-87, 92,102,110

accelerator table, 107
application-modal, displaying, 94-96
association with IHelpwindow object, 594-595
client area, 102-105
closing, 97-102 `
constructing, 86-88, 432-435
dialog template resources, 88-92
event processing, 93-94
extensions,107-112
filling,102-112
information area,111-112
location, 107-109
menu bar, 106
minimizing, maximizing, and restoring, 96-97
0S/2 considerations, 95
ownership, 427

primary view, 454-458
secondary view, 458-459
size,109-110

Index 115

system menu,106-107
title bar, 106
window viewer objects, 459-464
siee czJSo IFramewindow

Frame window handlers, 70
Framework, 25

G
General handlers, 70
Geometry accessors, 413
Graphical image, 172-173
Graphical user interface, 15
Graphic push buttons,190-191
Graphics framework, 49
Group,161
Group box,175-177, 316-317, 331-332

H
Handlers,191,194,198

catching exceptions thrown from, 708
direct-manipulation items, 549, 551-553
Sec ¢JSo Event handlers; Window handlers

Handles, data types, 677-679
Help, 47, 260-261, 587-608

class hierarchy, 588
containers, 602-603
context-sensitive,189
contextual and general panels, 596
creating information, 590-592
dialog page windows, 603-604
drag and drop, 607
dynamic management, 607-608
enabling user to request, 588-590
file and font dialogs, 606
fly-over, See Fly-over help
fundamentals, 587-588
index panel, 601
IPF help files, 591-592
menu choices, 589-590
message boxes, 606, 721
notebook, 288-289
notebook tabs, 605-606

page windows, 604-605
product information window, 601-602

push button,189, 589
setting active and relative windows, 595
using Help panel, 600-601
using in container, 259-261
windows files, 592-593

Help handlers, 70
Help tables, 597-599
Help window object, 593-595
Hiding, container objects, 253
Hot link, 571-574, 583-584
Hover help, 22

I
IApplication: : current () . run () , 4, 6,13, 32, 81,

93, 563, 748
IASSERTPARM, 706, 712 `

IASSERTSTATE, 707, 713

IBasecomboBox, 205, 329
IBaseErrorlnfo, 711, 713-715, 721
IBaseListBox, 200-201, 205
IBuf fer, 647-648, 674-676
Icanvas, 299, 307-311, 381
Icircularslider, 44, 222-224
IcnrHandler, 51, 258-260, 602
IcnrMenuHandler, 262, 382
IColor,159, 691-692
ICohooBox, 202-204

>

:#`'
ICormandEvent,11,13, 378-379
ICormandHandler,10,118,121,138-139,189,191,

378-379
Icons,172-175, 354, 617-618
IContainercolumn, 243-246, 261
IContainercontrol, 34-35, 102, 227-234, 254,

265-267, 381
IContainerobject, 35-36, 51, 235, 237, 242-243,

249, 267-269
IControl, 32-33, 145
IControl : :group,161,190,194, 356
IControl : : tabstop,161,190
Icon view, 238-240
ICurrentApplication, 54, 481-483, 497, 613-615
ICustomButton, 44, 356, 374-376
ICustomButtonDrawHandler, 44, 374-376
IDate, 246, 680-684

776 Power GUI programming with visualAge for c++

IDDEclientAcknowledgeEvent, 565-566, 571-572,
574

IDDEclientconversation, 562-564, 567-569, 576
IDDEEndEvent, 566-567, 585
IDDETopicserver, 562-563, 578-585
IDMHandler, 520-522, 551-553
IDMlmage : : Style, 685, 687, 689
IDMltem, 523, 526, 528, 538
IDMoperation, 527, 538, 553-554
IDynamicLinkLibrary, 613-614, 618, 620, 753,

760-761
IEnptryField, 42-43, 149-156, 179-180, 203, 207,

521

IEvent,11, 67-68, 73-74
IException, 84, 701-707, 716-718
IFileDialog, 45-46, 408, 420-424
IFlyoverHelpHandler, 365-371
IFlyText, 47, 366-367
IFocusHandler, 202, 204, 207
IFont,159, 279, 408-411, 414
IFontDialog, 45-46, 408, 417-420
IFraneHandler, 382, 441-443
IFranewindow, 2-4, 30-32, 38, 60, 86-87

.constructors, 89
deriving views from, 103
explicit title, 438
frame extens
frame windorJ:Ei

s, 438-440
rontrol. 451-452

initial size and position, 431-432
managing frame window construction, 443-450
miscellaneous frame windows, 436-437
non default style, 436
owner window, 427-428
parent window, 428-4`29
presentation system window, 450-452
resource identifier, 425-427
scroll bars, 451
styles, 96, 429-431
window title, 432
window viewer application, 453-454
working with frame components and handler,

441-443, 451
IFramewindow: :menuBar, 6,121,122
IHandler, 59, 65, 68, 746-747
IHelpHandler, 587, 607

i

IHelpwindow, 47, 587, 591, 593-595
IInvalidRequest, 570, 572, 575, 706-707
IKeyboardEvent, 390-391, 394-396
IKeyboardHandler, 207, 261, 389
IMenu,116-117,131,134,139

IMenuDrawltemHandler,118,138-139,141
IMenuHandler, 123, 138-141
IMenultem,132-134,141
IMessageBox, 47, 606, 709, 719-721
IMouseclickEvent, 60, 397-398
IMouseHandler, 60, 368, 397-400
IMousepointerEvent, 60, 400-401
IMulticellcanvas, 40, 48, 102, 167-168, 173-175,

210, 283, 299-300, 302-307, 317-333,
344-346

IMultiLineEdit, 2, 4, 13, 42-43, 103, 179-180,
255, 504, 521

INESTEDBITFLAGCLASSDEFn macros, 685-686,
690-691

Inheritance, multiple, 729
INotebook, 39,102, 271-272
Input focus, 64, 79, 92
Iobj ectwindow object, 511, 569, 580
IPF help files, 591-592, 594-595
Iprofile, 53, 621-622, 624-626, 628-630
Iprogresslndicator, 44, 213-220, 226
IPushButton, 44,189-191, 589
IRadioButton, 44, 194
IRectangle, 152, 639-644
IRefcounted, 554, 694-695
IResource, 53, 503-504, 506
IResourceld, 427, 481-482, 616-617
IResourceLibrary, 481, 612-615
IResourceLock, 53, 506
IRETHROW macro, 708, 715

isAckTOHotLinkupdate, 581-584
IselectHandler,187,194,198, 202, 204
Isetcanvas, 167-168, 173, 299-300, 302-304,

311-317, 345-346, 359
Islider, 44, 219-221, 226
IsliderArmHandler, 212, 225-226
IsliderDrawHandler, 212, 217, 226
ISplitcanvas, 34, 40, 299, 332-335, 344-345
13StatecheckBox, 44,198
IstaticText,158-159,164-171, 615, 617

Index 777

Istring, 28, 244, 489, 762, 627-628, 645-652,
654-655, 659-661

Istring object, 570, 583-584, 644, 646-648, 651
Istringparser, 663-665, 662-671
IstringTest, 656-659, 671
ISubmenu,117,139
IsysteITMenu,106-107,129-131,191
Item, 561
Item providers, 532-534, 538-539, 551
Item-providing logic, reusing inherited, 537-538
ITextcontrol,160,179-181, 224-225
IThread, 53, 464, 477-480, 483-489, 493-494, 563
IThreadMemberFn, 491-492, 694
ITime, 246, 680-684
IToolBar, 351-352, 355-358, 364
IToolBarButton, 44, 352-356, 370
IToolBarcontainer, 351-352, 357, 361-362
ITrace, 722, 730-733
Iviewport, 48,103, 281, 283, 299, 336-345
Iwindow, 32, 66, 68, 71-73, 75-84, 117, 151-152,

159, 229-230, 521, 719
Iwindow: : dispatch, 67-69, 84, 708
Iwindow: : ExceptionFn, 84, 708
IwindowHandle, 82, 433, 569
Iwindow: : setAutoDeleteobj ect, 38, 80
Iwindow: : setHelpld, 596-597, 603-607
Iwindow: :visible, 76, 748

J
Julian day number, 680, 684

K
Keyboard, preventing access to controls,161
Keyboard accelerator,113,116,127-129
Keyboard handler, 388-396
Keyboard input, 64
Keyboard mnemonics,116
Key name, 621, 623
Key press, 389
Key release, 389
Keys help panel, 600
Knowledge transference,17-18

L
Layout events, processing with setLayoutDis-

torted, 346-350
Libraries, 742, 752-573
Library resource library, 482
Linear slider, 212, 219-222
Linking, unresolved references, 741-742
List box, 199-202, 204-205, 545-547

Drag and drop, 529-530, 542-543, 545-548
List controls, 199-210
Load time, reducing, 757-758
Local Variables window, 744
Logic, item-providing, 537-538

M
Macros, 592, 711-715
main, 2, 37, 709, 746
Make files, 4-5,11-12, 56-57
Margin, 311, 314
Mask bitmap, 354
Mathematical operators, for ordered pairs, 636-637
MBCS, 676-677
MDI child, 466468
Member functions, naming convention, 660
Memory allocation, tracing, 740-741
Menu, 44-45,113-127? 1t31-138

s'ee ¢JSo Pop-up menu '
Menu bar, 8-10,106: 115',1.22-123
Menu cursor, using, 136-138
Menu events,138-141 ` ,
Menu handlers, 70 „
Menu item,114,132-134,141-144
Menu resource, defining,119-122
Message box, 606, 719-721, 743
Message file, creating, 718
Message-processing loop, 93, 496, 500-502
Messagte queue, 80-81, 500
Message Queue Monitor, 747
Messages, 5, 47-48, 66, 74-75,123, 718-719
Misfit filtering, 364
Mixed-source view, 745
Mnemonics,164-165, 308-309
Mouse button, event processing, 398
Mouse handler, 397-402

778 Power GUI programming with visualAge for c++

Mouse input, 64
Mouse movement, processing, 399-400
Mouse pointer, changing, 400-401
Moving, container objects, 247
Multibyte character sets, 676-677
Multicell canvas, terms and features, 317-318
Multiline edit control, 3-4
Multimedia framework, 49
Multiple document interface, 428, 466-476
Multiple inheritance, limiting use, 729
Multiple threads, 478-480, 505-508
Mutex semaphore, 700

N
Name view, 238
Naming convention, member functions, 660
Notebook, 21-22, 39-40, 271-275, 603-606

adding pages, 276-280
changing style, 274-276
events handling, 284-285
style functions, 275-276

Notebook control, 22, 271-298
adding windows to page, 280
changing colors, 287-288
delayed addition of pages, 285-287

+

dialog pages, 281-283
displaying help, 288-289t `

3-v J 1£1

:::: ::t:1f:::,, 2;;:2;+:a ``i,i ,
smart guide, 289-298

Notebook cursor, 283-284
Notification framework, 55
Notification handlers, 71-72
Notification hot link, 571

>Numeric data, reading and writing, 628-629
Numeric resource identifiers, 615-617

0
Object, 16-17, 27-30, 548

lifetime management, 79-80, 728
Object cursor, 249-250
Object window, service threads, 511-513
Open Class Library, 5, 26-28, 36, 42-55, 61, 65, 83,

145
application framework objects, 52-54

building windows, 30-31
containers, 34-37
direct manipulation, 47-49
error handling strategy, 700-701
exception, 703-707
handler classes, 70-72
mapping to operating system controls, 146-148
notebooks, 39-40
obsolete strategy, 55-56

primary window, 31-37
programming without, 12-14
support for resources, 612-617
using minimum sizes, 345-346

Operating system, 697, 716
Operating system window,149-154, 219
Operation classes, using your own, 554
Operations, direct-manipulation items, 550,

553-555
Ordered pairs, 635-639
0S/2 operating system objects, 548
Outline box, 175-177
Overloading, 435
Owner window, 63, 152, 368, 427-428

P
Pack options, Isetcanvas, 314
Pad, 311, 313-314
Page, 280-287, 757-758
Page buttons, 275
Page handle, 284, 278-279
Page settings, 277-278
Page window, 39, 277, 280-283, 604-605
Painting, 78, 226
Parent-child relationships, windows, 61-62,

336-337
Parent window,151,155-156, 428-429
Parsing, 662-671
Patterns, matching, parsing, 665-668
Pels, 61, 152
Performance analyzer, 729-230
pi, calculation, 489
Pixels, 152
Pointer, 693, 728
Poking data, 575, 584
Pop-up menu, 24,113,116,123-127, 262-263

iiE

Index 119

Presentation Manager, automatic initialization, 493
Presentation system, 66-69, 83, 499-500, 716
Presentation system window, 450-452
Primary scale, 216
Primary view, defining, 454-458
Primary window, 20, 31-37, 87-88, 427-428, 502
Priority class, 497-498
Priority level, 497499
Processes, 53
Process level, 477
Product information window, 601-602
Profile, 621-632
Profile objects, constructing, 624-626
Programming objects, 54-55
Progress indicator, 213-219
Pull-down menu,115
Push buttons,188-193, 308, 315-316, 589

R
Radio buttons, 193-197, 309
Record caching, 263
Rectangle, transformations, 640, 642-643
Reference counting, 620, 692-695
Reference objects, 554
References, 728, 732, 741-742
Reference-semantics, 650
Registry, 622-624
Relative windows, 595
Remote commands, executing, 575-576
Removing, container objects, 247-248
Renderers, direct-manipulation items, 551, 555-557
Rendering, 524-526, 556-557
Resource editors, 610
Resource file,loading menus from,118-126
Resource identifier, 369-370, 425427
Resource locks, 506
Resources, 54, 503-506, 609-620
Resource script file, 609
Resumption model, error handling, 699
Return code, setting, 535
Return values, data type objects as, 634-635
REXX, 670
Ribbon strip, 213-214, 216
Rich-text format files, 592
Rows, expandable, 322-327

S
Sample code,location, 376
Scroll bars, 341, 451
Secondary views, defining, 458459
Secondary window, 20, 38-52, 88, 427428, 595
Segments, ordering, 769-770
Selected operation, 544
Semaphore, 503, 507-508, 700
Separator type,110
Service threads, 508-515
Set canvas, 311, 352
setLayoutDistorted, 280, 346-350
Shell position, 431-432
Shift key, 544
Shredding, 530
Sibling order, 62, 82-83, 312
Sibling windows, 62-63, 161
Signal handler, 749-750
Skipping, parsing, 669-670
Sleeping, 497
Slider buttons, 220
Slider controls, 44, 211-226
Smart guide, 289-298

creating, 291-298
designing, 289-291

Sorting, objects in container, 252-253
Source container name, 527
Source handler, default, 520
Source items, providing, 534-535
Source operation, 531
Source windows, enabling, 522
Spin button, 206-210, 536
Spin field, 206
Split bar, 246-247, 334-335
Split canvas, features, 333-334
Spreadsheet, behavior in details view, 270
Stack size, 493-494
Static controls, 225-226, 163-177
Static exception handling functions, finding, 763
Static functions, generating pragmas, 763-769
Static objects, 760-763
Static text,164-171
Storage overlay, finding, 749-750
Streaming framework, 55

780 Power GUI programming with visualAge for c++

String operators, overloaded, 651-653
String searches, 653-656
Strip functions, 660-661
Subclass procedure, missing messages, 66
Submenu,114,134-135,139-141
System commands, 380-381
System image, 527
System menu, 106-107
System profile, 623

T
Tabbing, between windows,160-161
Tab control, 272
Tabs, sizing, 279-280
Tab stops,160,191
Target constructor, 539
Target emphasis, 544-548
Target handler, default, 520, 552

/ Target items, providing, 538
Target operation, 531, 544
Target windows, enabling, 522
Termination model, error handling, 699
Text, 164-165, 173, 353-354

dialog box, 302-303
sice czJSo Static text

Text cursor, 250
Text operations, 181
Text view, 237
Thread level, 477
Threads, 53, 494-497

message processing loop, 500-502
new, setting attribrites, 492-494
running C++ member functions, 490492
service, 508-515
starting, 485-489
fee ¢JSo IThread; Multiple threads

Throwing exceptions, 698, 711-718
Tick,`214
Timers, 367., 515-51.7'.J '.~+`

Times, details view, 246
Title, specified as. constructor argument, 438
Title bar,106,115,129-131
Tokens, extracting, 664-665
Tool bar, 45, 351-364, 372-374
Tool bar buttons, 354-356

Topics, 560-561
Trace browser, 733-739
Tracing, 55, 730-741
Transparency, tool bar buttons, 354-355
Tree view, 241-242, 454-458
Type attribute, 524
Typeface name, 408
Type safety, 727

U
User editing, enabling, in container, 254
User interaction, processing, 173
User Interface Library Exception Classes, 701-702
User interface subclass procedure, 66-67
User profile, 623
User's resource library, 481-482
Using Help panel, 600-601

V
Value-semantics, 650
View,19, 30, 32-34, 38-39, 408
View port, 239, 281-282, 336-340
View rectangle, 336
View window, 336, 339-343
Virtual functions, 72, 741-742
void*, 575-576, 651 '

W
/Wall+gnr-ppc-ppt-uni-vf t-, 56
White space, child window, 318
Window, 2-5,17,19-20, 64-65, 78, 161, 595 dr

attaching item provider, 533
building, 30-31
class, 6-8, 69
collection of, 67-68
components, 22-23
creating, 309-311, 319-321
cursoring between,161
enabling, for drag and drop, 520-521
existing, constructors representing, 154-157
invisible, 748-749
linker segment ordering, 770
modifying default behavior, 69
owner, 152

Index 7 81

ownership, 63

parent,151

parent-child relationships, 61-62, 336-337
positioning, 61-62, 78
relative, 595
separation from event handler, 65-66
sibling, 62-63
tabbing between,160-161

Window constructors, 75-76
Window handle, 67-68,156
•Window handlers, 70-75

Window identifier, 149-151,155-156, 369-371
Window messages, relouting, 74-75
Window observers, notifying, 69
Window paint handler, 402-406
Window procedure, 61, 65, 68
Window relationships., 20
Window 1.esize handler, 406
Windows help files, 592-593
Window styles, 76-77
Window title, 432
Window viewer application, 453-454
Window viewer objects, defining, 459-464
muLcormAND, 75,123, 383-384, 387
t"_HELP, 602, 605
WM_QUIT, 98-99, 501-502
Word functions, 661-662
Word wrapping,164

Z
Z-order, 82, 249

\

Programming/Languages $54.95 USA
$76.95 CAN

From the developers of the IBM Open Class Library,
the most complete programming resource available for

both Windows and OS/2 programmers

This· valuable guide:

■ Explains how to build programs

that run on Windows and OS/2

with little change to your source

code

■ Describes advanced control,

including container, notebook,

and tool bar

■ Discusses enabling your applica

tion for Direct Manipulation

■ Explains how to use separate

threads of execution to maintain

a responsive user interface

■ Covers using Dynamic Data

Exchange to communicate

between applications

■ Shows how to use the advanced

layout or canvas classes to build

views that automatically adjust

to changes in font, national

language, or display resolution

■ Includes debugging techniques,

perforniance tuning guidelines,

and potential pitfalls to avoid

WILEY COMPUTER PUBLISHING

John Wiley & Sons, Inc.
Professional, Reference and Trade Group
605 Third Avenue, N ew York, N.Y 10158-0012
New York • Chichester • Weinheim
Toronto • Singapore • Brisbane

Cover Design: Susan Z ucker

Destined to become the VisualAge for C++ bible for pro

grammers and developers , this invaluable book/ CD-ROM

set clearly describes how to use Open Class Library to devel

op applications with modern graphical user interfaces. You'll

get the kind of practical, detailed information that could only

come from the hands-on experience of the developers of the

IBM Open Class Library. You'll discover how to produce

better applications more quickly and easily with less code.

You'll also find useful tips for GUI programming, includ

ing aspects of Windows or . OS / 2 programming that you

need to know to use O pen Class Library, special features of

the C + + programming language, and hints and tips on Class

Library construction.

The CD-ROM includes:

■ 140 example programs usingVisualAge for C++

■ VisualAge for C + + trial copy

HIROSHI TSUJI, BOB LOVE, and BRUCE OLSON
are all part of the IBM development team for VisualAge for

C++. WILLIAM LAW is President of Solution Frame

works, which specializes in C++ and OS/2 programming.

Visit our Web site at:
http://www.wiley.com/compbooks/ .

.
ISBN □ -471-16482-8

II I 55495

9 780J1 164 21

